1
|
Jain PM, Nellikka A, Kammara R. Understanding bacteriocin heterologous expression: A review. Int J Biol Macromol 2024; 277:133916. [PMID: 39033897 DOI: 10.1016/j.ijbiomac.2024.133916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Bacteriocins are a diverse group of ribosomally synthesised antimicrobial peptides/proteins that play an important role in self-defence. They are widely used as bio-preservatives and effective substitutes for disease eradication. They can be used in conjunction with or as an alternative to antibiotics to minimize the risk of resistance development. There are remarkably few reports indicating resistance to bacteriocins. Although there are many research reports that emphasise heterologous expression of bacteriocin, there are no convincing reports on the significant role that intrinsic and extrinsic factors play in overexpression. A coordinated and cooperative expression system works in concert with multiple genetic elements encoding native proteins, immunoproteins, exporters, transporters and enzymes involved in the post-translational modification of bacteriocins. The simplest way could be to utilise the existing E. coli expression system, which is conventional, widely used for heterologous expression and has been further extended for bacteriocin expression. In this article, we will review the intrinsic and extrinsic factors, advantages, disadvantages and major problems associated with bacteriocin overexpression in E. coli. Finally, we recommend the most effective strategies as well as numerous bacteriocin expression systems from E. coli, Lactococcus, Kluveromyces lactis, Saccharomyces cerevisiae and Pichia pastoris for their suitability for successful overexpression.
Collapse
Affiliation(s)
- Priyanshi M Jain
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India
| | - Anagha Nellikka
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India
| | - Rajagopal Kammara
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India.
| |
Collapse
|
2
|
Abstract
The biosynthesis of serine, glycine, and one-carbon (C1) units constitutes a major metabolic pathway in Escherichia coli and Salmonella enterica serovar Typhimurium. C1 units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNAfMet used to start translation in E. coli and serovar Typhimurium. The need for serine, glycine, and C1 units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: serA, serB, and serC; gly gene; gcvTHP operon; lpdA; gcvA and gcvR; and gcvB genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of E. coli cells in GM medium, and isoleucine releases this growth inhibition. The E. coli glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins.
Collapse
|
3
|
Arraiano CM. Post-transcriptional control of gene expression: bacterial mRNA degradation. World J Microbiol Biotechnol 2014; 9:421-32. [PMID: 24420109 DOI: 10.1007/bf00328030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/1993] [Indexed: 11/30/2022]
Abstract
Many biological processes cannot be fully understood without detailed knowledge of RNA metabolism. The continuous breakdown and resynthesis of prokaryotic mRNA permit rapid production of new kinds of proteins. In this way, mRNA levels can regulate protein synthesis and cellular growth. Analysing mRNA degradation in prokaryotes has been particularly difficult because most mRNA undergo rapid exponential decay. Prokaryotic mRNAs differ in their susceptibility to degradation by endonucleases and exonucleases, possibly because of variation in their sequencing and structure. In spite of numerous studies, details of mRNA degradation are still largely unknown. This review highlights those aspects of mRNA metabolism which seem most influential in the regulation of gene expression.
