1
|
Gómez-Lama Cabanás C, Mercado-Blanco J. Groundbreaking Technologies and the Biocontrol of Fungal Vascular Plant Pathogens. J Fungi (Basel) 2025; 11:77. [PMID: 39852495 PMCID: PMC11766565 DOI: 10.3390/jof11010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
This review delves into innovative technologies to improve the control of vascular fungal plant pathogens. It also briefly summarizes traditional biocontrol approaches to manage them, addressing their limitations and emphasizing the need to develop more sustainable and precise solutions. Powerful tools such as next-generation sequencing, meta-omics, and microbiome engineering allow for the targeted manipulation of microbial communities to enhance pathogen suppression. Microbiome-based approaches include the design of synthetic microbial consortia and the transplant of entire or customized soil/plant microbiomes, potentially offering more resilient and adaptable biocontrol strategies. Nanotechnology has also advanced significantly, providing methods for the targeted delivery of biological control agents (BCAs) or compounds derived from them through different nanoparticles (NPs), including bacteriogenic, mycogenic, phytogenic, phycogenic, and debris-derived ones acting as carriers. The use of biodegradable polymeric and non-polymeric eco-friendly NPs, which enable the controlled release of antifungal agents while minimizing environmental impact, is also explored. Furthermore, artificial intelligence and machine learning can revolutionize crop protection through early disease detection, the prediction of disease outbreaks, and precision in BCA treatments. Other technologies such as genome editing, RNA interference (RNAi), and functional peptides can enhance BCA efficacy against pathogenic fungi. Altogether, these technologies provide a comprehensive framework for sustainable and precise management of fungal vascular diseases, redefining pathogen biocontrol in modern agriculture.
Collapse
Affiliation(s)
- Carmen Gómez-Lama Cabanás
- Department of Crop Protection, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Campus Alameda del Obispo, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Jesús Mercado-Blanco
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain;
| |
Collapse
|
2
|
Zhang Y, Huang C, Xiong R. Advanced materials for intracellular delivery of plant cells: Strategies, mechanisms and applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2024; 160:100821. [DOI: 10.1016/j.mser.2024.100821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Moriguchi R, Matsuoka K. Toxin Homology Domain in Plant Type 2 Prolyl 4-Hydroxylases Acts as a Golgi Localization Domain. Cells 2024; 13:1170. [PMID: 39056752 PMCID: PMC11275109 DOI: 10.3390/cells13141170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Prolyl 4-hydroxylase (P4H) generates hydroxyproline residues in proteins. Two classes of P4H have been found in plants. Type 1 P4H has a signal anchor at the N-terminus, while type 2 P4H has both an N-terminal signal peptide and a C-terminal toxin homology domain (Tox1 domain) with six conserved cysteine residues. We analyzed the localization of tobacco type 2 P4H (NtP4H2.2) in tobacco BY-2 cells. Cell fractionation studies, immunostaining of cells, and GFP fusion study indicated that NtP4H2.2 localizes predominantly to the Golgi apparatus and is a peripheral membrane protein associated with the luminal side of organelles. Expression of the GFP-Tox1 domains of NtP4H2.2 and another tobacco type 2 P4H NtP4H2.1 in BY-2 cells and Arabidopsis epidermal cells indicated that these proteins were targeted to the Golgi. The Tox1 domains from Arabidopsis and rice type 2 P4Hs also directed GFP to the Golgi in tobacco BY-2 cells. The Tox1 domain of NtP4H2.2 increased the membrane association of GFP, and mutation of the cysteine residues in this domain abolished Golgi localization. Furthermore, the catalytic domain of NtP4H2.2 also directed GFP to the Golgi. Thus, the Tox1 domains of plant P4Hs are the Golgi localization domains, and tobacco P4H2.2 localizes to the Golgi by the action of both this domain and the catalytic domain.
Collapse
Affiliation(s)
| | - Ken Matsuoka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Kobylińska A, Bernat P, Posmyk MM. Melatonin Mitigates Lead-Induced Oxidative Stress and Modifies Phospholipid Profile in Tobacco BY-2 Suspension Cells. Int J Mol Sci 2024; 25:5064. [PMID: 38791101 PMCID: PMC11121664 DOI: 10.3390/ijms25105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Many studies have shown that melatonin (an indoleamine) is an important molecule in plant physiology. It is known that this indoleamine is crucial during plant stress responses, especially by counteracting secondary oxidative stress (efficient direct and indirect antioxidant) and switching on different defense plant strategies. In this report, we present exogenous melatonin's potential to protect lipid profile modification and membrane integrity in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) cell culture exposed to lead. There are some reports of the positive effect of melatonin on animal cell membranes; ours is the first to report changes in the lipid profile in plant cells. The experiments were performed in the following variants: LS: cells cultured on unmodified LS medium-control; (ii) MEL: BY-2 cells cultured on LS medium with melatonin added from the beginning of culture; (iii) Pb: BY-2 cells cultured on LS medium with Pb2+ added on the 4th day of culture; (iv) MEL+Pb: BY-2 cells cultured on LS medium with melatonin added from the start of culture and stressed with Pb2+ added on the 4th day of culture. Lipidomic analysis of BY-2 cells revealed the presence of 40 different phospholipids. Exposing cells to lead led to the overproduction of ROS, altered fatty acid composition and increased PLD activity and subsequently elevated the level of phosphatidic acid at the cost of dropping the phosphatidylcholine. In the presence of lead, double-bond index elevation, mainly by higher quantities of linoleic (C18:2) and linolenic (C18:3) acids in the log phase of growth, was observed. In contrast, cells exposed to heavy metal but primed with melatonin showed more similarities with the control. Surprisingly, the overproduction of ROS caused of lipid peroxidation only in the stationary phase of growth, although considerable changes in lipid profiles were observed in the log phase of growth-just 4 h after lead administration. Our results indicate that the pretreatment of BY-2 with exogenous melatonin protected tobacco cells against membrane dysfunctions caused by oxidative stress (lipid oxidation), but also findings on a molecular level suggest the possible role of this indoleamine in the safeguarding of the membrane lipid composition that limited lead-provoked cell death. The presented research indicates a new mechanism of the defense strategy of plant cells generated by melatonin.