Collapse
Affiliation(s)
- C M Arraiano
- Instituto de Tecnologia Quimica e Biológica (ITQB), Apt 127, 2780, Oeiras, Portugal
| |
Collapse
|
4
|
Mohanty BK, Kushner SR. Bacterial/archaeal/organellar polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:256-76. [PMID: 21344039 DOI: 10.1002/wrna.51] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although the first poly(A) polymerase (PAP) was discovered in Escherichia coli in 1962, the study of polyadenylation in bacteria was largely ignored for the next 30 years. However, with the identification of the structural gene for E. coli PAP I in 1992, it became possible to analyze polyadenylation using both biochemical and genetic approaches. Subsequently, it has been shown that polyadenylation plays a multifunctional role in prokaryotic RNA metabolism. Although the bulk of our current understanding of prokaryotic polyadenylation comes from studies on E. coli, recent limited experiments with Cyanobacteria, organelles, and Archaea have widened our view on the diversity, complexity, and universality of the polyadenylation process. For example, the identification of polynucleotide phosphorylase (PNPase), a reversible phosphorolytic enzyme that is highly conserved in bacteria, as an additional PAP in E. coli caught everyone by surprise. In fact, PNPase has now been shown to be the source of post-transcriptional RNA modifications in a wide range of cells of prokaryotic origin including those that lack a eubacterial PAP homolog. Accordingly, the past few years have witnessed increased interest in the mechanism and role of post-transcriptional modifications in all species of prokaryotic origin. However, the fact that many of the poly(A) tails are very short and unstable as well as the presence of polynucleotide tails has posed significant technical challenges to the scientific community trying to unravel the mystery of polyadenylation in prokaryotes. This review discusses the current state of knowledge regarding polyadenylation and its functions in bacteria, organelles, and Archaea.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, GA 30605, USA
| | | |
Collapse
|
5
|
Régnier P, Hajnsdorf E. Poly(A)-assisted RNA decay and modulators of RNA stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:137-85. [PMID: 19215772 DOI: 10.1016/s0079-6603(08)00804-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Escherichia coli, RNA degradation is orchestrated by the degradosome with the assistance of complementary pathways and regulatory cofactors described in this chapter. They control the stability of each transcript and regulate the expression of many genes involved in environmental adaptation. The poly(A)-dependent degradation machinery has diverse functions such as the degradation of decay intermediates generated by endoribonucleases, the control of the stability of regulatory non coding RNAs (ncRNAs) and the quality control of stable RNA. The metabolism of poly(A) and mechanism of poly(A)-assisted degradation are beginning to be understood. Regulatory factors, exemplified by RraA and RraB, control the decay rates of subsets of transcripts by binding to RNase E, in contrast to regulatory ncRNAs which, assisted by Hfq, target RNase E to specific transcripts. Destabilization is often consecutive to the translational inactivation of mRNA. However, there are examples where RNA degradation is the primary regulatory step.
Collapse
Affiliation(s)
- Philippe Régnier
- CNRS UPR9073, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
6
|
Grunberg-Manago M. Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 2000; 33:193-227. [PMID: 10690408 DOI: 10.1146/annurev.genet.33.1.193] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The stability of mRNA in prokaryotes depends on multiple factors and it has not yet been possible to describe the process of mRNA degradation in terms of a unique pathway. However, important advances have been made in the past 10 years with the characterization of the cis-acting RNA elements and the trans-acting cellular proteins that control mRNA decay. The trans-acting proteins are mainly four nucleases, two endo- (RNase E and RNase III) and two exonucleases (PNPase and RNase II), and poly(A) polymerase. RNase E and PNPase are found in a multienzyme complex called the degradosome. In addition to the host nucleases, phage T4 encodes a specific endonuclease called RegB. The cis-acting elements that protect mRNA from degradation are stable stem-loops at the 5' end of the transcript and terminators or REP sequences at their 3' end. The rate-limiting step in mRNA decay is usually an initial endonucleolytic cleavage that often occurs at the 5' extremity. This initial step is followed by directional 3' to 5' degradation by the two exonucleases. Several examples, reviewed here, indicate that mRNA degradation is an important step at which gene expression can be controlled. This regulation can be either global, as in the case of growth rate-dependent control, or specific, in response to changes in the environmental conditions.
Collapse
|
7
|
Abstract
The sequence (2,700 bp) between the aldH and pspF genes of Escherichia coli was determined. The pspF gene encodes a sigma54 transcriptional activator of the phage shock protein (psp) operon (pspA to pspE). Downstream of the pspF transcribed region are two open reading frames (ORFs), ordL and goaG, convergently oriented with respect to pspF. These two ORFs, together with the adjacent aldH gene, may constitute a novel operon (aldH-ordL-goaG). The goaG-pspF intergenic region contains a complex extragenic mosaic element, RIB. The structure of this RIB element, which belongs to the BIME-1 family, is Y(REP1) > 16 < Z1(REP2), where Y and Z1 are palindromic units and the central 16 bases contain an L motif with an ihf consensus sequence. DNA fragments containing the L motif of the psp RIB element effectively bind integration host factor (IHF), while the Y palindromic unit (REP1) of the same RIB element binds DNA gyrase weakly. Computer prediction of the pspF mRNA secondary structure suggested that the transcribed stem-loop structures formed by the 3'-flanking region of the pspF transcript containing the RIB element can stabilize and protect pspF mRNA. Analysis of pspF steady-state mRNA levels showed that transcripts with an intact RIB element are much more abundant than those truncated at the 3' end by deletion of either the entire RIB element or a single Z1 sequence (REP2). Thus, the pspF 3'-flanking region containing the RIB element has an important role in the stabilization of the pspF transcript.
Collapse
Affiliation(s)
- G Jovanovic
- Laboratory of Genetics, Rockefeller University, New York 10021, USA
| | | |
Collapse
|
8
|
Abstract
The rapid decreases in viability seen in H2O2-treated PC12 cells reflect enhanced susceptibility of neural cell types to oxidant injury. The dose-response relationship between NGF concentration and survival after H2O2 treatment resembles that for NGF effects on PC12 survival in serumless medium. Previously we have shown that NGF treatment enhances the activity of GSH-Px and catalase which catalyze the degradation of H2O2. Here in order to ascertain whether NGF stimulates transcription, affects mRNA stability, or acts post-transcriptionally, we measured catalase and GSH-Px mRNA half-lives. While both catalase and GSH-Px transcripts are stable with a relatively long half life and a gradual decay in mRNA levels, NGF had different effects on their stability. NGF had marked effects on catalase mRNA stability. The catalase gene has a 3' flanking region with T-rich clusters and CA repeats known to be susceptible to regulation by destabilization or ubiquination. NGF maintained catalase mRNA levels of actinomycin D (ACT-D) treated PC12 cells at twice that of cells exposed to ACT-D alone, delaying the rate of decay for catalase mRNA for 24 h. The NGF induction of GSH-Px and catalase mRNA was inhibited by cycloheximide (CHX) treatment with a slight decrease in their mRNA levels due to prolonged exposure to CHX. When the CHX treatment was delayed relative to the NGF treatment there was no effect on NGF effects on catalase and GSH-Px. The GSH-Px gene has conserved sequences in the open reading frame and 3' untranslated region which forms a stem-loop structure necessary for the incorporation of Se into this selenoprotein. While Se is important in stabilizing GSH-Px transcripts, it did not affect transcription rates or mRNA stability. These results are consistent with the hypothesis that NGF regulates catalase and GSH-Px expression via a primary effect on transcription factor pathways.
Collapse
Affiliation(s)
- D Sampath
- University of Texas Medical Branch, Galveston, Texas 77555-0652, USA
| | | |
Collapse
|
9
|
Ingle CA, Kushner SR. Development of an in vitro mRNA decay system for Escherichia coli: poly(A) polymerase I is necessary to trigger degradation. Proc Natl Acad Sci U S A 1996; 93:12926-31. [PMID: 8975250 PMCID: PMC24022 DOI: 10.1073/pnas.93.23.12926] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Using a novel Escherichia coli in vitro decay system in which polysomes are the source of both enzymes and mRNA, we demonstrate a requirement for poly(A) polymerase I (PAP I) in mRNA turnover. The in vitro decay of two different mRNAs (trxA and lpp) is triggered by the addition of ATP only when polysomes are prepared from s strain carrying the wild-type gene for PAP I (pcnB+). The relative decay rates of these two messages are similar in vitro and in vivo. Poly(A) tails are formed on both mRNAs, but no poly(A) are detected on the 3' end of mature 23S rRNA. The size distribution of poly(A) tails generated in vitro, averaging 50 nt in length, is comparable to that previously reported in vivo. PAP I activity is associated exclusively with the polysomes. Exogenously added PAP I does not restore mRNA decay to PAP I-polysomes, suggesting that, in vivo, PAP I may be part of a multiprotein complex. The potential of this in vitro system for analyzing mRNA decay in E. coli is discussed.