Collapse
Affiliation(s)
- Agnieszka Kobylińska
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Małgorzata Maria Posmyk
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| |
Collapse
|
5
|
Schmidt-Marcec S, Parish A, Smertenko T, Hickey M, Piette BMAG, Smertenko A. The microtubule-nucleating factor MACERATOR tethers AUGMIN7 to microtubules and governs phragmoplast architecture. THE PLANT CELL 2024; 36:1072-1097. [PMID: 38079222 PMCID: PMC11181950 DOI: 10.1093/plcell/koad304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/08/2023] [Indexed: 04/02/2024]
Abstract
The plant cytokinetic microtubule array, called the phragmoplast, exhibits higher microtubule dynamics in its center (midzone) than at the periphery (distal zone). This behavior is known as the axial asymmetry. Despite being a major characteristic of the phragmoplast, little is known about regulators of this phenomenon. Here we address the role of microtubule nucleation in axial asymmetry by characterizing MACERATOR (MACET) proteins in Arabidopsis thaliana and Nicotiana benthamiana with a combination of genetic, biochemical, and live-cell imaging assays, using photo-convertible microtubule probes, and modeling. MACET paralogs accumulate at the shrinking microtubule ends and decrease the tubulin OFF rate. Loss of MACET4 and MACET5 function abrogates axial asymmetry by suppressing microtubule dynamicity in the midzone. MACET4 also narrows the microtubule nucleation angle at the phragmoplast leading edge and functions as a microtubule tethering factor for AUGMIN COMPLEX SUBUNIT 7 (AUG7). The macet4 macet5 double mutant shows diminished clustering of AUG7 in the phragmoplast distal zone. Knockout of AUG7 does not affect MACET4 localization, axial asymmetry, or microtubule nucleation angle, but increases phragmoplast length and slows down phragmoplast expansion. The mce4-1 mce5 aug7-1 triple knockout is not viable. Experimental data and modeling demonstrate that microtubule nucleation factors regulate phragmoplast architecture and axial asymmetry directly by generating new microtubules and indirectly by modulating the abundance of free tubulin.
Collapse
Affiliation(s)
- Sharol Schmidt-Marcec
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Alyssa Parish
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Matthew Hickey
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | | | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
6
|
Nagata T. Hidden history of the tobacco BY-2 cell line. JOURNAL OF PLANT RESEARCH 2023; 136:781-786. [PMID: 37642778 PMCID: PMC10587202 DOI: 10.1007/s10265-023-01490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
For almost 50 years, tobacco (Nicotiana tabacum) BY-2 cells have been widely recognized as an important cell line for plant biology. The cell line grows rapidly, can be synchronized to a high degree, and is excellent for imaging; over the years, these features have led to many high-impact discoveries. However, certain other uses of this cell line are virtually unknown. In the early days, I was involved in distributing the cells to laboratories around the world. Many of these scientists wanted to study the cell cycle; however, I also distributed the cells to scientists who were elucidating the mechanism of plant transformation by Agrobacterium tumefaciens. In fact, BY-2 cells played an essential role in the identification and analysis of Vir genes on the Ti plasmid; likewise, the cells were important for discovering the factor that induces the expression of Vir genes. Thus, BY-2 cells were crucial for the development of modern plant biotechnology. Here, I recount the story of how this came to pass and explain why the use of BY-2 cells in this work was never recognized.
Collapse
Affiliation(s)
- Toshiyuki Nagata
- Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2 Kajinocho, Koganei-shi, Tokyo, 189-5587, Japan.
| |
Collapse
|
7
|
Nagasato D, Sugita Y, Tsuno Y, Tanaka R, Fukuda M, Matsuoka K. Glycosylphosphatidylinositol-anchoring is required for the proper transport and extensive glycosylation of a classical arabinogalactan protein precursor in tobacco BY-2 cells. Biosci Biotechnol Biochem 2023; 87:991-1008. [PMID: 37348475 DOI: 10.1093/bbb/zbad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Many precursors of plant arabinogalactan proteins (AGPs) contain a C-terminal glycosylphosphatidylinositol (GPI)-anchoring signal. Using NtAGP1, a classical tobacco AGP, as a model, and green fluorescent protein (GFP) and sweet potato sporamin (SPO) as tags, we analyzed the localization and modification of AGP and its mutant without GPI-anchoring signal (AGPΔC) in tobacco BY-2 cells. The NtAGP1 fusion proteins migrated as large smear on SDS-polyacrylamide gel, and these proteins also localized preferentially to the plasma membrane. In contrast, fusions of AGPΔC with GFP and SPO yielded several forms: The largest were secreted, whereas others were recovered in the endomembrane organelles, including vacuoles. Comparison of the glycan structures of the microsomal SPO-AGP and the secreted SPO-AGPΔC using antibodies against the glycan epitopes of AGP indicated that the glycan structures of these proteins are different. These observations indicate that GPI-anchoring is required for the proper transport and glycosylation of the AGP precursor.
Collapse
Affiliation(s)
- Daiki Nagasato
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Yuto Sugita
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Yuhei Tsuno
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | | | - Maki Fukuda
- School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ken Matsuoka
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
- School of Agriculture, Kyushu University, Fukuoka, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Shakir S, Zaidi SSEA, Hashemi FSG, Nyirakanani C, Vanderschuren H. Harnessing plant viruses in the metagenomics era: from the development of infectious clones to applications. TRENDS IN PLANT SCIENCE 2023; 28:297-311. [PMID: 36379846 DOI: 10.1016/j.tplants.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Recent metagenomic studies which focused on virus characterization in the entire plant environment have revealed a remarkable viral diversity in plants. The exponential discovery of viruses also requires the concomitant implementation of high-throughput methods to perform their functional characterization. Despite several limitations, the development of viral infectious clones remains a method of choice to understand virus biology, their role in the phytobiome, and plant resilience. Here, we review the latest approaches for efficient characterization of plant viruses and technical advances built on high-throughput sequencing and synthetic biology to streamline assembly of viral infectious clones. We then discuss the applications of plant viral vectors in fundamental and applied plant research as well as their technical and regulatory limitations, and we propose strategies for their safer field applications.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Syed Shan-E-Ali Zaidi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Farahnaz Sadat Golestan Hashemi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Chantal Nyirakanani
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Department of Crop Science, School of Agriculture, University of Rwanda, Musanze, Rwanda
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Ray P, Sahu D, Aminedi R, Chandran D. Concepts and considerations for enhancing RNAi efficiency in phytopathogenic fungi for RNAi-based crop protection using nanocarrier-mediated dsRNA delivery systems. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:977502. [PMID: 37746174 PMCID: PMC10512274 DOI: 10.3389/ffunb.2022.977502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/19/2022] [Indexed: 09/26/2023]
Abstract
Existing, emerging, and reemerging strains of phytopathogenic fungi pose a significant threat to agricultural productivity globally. This risk is further exacerbated by the lack of resistance source(s) in plants or a breakdown of resistance by pathogens through co-evolution. In recent years, attenuation of essential pathogen gene(s) via double-stranded (ds) RNA-mediated RNA interference (RNAi) in host plants, a phenomenon known as host-induced gene silencing, has gained significant attention as a way to combat pathogen attack. Yet, due to biosafety concerns regarding transgenics, country-specific GMO legislation has limited the practical application of desirable attributes in plants. The topical application of dsRNA/siRNA targeting essential fungal gene(s) through spray-induced gene silencing (SIGS) on host plants has opened up a transgene-free avenue for crop protection. However, several factors influence the outcome of RNAi, including but not limited to RNAi mechanism in plant/fungi, dsRNA/siRNA uptake efficiency, dsRNA/siRNA design parameters, dsRNA stability and delivery strategy, off-target effects, etc. This review emphasizes the significance of these factors and suggests appropriate measures to consider while designing in silico and in vitro experiments for successful RNAi in open-field conditions. We also highlight prospective nanoparticles as smart delivery vehicles for deploying RNAi molecules in plant systems for long-term crop protection and ecosystem compatibility. Lastly, we provide specific directions for future investigations that focus on blending nanotechnology and RNAi-based fungal control for practical applications.