Collapse
Affiliation(s)
- C A Ingle
- Department of Genetics, University of Georgia, Athens 30602-7223, USA
| | | |
Collapse
|
10
|
Koraimann G, Teferle K, Mitteregger R, Wagner S, Högenauer G. Differential mRNA decay within the transfer operon of plasmid R1: identification and analysis of an intracistronic mRNA stabilizer. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:466-76. [PMID: 8602164 DOI: 10.1007/bf02174035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Processing of the transfer operon mRNA of the conjugative resistance plasmid R1-19 results in the accumulation of stable traA mRNAs. The stable traA transcripts found in vivo have identical 3' ends within downstream traL sequences, but vary at their 5' ends. The 3' ends determined coincide with the 3' base of a predicted large clover-leaf-like RNA secondary structure. Here we demonstrate that this putative RNA structure, although part of a coding sequences, stabilizes the upstream traA mRNA very efficiently. We also show that the 3' ends of the stable mRNAs are formed posttranscriptionally and not by transcription termination. Half-life determinations reveal the same half-lives of 13 +/- 2 min for the traA mRNAs transcribed from hybrid lac-traAL-cat test plasmids, the R1-19 plasmid, and the F plasmid. Protein expression experiments demonstrate that the processed stable traA mRNA is translationally active. Partial deletions of sequences corresponding to the predicted secondary structure within the traL coding region drastically reduce the chemical and functional half-life of the traA mRNA. The results presented here unambiguously demonstrate that the proposed secondary structure acts as an efficient intracistronic mRNA stabilizer.
Collapse
Affiliation(s)
- G Koraimann
- Institut für Mikrobiologie, Karl-Franzens-Universität Graz, Graz, Austria
| | | | | | | | | |
Collapse
|
11
|
Cruz AA, Marujo PE, Newbury SF, Arraiano CM. RNase E can inhibit the decay of some degradation intermediates: degradation of Desulfovibrio vulgaris cytochrome c3 mRNA in E coli. Biochimie 1996; 78:227-35. [PMID: 8874797 DOI: 10.1016/0300-9084(96)82185-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In Escherichia coli, ribonuclease E (RNase E) is a key endonuclease in mRNA decay. We have analysed the role of E coli RNase E on the degradation of a heterologous cytochrome c3 (cyc) mRNA from Desulfovibrio vulgaris Hildenborough. The decay of the cyc transcript in wild-type and mutant E coli cells was followed and the degradation intermediates analysed by Northern blotting and S1 protection analysis. The half-life of total cyc mRNA intermediates was increased in the RNase E mutant. A number of degradation intermediates were stabilised, and new species arose. However, some species decayed faster in the met5 mutant at the non-permissive temperature, suggesting that RNase E might inhibit their degradation. The results indicate that RNase E is involved in cyc mRNA degradation, and, interestingly, decay of certain intermediates could be reduced by this enzyme activity. This may suggest a functional interaction between RNase E and exonucleases, like polynucleotide phosphorylase.
Collapse
Affiliation(s)
- A A Cruz
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | |
Collapse
|
12
|
Alifano P, Rivellini F, Piscitelli C, Arraiano CM, Bruni CB, Carlomagno MS. Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA. Genes Dev 1994; 8:3021-31. [PMID: 8001821 DOI: 10.1101/gad.8.24.3021] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The polycistronic mRNA of the histidine operon is subject to a processing event that generates a rather stable transcript encompassing the five distal cistrons. The molecular mechanisms by which such a transcript is produced were investigated in Escherichia coli strains carrying mutations in several genes for exo- and endonucleases. The experimental approach made use of S1 nuclease protection assays on in vivo synthesized transcripts, site-directed mutagenesis and construction of chimeric plasmids, dissection of the processing reaction by RNA mobility retardation experiments, and in vitro RNA degradation assays with cellular extracts. We have found that processing requires (1) a functional endonuclease E; (2) target site(s) for this activity in the RNA region upstream of the 5' end of the processed transcript that can be substituted by another well-characterized rne-dependent cleavage site; (3) efficient translation initiation of the first cistron immediately downstream of the 5' end; and (4) a functional endonuclease P that seems to act on the processing products generated by ribonuclease E. This is the first evidence that ribonuclease P, an essential ribozyme required for the biosynthesis of tRNA, may also be involved in the segmental stabilization of a mRNA.
Collapse
Affiliation(s)
- P Alifano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Pepe CM, Maslesa-Galić S, Simons RW. Decay of the IS10 antisense RNA by 3' exoribonucleases: evidence that RNase II stabilizes RNA-OUT against PNPase attack. Mol Microbiol 1994; 13:1133-42. [PMID: 7531807 DOI: 10.1111/j.1365-2958.1994.tb00504.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
RNA-OUT, the 69-nucleotide antisense RNA that regulates Tn10/IS10 transposition folds into a simple stem-loop structure. The unusually high metabolic stability of RNA-OUT is dependent, in part, on the integrity of its stem-domain: mutations that disrupt stem-domain structure (Class II mutations) render RNA-OUT unstable, and restoration of structure restores stability. Indeed, there is a strong correlation between the thermodynamic and metabolic stabilities of RNA-OUT. We show here that stem-domain integrity determines RNA-OUT's resistance to 3' exoribonucleolytic attack: Class II mutations are almost completely suppressed in Escherichia coli cells lacking its principal 3' exoribonucleases, ribonuclease II (RNase II) and polynucleotide phosphorylase (PNPase). RNase II and PNPase are individually able to degrade various RNA-OUT species, albeit with different efficiencies: RNA-OUT secondary structure provides greater resistance to RNase II than to PNPase. Surprisingly, RNA-OUT is threefold more stable in wild-type cells than in cells deficient for RNase II activity, suggesting that RNase II somehow lessens PNPase attack on RNA-OUT. We discuss how this might occur. We also show that wild-type RNA-OUT stability changes only two-fold across the normal range of physiological growth temperatures (30-44 degrees C) in wild-type cells, which has important implications for IS10 biology.
Collapse
Affiliation(s)
- C M Pepe
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024
| | | | | |
Collapse
|
14
|
Tam SW, Cote-Paulino LR, Peak DA, Sheahan K, Murnane MJ. Human cathepsin B-encoding cDNAs: sequence variations in the 3'-untranslated region. Gene 1994; 139:171-6. [PMID: 7509303 DOI: 10.1016/0378-1119(94)90751-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have isolated two cathepsin B (CTSB)-encoding cDNAs, hCBF1 and hCBF2, from a normal human embryonic fibroblast library. These clones demonstrate 98% identity to overlapping regions of published human hepatoma and kidney CTSB cDNAs, but show some interesting differences from the published sequences in the 3'-untranslated region (3'-UTR). Both hCBF1 and hCBF2 contain a 10-bp insertion in the 3'-UTR that may permit formation of a highly stable stem-loop structure not present in mRNAs without this insertion. Our hCBF1 cDNA also contains a 1019-bp extension of the 3'-UTR sequence that resembles the long 3'-UTR reported for murine CTSB cDNAs. Probes unique to this 3'-UTR extension hybridize to 4.0- and 1.7-kb CTSB RNAs on Northern blots, but not to the major 2.2-kb mRNA transcript. Our data reveal variations in normal human CTSB transcripts that result from differences in the length of the 3'-UTR, as well as the presence or absence of a stem-loop stabilizing sequence.