Collapse
Affiliation(s)
- Poonam Ray
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Debashish Sahu
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Raghavendra Aminedi
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
10
|
Zhi H, Zhou S, Pan W, Shang Y, Zeng Z, Zhang H. The Promising Nanovectors for Gene Delivery in Plant Genome Engineering. Int J Mol Sci 2022; 23:ijms23158501. [PMID: 35955636 PMCID: PMC9368765 DOI: 10.3390/ijms23158501] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Highly efficient gene delivery systems are essential for genetic engineering in plants. Traditional delivery methods have been widely used, such as Agrobacterium-mediated transformation, polyethylene glycol (PEG)-mediated delivery, biolistic particle bombardment, and viral transfection. However, genotype dependence and other drawbacks of these techniques limit the application of genetic engineering, particularly genome editing in many crop plants. There is a great need to develop newer gene delivery vectors or methods. Recently, nanomaterials such as mesoporous silica particles (MSNs), AuNPs, carbon nanotubes (CNTs), and layer double hydroxides (LDHs), have emerged as promising vectors for the delivery of genome engineering tools (DNA, RNA, proteins, and RNPs) to plants in a species-independent manner with high efficiency. Some exciting results have been reported, such as the successful delivery of cargo genes into plants and the generation of genome stable transgenic cotton and maize plants, which have provided some new routines for genome engineering in plants. Thus, in this review, we summarized recent progress in the utilization of nanomaterials for plant genetic transformation and discussed the advantages and limitations of different methods. Furthermore, we emphasized the advantages and potential broad applications of nanomaterials in plant genome editing, which provides guidance for future applications of nanomaterials in plant genetic engineering and crop breeding.
Collapse
Affiliation(s)
- Heng Zhi
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (H.Z.); (S.Z.); (W.P.)
- Institute of Advanced Agricultural Science, Peking University, Weifang 261000, China;
| | - Shengen Zhou
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (H.Z.); (S.Z.); (W.P.)
- Institute of Advanced Agricultural Science, Peking University, Weifang 261000, China;
| | - Wenbo Pan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (H.Z.); (S.Z.); (W.P.)
- Institute of Advanced Agricultural Science, Peking University, Weifang 261000, China;
| | - Yun Shang
- Institute of Advanced Agricultural Science, Peking University, Weifang 261000, China;
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, CAAS Chinese Academy of Agricultural Science, Beijing 100081, China;
| | - Huawei Zhang
- Institute of Advanced Agricultural Science, Peking University, Weifang 261000, China;
- Correspondence:
| |
Collapse
|
11
|
Peng LH, Gu TW, Xu Y, Dad HA, Liu JX, Lian JZ, Huang LQ. Gene delivery strategies for therapeutic proteins production in plants: Emerging opportunities and challenges. Biotechnol Adv 2021; 54:107845. [PMID: 34627952 DOI: 10.1016/j.biotechadv.2021.107845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/07/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022]
Abstract
There are sharply rising demands for pharmaceutical proteins, however shortcomings associated with traditional protein production methods are obvious. Genetic engineering of plant cells has gained importance as a new strategy for protein production. But most current genetic manipulation techniques for plant components, such as gene gun bombardment and Agrobacterium mediated transformation are associated with irreversible tissue damage, species-range limitation, high risk of integrating foreign DNAs into the host genome, and complicated handling procedures. Thus, there is urgent expectation for innovative gene delivery strategies with higher efficiency, fewer side effect, and more practice convenience. Materials based nanovectors have established themselves as novel vehicles for gene delivery to plant cells due to their large specific surface areas, adjustable particle sizes, cationic surface potentials, and modifiability. In this review, multiple techniques employed for plant cell-based genetic engineering and the applications of nanovectors are reviewed. Moreover, different strategies associated with the fusion of nanotechnology and physical techniques are outlined, which immensely augment delivery efficiency and protein yields. Finally, approaches that may overcome the associated challenges of these strategies to optimize plant bioreactors for protein production are discussed.
Collapse
Affiliation(s)
- Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haseeb Anwar Dad
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jia-Zhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lu-Qi Huang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
12
|
Xia X, Shi B, Wang L, Liu Y, Zou Y, Zhou Y, Chen Y, Zheng M, Zhu Y, Duan J, Guo S, Jang HW, Miao Y, Fan K, Bai F, Tao W, Zhao Y, Yan Q, Cheng G, Liu H, Jiao Y, Liu S, Huang Y, Ling D, Kang W, Xue X, Cui D, Huang Y, Cui Z, Sun X, Qian Z, Gu Z, Han G, Yang Z, Leong DT, Wu A, Liu G, Qu X, Shen Y, Wang Q, Lowry GV, Wang E, Liang X, Gardea‐Torresdey J, Chen G, Parak WJ, Weiss PS, Zhang L, Stenzel MM, Fan C, Bush AI, Zhang G, Grof CPL, Wang X, Galbraith DW, Tang BZ, Offler CE, Patrick JW, Song C. From mouse to mouse-ear cress: Nanomaterials as vehicles in plant biotechnology. EXPLORATION (BEIJING, CHINA) 2021; 1:9-20. [PMID: 37366467 PMCID: PMC10291572 DOI: 10.1002/exp.20210002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Biological applications of nanomaterials as delivery carriers have been embedded in traditional biomedical research for decades. Despite lagging behind, recent significant breakthroughs in the use of nanocarriers as tools for plant biotechnology have created great interest. In this Perspective, we review the outstanding recent works in nanocarrier-mediated plant transformation and its agricultural applications. We analyze the chemical and physical properties of nanocarriers determining their uptake efficiency and transport throughout the plant body.