Collapse
Affiliation(s)
- S W Tam
- Department of Pathology, Boston University School of Medicine, MA 02118
| | | | | | | | | |
Collapse
|
15
|
Mudd EA, Higgins CF. Escherichia coli endoribonuclease RNase E: autoregulation of expression and site-specific cleavage of mRNA. Mol Microbiol 1993; 9:557-68. [PMID: 8412702 DOI: 10.1111/j.1365-2958.1993.tb01716.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutations in the Escherichia coli rne (ams) gene have a general effect on the rate of mRNA decay in vivo. Using antibodies we have shown that the product of the rne gene is a polypeptide of relative mobility 180 kDa. However, proteolytic fragments as small as 70 kDa, which can arise during purification, also exhibit RNase E activity. In vitro studies demonstrate that the rne gene product, RNase E, is an endoribonuclease that cleaves mRNA at specific sites. RNase E cleaves rne mRNA and autoregulates the expression of the rne gene. In addition we demonstrate RNase E-dependent endonucleolytic cleavage of ompA mRNA, at a site known to be rate-determining for degradation and reported to be cleaved by RNase K. Our data are consistent with RNase K being a proteolytic fragment of RNase E.
Collapse
Affiliation(s)
- E A Mudd
- Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, UK
| | | |
Collapse
|
16
|
Cao GJ, Sarkar N. Poly(A) RNA in Escherichia coli: nucleotide sequence at the junction of the lpp transcript and the polyadenylate moiety. Proc Natl Acad Sci U S A 1992; 89:7546-50. [PMID: 1380161 PMCID: PMC49747 DOI: 10.1073/pnas.89.16.7546] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although it has been known for some time that bacterial mRNA molecules carry polyadenylate moieties at their 3' ends, nothing is known about the molecular structure of bacterial poly(A) RNA. To define the polyadenylylation site of a specific bacterial mRNA, we took advantage of the presence of elevated levels of poly(A) RNA in cells of Escherichia coli deficient in exoribonucleases and synthesized DNA complementary to polyadenylylated lipoprotein mRNA, encoded by the lpp gene, by using avian myeloblastosis virus reverse transcriptase and an oligo(dT)-containing primer. The 5'-terminal portion of the cDNA was amplified by the polymerase chain reaction and appropriate oligonucleotide primers, and the amplified DNA was cloned in pUC18 and subjected to nucleotide sequence analysis. Four clones were found to contain the entire 3'-terminal coding region of lpp mRNA, with poly(A) attached to either of two sites in the downstream untranslated region of the transcript. In one type of clone, the polyadenylate moiety was attached at the putative transcription termination site of lpp mRNA, whereas other clones lacked the stem-loop structure of the rho-independent transcription terminator and the polyadenylate moiety was attached to the residue just preceding the terminal stem-loop of the primary transcript. A model for the polyadenylylation of bacterial mRNA is proposed in which poly(A) polymerase and exonucleases compete for the 3' ends of mRNA molecules.
Collapse
Affiliation(s)
- G J Cao
- Department of Metabolic Regulation, Boston Biomedical Research Institute, MA 02114
| | | |
Collapse
|
17
|
Ehretsmann CP, Carpousis AJ, Krisch HM. Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Dev 1992; 6:149-59. [PMID: 1730408 DOI: 10.1101/gad.6.1.149] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endoribonuclease RNase E has an important role in the processing and degradation of bacteriophage T4 and Escherichia coli mRNAs. We have undertaken a mutational analysis of the -71 RNase E processing site of T4 gene 32. A series of mutations were introduced into a synthetic T4 sequence cloned on a plasmid, and their effects on processing were analyzed in vivo. The same mutations were transferred into T4 by homologous recombination. In both the plasmid and the phage contexts the processing of the transcripts was similarly affected by the mutations. Partially purified RNase E has also been used to ascertain the effect of these mutations on RNase E processing in vitro. The hierarchy of the efficiency of processing of the various mutant transcripts was the same in vivo and in vitro. These results and an analysis of all of the known putative RNase E sites suggest a consensus sequence RAUUW (R = A or G; W = A or U) at the cleavage site. Modifications of the stem-loop structure downstream of the -71 site indicate that a secondary structure is required for RNase E processing. Processing by RNase E was apparently inhibited by sequences that sequester the site in secondary structure.
Collapse
Affiliation(s)
- C P Ehretsmann
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
18
|
Guarneros G, Portier C. Different specificities of ribonuclease II and polynucleotide phosphorylase in 3'mRNA decay. Biochimie 1991; 73:543-9. [PMID: 1764498 DOI: 10.1016/0300-9084(91)90021-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review recent evidence on the in vivo and in vitro mRNA degradation properties of 2 3'-exonucleases, ribonuclease II and polynucleotide phosphorylase. Although secondary structures in the RNA can act as protective barriers against 3' exonucleolytic degradation, it appears that this effect depends on the stability of these structures. The fact that RNase II is more sensitive to RNA secondary structure than PNPase, could account for some differences observed in messenger degradation by the 2 enzymes in vivo. Terminator stem-loop structures are often very stable and 3' exonucleolytic degradation proceeds only after they have been eliminated by an endonucleolytic cleavage. Other secondary structures preceding terminator stem-loop seem to contribute to mRNA stability against exonucleolytic decay.
Collapse
Affiliation(s)
- G Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | | |
Collapse
|
19
|
Vasudevan SG, Armarego WL, Shaw DC, Lilley PE, Dixon NE, Poole RK. Isolation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in Escherichia coli K-12. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:49-58. [PMID: 2034230 DOI: 10.1007/bf00273586] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the course of an attempt to identify genes that encode Escherichia coli dihydropteridine reductase (DHPR) activities, a chromosomal DNA fragment that directs synthesis of two soluble polypeptides of Mr 44000 and 46000 was isolated. These proteins were partially purified and were identified by determination of their N-terminal amino acid sequences. The larger was serine hydroxymethyltransferase, encoded by the glyA gene, while the smaller was the previously described product of an unnamed gene closely linked to glyA, and transcribed in the opposite direction. Soluble extracts of E. coli cells that overproduced the 44 kDa protein had elevated DHPR activity, and were yellow in colour. Their visible absorption spectra were indicative of a CO-binding b-type haemoprotein that is high-spin in the reduced state. The sequence of the N-terminal 139 residues of the protein, deduced from the complete nucleotide sequence of the gene, had extensive homology to almost all of Vitreoscilla haemoglobin. We conclude that E. coli produces a soluble haemoglobin-like protein, the product of the hmp gene (for haemoprotein). Although the protein has DHPR activity, it is distinct from the previously purified E. coli DHPR.
Collapse
Affiliation(s)
- S G Vasudevan
- Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Régnier P, Hajnsdorf E. Decay of mRNA encoding ribosomal protein S15 of Escherichia coli is initiated by an RNase E-dependent endonucleolytic cleavage that removes the 3' stabilizing stem and loop structure. J Mol Biol 1991; 217:283-92. [PMID: 1704067 DOI: 10.1016/0022-2836(91)90542-e] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The transcripts of the rpsO-pnp operon of Escherichia coli, coding for ribosomal protein S15 and polynucleotide phosphorylase, are processed at four sites in the 249 nucleotides of the intercistronic region. The initial processing step in the decay of the pnp mRNA is made by RNase III, which cuts at two sites upstream from the pnp gene. The other two cleavages are dependent on the wild-type allele of the rne gene, which encodes the endonucleolytic enzyme RNase E. The cuts are made 37 nucleotides apart at the base of the stem-loop structure of the rho-independent attenuator located downstream from rpsO. The cleavage downstream from the attenuator generates an rpsO mRNA.nearly identical with the monocistronic attenuated transcript, while the cleavage upstream from the transcription attenuator gives rise to an rpsO mesage lacking the terminal 3' hairpin structure. The rapid degradation of the processed mRNA in an rne+ strain, compared to the slow degradation of the transcript that accumulates in an rne- strain, suggests that RNase E initiates the decay of the rpsO message by removing the stabilizing stem-loop at the 3' end of the RNA.