Collapse
Affiliation(s)
- Xue Xia
- Henan‐Macquarie University Joint Centre for Biomedical Innovation, School of Life SciencesHenan UniversityKaifengHenanChina
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicine, School of Life Sciences & School of PharmacyHenan UniversityKaifengHenanChina
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengHenanChina
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Bingyang Shi
- Henan‐Macquarie University Joint Centre for Biomedical Innovation, School of Life SciencesHenan UniversityKaifengHenanChina
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicine, School of Life Sciences & School of PharmacyHenan UniversityKaifengHenanChina
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengHenanChina
| | - Yang Liu
- Henan‐Macquarie University Joint Centre for Biomedical Innovation, School of Life SciencesHenan UniversityKaifengHenanChina
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicine, School of Life Sciences & School of PharmacyHenan UniversityKaifengHenanChina
- Department of Biomedical Sciences, Faculty of Medicine and Health SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Yan Zou
- Henan‐Macquarie University Joint Centre for Biomedical Innovation, School of Life SciencesHenan UniversityKaifengHenanChina
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicine, School of Life Sciences & School of PharmacyHenan UniversityKaifengHenanChina
- Department of Biomedical Sciences, Faculty of Medicine and Health SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengHenanChina
| | - Yu Chen
- Materdicine Lab, School of Life SciencesShanghai UniversityShanghaiChina
| | - Meng Zheng
- Henan‐Macquarie University Joint Centre for Biomedical Innovation, School of Life SciencesHenan UniversityKaifengHenanChina
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicine, School of Life Sciences & School of PharmacyHenan UniversityKaifengHenanChina
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengHenanChina
| | - Jingjing Duan
- School of Energy and Power EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengHenanChina
| | - Ho Won Jang
- Department of Material Science and Engineering, Research Institute of Advanced MaterialsSeoul National UniversitySeoulRepublic of Korea
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengHenanChina
| | - Kelong Fan
- Engineering Laboratory for Nanozyme, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High‐efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifengHenanChina
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Yong Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High‐efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifengHenanChina
| | - Qingyu Yan
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Gang Cheng
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High‐efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifengHenanChina
| | - Huiyu Liu
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
| | - Yan Jiao
- Centre for Materials in Energy and Catalysis (CMEC), School of Chemical Engineering and Advanced MaterialsThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Shanhu Liu
- College of Chemistry and Chemical EngineeringHenan UniversityKaifengHenanChina
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and BiotherapyBeijing Institute of TechnologyBeijingChina
| | - Daishun Ling
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research, Hangzhou Institute of Innovative MedicineZhejiang UniversityHangzhouChina
| | - Wenyi Kang
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicine, School of Life Sciences & School of PharmacyHenan UniversityKaifengHenanChina
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityTianjinChina
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical ScienceHenan UniversityKaifengHenanChina
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Xun Sun
- College of Materials Science and EngineeringSichuan UniversityChengduChina
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Zhen Gu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Gang Han
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - David Tai Leong
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilinChina
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
| | - Qiangbin Wang
- CAS Key Laboratory of Nano‐Bio Interface, Division of Nanobiomedicine and i‐Lab, Suzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhouChina
| | - Gregory V. Lowry
- Department of Civil and Environmental Engineering and Center for Environmental Implications of Nano Technology (CEINT)Carnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Xing‐Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and TechnologyChinese Academy of SciencesBeijingChina
| | - Jorge Gardea‐Torresdey
- Department of Chemistry and BiochemistryThe University of Texas at El PasoEl PasoTexasUSA
| | - Guoping Chen
- Research Center for Functional MaterialsNational Institute for Materials ScienceTsukubaIbarakiJapan
| | - Wolfgang J. Parak
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- Fachbereich Physik, CHyNUniversity of HamburgHamburgGermany
| | - Paul S. Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengHenanChina
| | - Martina M. Stenzel
- School of ChemistryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Ashley I. Bush
- The Florey Department of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Christopher P. L. Grof
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengHenanChina
| | - David W. Galbraith
- School of Plant Sciences and Bio5 InstituteUniversity of ArizonaTucsonArizonaUSA
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and EngineeringThe Chinese University of Hong KongShenzhenChina
| | - Christina E. Offler
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John W. Patrick
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Chun‐Peng Song
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengHenanChina
| |
Collapse
|
13
|
Zhang L, Smertenko T, Fahy D, Koteyeva N, Moroz N, Kuchařová A, Novák D, Manoilov E, Smertenko P, Galva C, Šamaj J, Kostyukova AS, Sedbrook JC, Smertenko A. Analysis of formin functions during cytokinesis using specific inhibitor SMIFH2. PLANT PHYSIOLOGY 2021; 186:945-963. [PMID: 33620500 PMCID: PMC8195507 DOI: 10.1093/plphys/kiab085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/03/2021] [Indexed: 05/10/2023]
Abstract
The phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promote elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.
Collapse
Affiliation(s)
- Laining Zhang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Nuria Koteyeva
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg 197376, Russia
| | - Natalia Moroz
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Anna Kuchařová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Dominik Novák
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Eduard Manoilov
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
| | - Petro Smertenko
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
| | - Charitha Galva
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Alla S. Kostyukova
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - John C. Sedbrook
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
14
|
Utsunomiya H, Fujita M, Naito F, Kaneta T. Cell cycle-dependent dynamics of a plant intermediate filament motif protein with intracellular localization related to microtubules. PROTOPLASMA 2020; 257:1387-1400. [PMID: 32488394 DOI: 10.1007/s00709-020-01512-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Although intermediate filaments (IFs) are biochemically and immunologically suggested to exist in plant cells, there are few molecular genetic studies related to the proteins that form these structures. In this study, Arabidopsis AT3G05270 was selected as a candidate gene for a protein constituting IF in plant cells. The protein encoded by AT3G05270 has a large α-helix as well as the IF protein motif indispensable for maintaining the structures of IF. Moreover, fluorescence signals of this protein fused with GFP exhibited cytoskeleton-like filamentous structures in plant cells. Thus, we named the protein encoded by AT3G05270 as Intermediate Filament Motif Protein 1 (IFMoP1). The structures composed of IFMoP1 and their localizations were examined in IFMoP1-GFP-expressing tobacco BY-2 cells whose cell cycle was synchronized using aphidicolin, a DNA synthesis inhibitor, and propyzamide, a microtubule-disrupting agent. The IFMoP1-GFP signals were present at the spindles and phragmoplasts in the mitotic phase. In addition, the frequency of cells with cytoskeleton-like filamentous structures composed of IFMoP1-GFP increased with the increase in cells that completed cell division, and then decreased after several hours. In terms of the relationship in intracellular localization between IFMoP1 and microtubules, the filamentous structures composed of IFMoP1 were present independently of microtubules during interphase. In living cells, these filamentous structures moved along with the nucleus. IFMoP1 co-localized with spindle and phragmoplast microtubules during mitosis, as well as with a part of the cortical microtubules in interphase.
Collapse
Affiliation(s)
- Hikaru Utsunomiya
- Department of Chemistry & Biology, Graduate School of Science & Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Masayuki Fujita
- Department of Chemistry & Biology, Graduate School of Science & Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Fumio Naito
- Department of Chemistry & Biology, Graduate School of Science & Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Tsuyoshi Kaneta
- Department of Chemistry & Biology, Graduate School of Science & Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan.
| |
Collapse
|
15
|
Oda Y, Asatsuma S, Nakasone H, Matsuoka K. Sucrose starvation induces the degradation of proteins in trans-Golgi network and secretory vesicle cluster in tobacco BY-2 cells. Biosci Biotechnol Biochem 2020; 84:1652-1666. [PMID: 32338160 DOI: 10.1080/09168451.2020.1756736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
Endomembrane transport system begins at the endoplasmic reticulum (ER), continues to the Golgi apparatus and subsequent compartment called trans-Golgi network (TGN). We found that SUT2, a tobacco sucrose-transporter ortholog and was localized in the TGN, decreased significantly under a sucrose-starvation condition. The tobacco SNARE protein SYP41, localized in the TGN and secretory vesicle cluster (SVC), also decreased under the starvation. Similarly, the SCAMP2-RFP fusion protein, which is localized in TGN, SVC, and plasma membrane (PM), was distributed solely in the PM under the starvation. Under the same starvation condition, protein secretion was not arrested but pectin deposition to cell wall was suppressed. These data indicated that the protein composition in TGN and existence of the SVC are regulated by sugar availability. Furthermore, our findings as well as the involvement of SVC in pectin secretion suggested that synthesis and transport of pectin are regulated by the level of extracellular sugars. ABBREVIATIONS ER: endoplasmic reticulum; GI-TGN: Golgi-released independent TGN; GFP: green fluorescent protein; mRFP: monomeric red fluorescent protein; P4H1.1: prolyl 4-hydroxylase 1.1; PM: plasma membrane; SCAMP2: secretory carrier membrane protein 2; SUT2: sucrose transporter 2; SVC: secretory vesicle cluster; SYP41: syntaxin of plant 41; TGN: trans-Golgi network; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Yamato Oda
- Department of Bioscience and Biotechnology, Graduate School of Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
| | - Satoru Asatsuma
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , Fukuoka, Japan
- RIKEN Plant Science Center , Yokohama, Japan
| | - Hiroaki Nakasone
- Department of Bioscience and Biotechnology, Graduate School of Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
| | - Ken Matsuoka
- Department of Bioscience and Biotechnology, Graduate School of Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , Fukuoka, Japan
- RIKEN Plant Science Center , Yokohama, Japan
| |
Collapse
|
16
|
Yasuhara H, Kitamoto K. TBK11, a Tobacco Kinesin-14-II, Associates with the Nuclear Envelope through Its Central Coiled-Coil Domain. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hiroki Yasuhara
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | - Kazuki Kitamoto
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| |
Collapse
|
17
|
Yasuhara H, Kurisu W. A Kinesin-Related Protein, TBK11, Associates with the Nuclear Envelope throughout the Cell Cycle in Tobacco BY-2 Cells. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hiroki Yasuhara
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | - Wataru Kurisu
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| |
Collapse
|
18
|
Repurposing Macromolecule Delivery Tools for Plant Genetic Modification in the Era of Precision Genome Engineering. Methods Mol Biol 2019; 1864:3-18. [PMID: 30415325 DOI: 10.1007/978-1-4939-8778-8_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Efficient delivery of macromolecules into plant cells and tissues is important for both basic research and biotechnology product applications. In transgenic research, the goal is to deliver DNA molecules into regenerable cells and stably integrate them into the genome. Over the past 40 years, many macromolecule delivery methods have been studied. To generate transgenic plants, particle bombardment and Agrobacterium-mediated transformation are the methods of choice for DNA delivery. The rapid advance of genome editing technologies has generated new requirements on large biomolecule delivery and at the same time reinvigorated the development of new transformation technologies. Many of the gene delivery options that have been studied before are now being repurposed for delivering genome editing machinery for various applications. This article reviews the major progress in the development of tools for large biomolecule delivery into plant cells in the new era of precision genome engineering.
Collapse
|
19
|
Multifunctional Liposome: A Bright AIEgen-Lipid Conjugate with Strong Photosensitization. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809641] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Cai X, Mao D, Wang C, Kong D, Cheng X, Liu B. Multifunctional Liposome: A Bright AIEgen-Lipid Conjugate with Strong Photosensitization. Angew Chem Int Ed Engl 2018; 57:16396-16400. [DOI: 10.1002/anie.201809641] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/03/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaolei Cai
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore Singapore
| | - Duo Mao
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore Singapore
| | - Can Wang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore Singapore
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education and College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Xiamin Cheng
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore Singapore
- Institute of Advanced Synthesis; School of Chemistry and Molecular Engineering; Jiangsu National Synergetic Innovation Centre for Advanced Materials; Nanjing Tech University; Nanjing 211816 China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore Singapore
| |
Collapse
|
21
|
An Overview of Nanotechnology in Food Science: Preparative Methods, Practical Applications, and Safety. J CHEM-NY 2018. [DOI: 10.1155/2018/5427978] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As the researches to utilize nanotechnology in food science are advanced, applications of nanotechnology in various fields of the food industry have increased. Nanotechnology can be applied to the food industry for production, processing, storage, and quality control of foods. Nanomaterials, unlike conventional microscale materials, having novel characteristics can improve sensory quality of foods by imparting novel texture, color, and appearance. Nanotechnology has been used to design nanosensors for detection of harmful components in foods and a smart packaging system enabling to recognize food contamination very rapidly and sensitively. Nanoencapsulation is the most significant technology in food science, especially for bioactive compounds and flavors. Targeted delivery systems designed with nanoencapsulation can enhance bioavailability of bioactive compounds after oral administration. In addition, nanoencapsulation enables to control the release of flavors at the desired time and to protect the degradation of flavors during processing and storage. In this review, current applications of nanotechnology in food science including flavor control, enhancement of bioavailability of bioactive compounds, and detection of deleterious substances in foods are presented. Furthermore, this article overviews classification, preparative methods, and safety issues of nanomaterials for food science. This review will be of help to provide comprehensive information for newcomers utilizing nanotechnology to the food sector.
Collapse
|
22
|
Okitsu N, Matsui K, Horikawa M, Sugahara K, Tanaka Y. Identification and Characterization of Novel Nemophila menziesii Flavone Glucosyltransferases that Catalyze Biosynthesis of Flavone 7,4'-O-Diglucoside, a Key Component of Blue Metalloanthocyanins. PLANT & CELL PHYSIOLOGY 2018; 59:2075-2085. [PMID: 29986079 DOI: 10.1093/pcp/pcy129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/02/2018] [Indexed: 05/23/2023]
Abstract
The brilliant blue color of the Nemophila menziesii flower is derived from metalloanthocyanin, which consists of anthocyanin {petunidin 3-O-[6-O-(trans-p-coumaroyl)-β-glucoside]-5-O-[6-O-(malonyl)-β-glucoside]}, flavone [apigenin 7-O-β-glucoside-4'-O-(6-O-malonyl)-O-β-glucoside] and metal ions (Mg2+, Fe3+). Although the two glucosyl moieties at the apigenin 7-O and 4'-O positions are essential for metalloanthocyanin formation, the mechanism of glucosylation has not yet been clarified. In this study, we used crude protein extract prepared from N. menziesii petals to determine that apigenin is sequentially glucosylated by the catalysis of UDP-glucose:flavone 4'-O-glucosyltrasferase (F4'GT) and UDP-glucose:flavone 4'-O-glucoside 7-O-glucosyltransferase (F4'G7GT). We identified 150 contigs exhibiting homology with a UDP-glucose-dependent GT in the N. menziesii petal transcriptome and isolated 24 putative full-length GT cDNAs which were then subjected to functional analysis. Two GT cDNAs, NmF4'GT and NmF4'G7GT, which are highly expressed during the early stages of petal development and rarely in leaves, were shown to encode F4'GT and F4'G7GT activities, respectively. Biochemical characterization of the recombinant enzymes revealed that NmF4'GT specifically catalyzed 4'-glucosylation of flavonoids and that NmF4'G7GT specifically catalyzed 7-glucosylation of flavone 4'-O-glucosides and flavones. Apigenin 7,4'-O-diglucoside was efficiently synthesized from apigenin in the presence of recombinant NmF4'GT and NmF4'G7GT. Transgenic tobacco BY-2 cells expressing NmF4'GT and NmF4'G7GT converted apigenin into apigenin 7,4'-O-diglucoside, confirming their activities in vivo. Based on these results, we conclude that these two GTs act co-ordinately to catalyze apigenin 7,4'-O-diglucoside biosynthesis in N. menziesii.