Collapse
Affiliation(s)
- P Régnier
- Institut de Biologie Physico Chimique, Paris, France
| | | |
Collapse
|
21
|
Guarneros G, Portier C. Different specificities of ribonuclease II and polynucleotide phosphorylase in 3'mRNA decay. Biochimie 1990; 72:771-7. [PMID: 2085542 DOI: 10.1016/0300-9084(90)90186-k] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We review recent evidence on the in vivo and in vitro mRNA degradation properties of 2 3'-exonucleases, ribonuclease II and polynucleotide phosphorylase. Although secondary structures in the RNA can act as protective barriers against 3' exonucleolytic degradation, it appears that this effect depends on the stability of these structures. The fact that RNase II is more sensitive to RNA secondary structure than PNPase, could account for some differences observed in messenger degradation by the 2 enzymes in vivo. Terminator stem-loop structures are often very stable and 3' exonucleolytic degradation proceeds only after they have been eliminated by an endonucleolytic cleavage. Other secondary structures preceding terminator stem-loop seem to contribute to mRNA stability against exonucleolytic decay.
Collapse
Affiliation(s)
- G Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | | |
Collapse
|
22
|
Régnier P, Grunberg-Manago M. RNase III cleavages in non-coding leaders of Escherichia coli transcripts control mRNA stability and genetic expression. Biochimie 1990; 72:825-34. [PMID: 2085545 DOI: 10.1016/0300-9084(90)90192-j] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The primary transcripts of the rpsO-pnp, rnc-era-recO and metY-nusA-infB operons of E coli are each processed by RNase III, upstream of the first translated gene, in hair-pin structures formed by the 5' non-coding leader. The mRNAs of the 3 operons, of which the 5' terminal motifs have been removed by RNase III, decay significantly more rapidly than the uncut transcripts which accumulate in the RNase III deficient strain. The rapid decay of a primary transcript of the metY-nusA-infB operon, initiated at a secondary promoter in the vicinity of the RNase III sites, suggests that the 5' features upstream of the RNase III cutting sites are responsible for the stability of the uncut RNAs. RNase III autocontrols its own expression by removing the 5' motif which stabilizes its mRNA. Similarly, the synthesis of polynucleotide phosphorylase and of protein Era are also controlled by RNase III cleavages which trigger the degradation of their messengers. The role of RNase III in the regulation of gene expression and the possible mechanisms of mRNA stabilization and of 5' to 3' decay initiated by RNase III processing are discussed.
Collapse
|
23
|
Steiert JG, Urbanowski ML, Stauffer LT, Plamann MD, Stauffer GV. Nucleotide sequence of the Salmonella typhimurium glyA gene. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1990; 1:107-13. [PMID: 2134182 DOI: 10.3109/10425179009016038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The DNA sequence of the Salmonella typhimurium glyA gene has been determined. The polypeptide deduced from the DNA sequence contains 417 amino acids and has a calculated molecular weight of 45428 daltons. S1 nuclease mapping experiments located the transcription start point and possible transcription termination region. The nucleotide and amino acid sequences for the S. typhimurium and Escherichia coli glyA genes were compared. The nucleotide sequences show 89% identity, and the amino acid sequences show 93% identity. In S. typhimurium there is an absence of REP sequences between the translation termination site and the proposed transcription termination site that are present in the E. coli sequence. A conserved sequence is found in both organisms extending from 79 to 117 bp upstream of the consensus -35 sequences of the glyA promoters. This conserved sequence shows homology to a sequence preceding the S. typhimurium metE gene determined to bind the MetR regulatory protein.
Collapse
Affiliation(s)
- J G Steiert
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | | | | | |
Collapse
|