Collapse
Affiliation(s)
- Naoko Okitsu
- Research Institute, Suntory Global Innovation Center Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Keisuke Matsui
- Research Institute, Suntory Global Innovation Center Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Manabu Horikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Kohtaro Sugahara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Yoshikazu Tanaka
- Research Institute, Suntory Global Innovation Center Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| |
Collapse
|
23
|
Fahy D, Sanad MNME, Duscha K, Lyons M, Liu F, Bozhkov P, Kunz HH, Hu J, Neuhaus HE, Steel PG, Smertenko A. Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe N-BODIPY. Sci Rep 2017; 7:39069. [PMID: 28145408 PMCID: PMC5286434 DOI: 10.1038/srep39069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022] Open
Abstract
Plant peroxisomes maintain a plethora of key life processes including fatty acid β-oxidation, photorespiration, synthesis of hormones, and homeostasis of reactive oxygen species (ROS). Abundance of peroxisomes in cells is dynamic; however mechanisms controlling peroxisome proliferation remain poorly understood because measuring peroxisome abundance is technically challenging. Counting peroxisomes in individual cells of complex organs by electron or fluorescence microscopy is expensive and time consuming. Here we present a simple technique for quantifying peroxisome abundance using the small probe Nitro-BODIPY, which in vivo fluoresces selectively inside peroxisomes. The physiological relevance of our technique was demonstrated using salinity as a known inducer of peroxisome proliferation. While significant peroxisome proliferation was observed in wild-type Arabidopsis leaves following 5-hour exposure to NaCl, no proliferation was detected in the salt-susceptible mutants fry1-6, sos1-14, and sos1-15. We also found that N-BODIPY detects aggregation of peroxisomes during final stages of programmed cell death and can be used as a marker of this stage. Furthermore, accumulation of peroxisomes in an autophagy-deficient Arabidopsis mutant atg5 correlated with N-BODIPY labeling. In conclusion, the technique reported here enables quantification of peroxisomes in plant material at various physiological settings. Its potential applications encompass identification of genes controlling peroxisome homeostasis and capturing stress-tolerant genotypes.
Collapse
Affiliation(s)
- Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Marwa N M E Sanad
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
- Department of Genetics and Cytology, National Research Center, Giza, Egypt
| | - Kerstin Duscha
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, Kaiserslautern, D-67653, Germany
| | - Madison Lyons
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Fuquan Liu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Peter Bozhkov
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala, SE-75007, Sweden
| | - Hans-Henning Kunz
- School of Biological Sciences, Washington State University, Pullman, 99164, WA, USA
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, 48824, MI, USA
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, Kaiserslautern, D-67653, Germany
| | - Patrick G Steel
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA.
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK.
| |
Collapse
|
24
|
Hamada T, Sonobe S. Isolation of Microtubules and Microtubule-Associated Proteins. Methods Mol Biol 2017; 1511:281-289. [PMID: 27730619 DOI: 10.1007/978-1-4939-6533-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Microtubules are essential cellular structures in plant cells. They are polymerized from tubulin dimers and are regulated by microtubule-associated proteins (MAPs). Here, we describe a protocol for purifying tubulin dimers and MAPs from plant cells. The protocol involves preparing vacuole-free mini-protoplasts, a high quality cytoplasmic extract, cycles of microtubule polymerization and depolymerization to increase tubulin and MAP concentration, separation of tubulin and MAPs by column chromatography. We also present tubulin purification methods for biochemical assays.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902, Japan.
| | - Seiji Sonobe
- Department of Life Sciences, Graduate School of Life Sciences, University of Hyogo, Hyogo, Japan
| |
Collapse
|
25
|
Shin SY, Kim SH, Kim HJ, Jeon SJ, Sim SA, Ryu GR, Yoo CM, Cheong YH, Hong JC. Isolation of three B-box zinc finger proteins that interact with STF1 and COP1 defines a HY5/COP1 interaction network involved in light control of development in soybean. Biochem Biophys Res Commun 2016; 478:1080-6. [PMID: 27524234 DOI: 10.1016/j.bbrc.2016.08.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 01/31/2023]
Abstract
LONG HYPOCOTYL5 (HY5) and STF1 (Soybean TGACG-motif binding Factor 1) are two related bZIP transcription factors that play a positive role in photomorphogenesis and hormonal signaling. In this study, we compared full length STF1 and truncated STF1 overexpression lines and found that the C-terminal 133 amino acids (194-306) possess all the HY5-like function in Arabidopsis. The STF1-DC1 mutant (1-306), with a 20 amino acid deletion at the carboxy terminus, failed to complement the hy5 mutant phenotype, which suggests an intact C-terminus is required for STF1 function. To understand the role of the C-terminal domain in photomorphogenesis we used a yeast two-hybrid screen to isolate proteins that bind to the STF1 C-terminus. We isolated three soybean cDNAs encoding the zinc-finger proteins GmSTO, GmSTH, and GmSTH2, which interact with STF1. These proteins belong to a family of B-box zinc finger proteins that include Arabidopsis SALT TOLERANCE (STO) and STO HOMOLOG (STH) and STH2, which play a role in light-dependent development and gene expression. The C-terminal 63 amino acids of STF1, containing a leucine zipper and the two N-terminal B-boxes, contains the domain involved in interactions between STF1 and GmSTO. In addition, we identified an interaction between soybean COP1 (GmCOP1) and GmSTO and GmSTH, as well as STF1, which strongly suggests the presence of a similar regulatory circuit for light signaling in soybean as in Arabidopsis. This study shows that photomorphogenic control requires complex molecular interactions among several different classes of transcription factors such as bZIP, B-box factors, and COP1, a ubiquitin ligase.
Collapse
Affiliation(s)
- Su Young Shin
- National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657, Republic of Korea; Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Seong Hee Kim
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Hye Jin Kim
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Su Jeong Jeon
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Soon Ae Sim
- Gyeongnam Agricultural Research and Extension, Services, Jinju, 52828, Republic of Korea
| | - Gyeong Ryul Ryu
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Cheol Min Yoo
- Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Yong Hwa Cheong
- Department of Bio-Environmental Science, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jong Chan Hong
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea; Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
26
|
Duarte P, Ribeiro D, Carqueijeiro I, Bettencourt S, Sottomayor M. Protoplast Transformation as a Plant-Transferable Transient Expression System. Methods Mol Biol 2016; 1405:137-48. [PMID: 26843172 DOI: 10.1007/978-1-4939-3393-8_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The direct uptake of DNA by naked plant cells (protoplasts) provides an expression system of exception for the quickly growing research in non-model plants, fuelled by the power of next-generation sequencing to identify novel candidate genes. Here, we describe a simple and effective method for isolation and transformation of protoplasts, and illustrate its application to several plant materials.
Collapse
Affiliation(s)
- Patrícia Duarte
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
| | - Diana Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
- Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Inês Carqueijeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Sara Bettencourt
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
| | - Mariana Sottomayor
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
27
|
Fujiwara T, Kawachi M, Sato Y, Mori H, Kutsuna N, Hasezawa S, Maeshima M. A high molecular mass zinc transporter MTP12 forms a functional heteromeric complex with MTP5 in the Golgi inArabidopsis thaliana. FEBS J 2015; 282:1965-79. [DOI: 10.1111/febs.13252] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/31/2015] [Accepted: 02/26/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Fujiwara
- Laboratory of Cell Dynamics; Graduate School of Bioagricultural Sciences; Nagoya University; Japan
| | - Miki Kawachi
- Laboratory of Cell Dynamics; Graduate School of Bioagricultural Sciences; Nagoya University; Japan
| | - Yori Sato
- Laboratory of Cell Dynamics; Graduate School of Bioagricultural Sciences; Nagoya University; Japan
| | - Haruki Mori
- Laboratory of Cell Dynamics; Graduate School of Bioagricultural Sciences; Nagoya University; Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences; The University of Tokyo; Japan
- LPixel Inc.; Bunkyo-ku Japan
| | | | - Masayoshi Maeshima
- Laboratory of Cell Dynamics; Graduate School of Bioagricultural Sciences; Nagoya University; Japan
| |
Collapse
|
28
|
Sakai A, Takusagawa M, Nio A, Sawai Y. Cytological Studies on Proliferation, Differentiation, and Death of BY-2 Cultured Tobacco Cells. CYTOLOGIA 2015. [DOI: 10.1508/cytologia.80.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Atsushi Sakai
- Department of Biological Sciences, Faculty of Science, Nara Women's University
| | - Mari Takusagawa
- Graduate School of Humanities and Sciences, Nara Women's University
| | - Asuka Nio
- Department of Biological Sciences, Faculty of Science, Nara Women's University
| | - Yu Sawai
- Graduate School of Humanities and Sciences, Nara Women's University
| |
Collapse
|
29
|
Yasuhara H, Kitamoto K. Aphidicolin-induced nuclear elongation in tobacco BY-2 cells. PLANT & CELL PHYSIOLOGY 2014; 55:913-27. [PMID: 24492257 DOI: 10.1093/pcp/pcu026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant nuclei are known to differentiate into various shapes within a single plant. However, little is known about the mechanisms of nuclear morphogenesis. We found that nuclei of tobacco BY-2 cells were highly elongated on long-term treatment with 5 mg l⁻¹ aphidicolin, an inhibitor of DNA polymerase α. In aphidicolin-treated cells, the nuclear length was correlated with the cell length. During culture in the presence of aphidicolin, the nuclei were elongated in parallel with cell elongation. Nuclear elongation was inhibited by the inhibition of cell elongation with 2,6-dichlorobenzonitrile, a cellulose synthesis inhibitor. However, cell elongation induced in the auxin-depleted medium in the absence of aphidicolin did not cause nuclear elongation, indicating that cell elongation alone is not sufficient for nuclear elongation. Treatment with either latrunculin B or propyzamide inhibited the aphidicolin-induced nuclear elongation, indicating that both actin filaments and microtubules (MTs) are required for nuclear elongation. Observations using BY-YTHCLR2 cells, in which actin filaments, MTs and nuclei were simultaneously visualized, revealed that the longitudinally arranged MT bundles associated with the nucleus play an important role in nuclear elongation, and that actin filaments affect the formation of these MT bundles. In aphidicolin-treated cells, the nuclear DNA contents of the elongated nuclei exceeded 4C, and the nuclear length was highly correlated with the nuclear DNA content. In cells treated with 50 mg l⁻¹ aphidicolin, cells were elongated and nucleus-associated longitudinal MT bundles were formed, but the nuclear DNA contents did not exceed 4C and the nuclei did not elongate. These results indicate that an increase in the nuclear DNA content above 4C is also required for nuclear elongation.
Collapse
Affiliation(s)
- Hiroki Yasuhara
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680 Japan
| | | |
Collapse
|
30
|
Hasezawa S, Nagata T. Dynamic Organization of Plant Microtubules at the Three Distinct Transition Points During the Cell Cycle Progression of Synchronized Tobacco BY-2 Cells. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1991.tb00218.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
|
32
|
Ku YS, Koo NSC, Li FWY, Li MW, Wang H, Tsai SN, Sun F, Lim BL, Ko WH, Lam HM. GmSAL1 hydrolyzes inositol-1,4,5-trisphosphate and regulates stomatal closure in detached leaves and ion compartmentalization in plant cells. PLoS One 2013; 8:e78181. [PMID: 24167607 PMCID: PMC3805524 DOI: 10.1371/journal.pone.0078181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022] Open
Abstract
Inositol polyphosphatases are important regulators since they control the catabolism of phosphoinositol derivatives, which are often signaling molecules for cellular processes. Here we report on the characterization of one of their members in soybean, GmSAL1. In contrast to the substrate specificity of its Arabidopsis homologues (AtSAL1 and AtSAL2), GmSAL1 only hydrolyzes inositol-1,4,5-trisphosphate (IP3) but not inositol-1,3,4-trisphosphate or inositol-1,4-bisphosphate.The ectopic expression of GmSAL1 in transgenic Arabidopsis thaliana led to a reduction in IP3 signals, which was inferred from the reduction in the cytoplasmic signals of the in vivo biomarker pleckstrin homology domain-green florescent protein fusion protein and the suppression of abscisic acid-induced stomatal closure. At the cellular level, the ectopic expression of GmSAL1 in transgenic BY-2 cells enhanced vacuolar Na(+) compartmentalization and therefore could partially alleviate salinity stress.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Nicolas Siu-Chung Koo
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Francisca Wing-Yen Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Man-Wah Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Hongmei Wang
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Sau-Na Tsai
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Feng Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Boon Leong Lim
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Wing-Hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Hon-Ming Lam
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| |
Collapse
|
33
|
Yu D, Wang Z, Liu J, Lv M, Liu J, Li X, Chen Z, Jin L, Hu D, Yang S, Song B. Screening anti-southern rice black-streaked dwarf virus drugs based on S7-1 gene expression in rice suspension cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8049-8055. [PMID: 23915352 DOI: 10.1021/jf4021448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) is a rice pathogen that had an outbreak in southern China in 2010 and caused significant crop losses. Therefore, screening for effective antiviral drugs against SRBSDV is very important. This study used rice suspension cells infected with SRBSDV by polyethylene glycol-mediated uptake for screening antiviral drugs. SRBSDV P7-1, which is coded by the S7-1 gene, has an intrinsic ability to self-interact to form tubules that play an important role in viral infection. Therefore, relative expression level of the SRBSDV S7-1 gene in infected rice suspension cells was assayed by real-time quantitative polymerase chain reaction to evaluate the antiviral activities of various drugs. Dufulin displayed the highest inhibitory activity against SRBSDV S7-1 expression. In addition, changes in peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) activities were determined in inoculated and noninoculated cells. The results showed that both POD and PPO activities increased upon dufulin treatment. Furthermore, the validity of this approach was confirmed in an in vivo experiment in which dufulin was found to effectively inhibit SRBSDV.
Collapse
|
34
|
Asada T. Division of shape-standardized tobacco cells reveals a limit to the occurrence of single-criterion-based selection of the plane of symmetric division. PLANT & CELL PHYSIOLOGY 2013; 54:827-37. [PMID: 23531846 DOI: 10.1093/pcp/pct044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The plane of symmetric plant cell division tends to be selected so that the new cross-wall halving the cell volume has the least possible area, and several cases of such selection are best represented by a recently formulated model which promotes the view that the strength of the least area tendency is the only criterion for selecting the plane. To test this model, the present study examined the divisions of two types of shape-standardized tobacco BY-2 cell, oblate-spheroidal (os) cells prepared from protoplasts and spheri-cylindrical (sc) cells with unusual double-wall structures prepared from plasmolyzed cells. Measurements of cell shape parameters and division angles revealed that both cell types most frequently divide nearly along their short axes. While os cells did not exhibit any other division angle bias, sc cell division was characterized by another bias which made the frequency of longitudinal divisions secondarily high. The geometry of sc cells barely allows the longitudinal cross-walls to have locally minimum areas. Nevertheless, a comparison of detected and hypothetical standard divisions indicates that the frequency of longitudinal sc cell division can be significantly higher than that predicted when the longitudinal cross-walls are assumed to have locally minimum areas smaller than their original areas. These results suggest that, even in isolated plant cell types, the strength of the least area tendency is not the only criterion for selecting the division plane. The possibility that there is another basic, though often hidden, criterion is discussed.
Collapse
Affiliation(s)
- Tetsuhiro Asada
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan.
| |
Collapse
|
35
|
Nakatsuka T, Yamada E, Takahashi H, Imamura T, Suzuki M, Ozeki Y, Tsujimura I, Saito M, Sakamoto Y, Sasaki N, Nishihara M. Genetic engineering of yellow betalain pigments beyond the species barrier. Sci Rep 2013; 3:1970. [PMID: 23760173 PMCID: PMC3679504 DOI: 10.1038/srep01970] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/03/2013] [Indexed: 12/04/2022] Open
Abstract
Betalains are one of the major plant pigment groups found in some higher plants and higher fungi. They are not produced naturally in any plant species outside of the order Caryophyllales, nor are they produced by anthocyanin-accumulating Caryophyllales. Here, we attempted to reconstruct the betalain biosynthetic pathway as a self-contained system in an anthocyanin-producing plant species. The combined expressions of a tyrosinase gene from shiitake mushroom and a DOPA 4,5-dioxygenase gene from the four-o'clock plant resulted in successful betalain production in cultured cells of tobacco BY2 and Arabidopsis T87. Transgenic tobacco BY2 cells were bright yellow because of the accumulation of betaxanthins. LC-TOF-MS analyses showed that proline-betaxanthin (Pro-Bx) accumulated as the major betaxanthin in these transgenic BY2 cells. Transgenic Arabidopsis T87 cells also produced betaxanthins, but produced lower levels than transgenic BY2 cells. These results illustrate the success of a novel genetic engineering strategy for betalain biosynthesis.
Collapse
Affiliation(s)
- Takashi Nakatsuka
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
- Current address: Department of Biological and Environmental Science, Graduate School of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Eri Yamada
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Hideyuki Takahashi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Tomohiro Imamura
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Mariko Suzuki
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yoshihiro Ozeki
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ikuko Tsujimura
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Misa Saito
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Yuichi Sakamoto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Nobuhiro Sasaki
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| |
Collapse
|
36
|
Hoque MA, Uraji M, Torii A, Banu MNA, Mori IC, Nakamura Y, Murata Y. Methylglyoxal inhibition of cytosolic ascorbate peroxidase from Nicotiana tabacum. J Biochem Mol Toxicol 2012; 26:315-21. [PMID: 22696433 DOI: 10.1002/jbt.21423] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/02/2012] [Accepted: 05/15/2012] [Indexed: 01/29/2023]
Abstract
Methylglyoxal (MG) is one of the aldehydes accumulated in plants under environmental stress. Cytosolic ascorbate peroxidase (cAPX) plays a key role in the protection of cells from oxidative damage by scavenging reactive oxygen species in higher plants. A cDNA encoding cAPX, named NtcAPX, was isolated from Nicotiana tabacum. We characterized recombinant NtcAPX (rNtcAPX) as a fusion protein with glutathione S-transferase to investigate the effects of MG on APX. NtcAPX consists of 250 amino acids and has a deduced molecular mass of 27.5 kDa. The rNtcAPX showed a higher APX activity. MG treatments resulted in a reduction of APX activity and modifications of amino groups in rNtcAPX with increasing K(m) for ascorbate. On the contrary, neither NaCl nor cadmium reduced the activity of APX. The present study suggests that inhibition of APX is in part due to the modification of amino acids by MG.
Collapse
Affiliation(s)
- Md Anamul Hoque
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Kobayashi M, Kouzu N, Inami A, Toyooka K, Konishi Y, Matsuoka K, Matoh T. Characterization of Arabidopsis CTP:3-Deoxy-d-manno-2-Octulosonate Cytidylyltransferase (CMP-KDO synthetase), the Enzyme that Activates KDO During Rhamnogalacturonan II Biosynthesis. ACTA ACUST UNITED AC 2011; 52:1832-43. [DOI: 10.1093/pcp/pcr120] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Yokota E, Ueda H, Hashimoto K, Orii H, Shimada T, Hara-Nishimura I, Shimmen T. Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells. PLANT PHYSIOLOGY 2011; 156:129-43. [PMID: 21427277 PMCID: PMC3091044 DOI: 10.1104/pp.111.175018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/18/2011] [Indexed: 05/17/2023]
Abstract
The reticular network of the endoplasmic reticulum (ER) consists of tubular and lamellar elements and is arranged in the cortical region of plant cells. This network constantly shows shape change and remodeling motion. Tubular ER structures were formed when GTP was added to the ER vesicles isolated from tobacco (Nicotiana tabacum) cultured BY-2 cells expressing ER-localized green fluorescent protein. The hydrolysis of GTP during ER tubule formation was higher than that under conditions in which ER tubule formation was not induced. Furthermore, a shearing force, such as the flow of liquid, was needed for the elongation/extension of the ER tubule. The shearing force was assumed to correspond to the force generated by the actomyosin system in vivo. To confirm this hypothesis, the S12 fraction was prepared, which contained both cytosol and microsome fractions, including two classes of myosins, XI (175-kD myosin) and VIII (BY-2 myosin VIII-1), and ER-localized green fluorescent protein vesicles. The ER tubules and their mesh-like structures were arranged in the S12 fraction efficiently by the addition of ATP, GTP, and exogenous filamentous actin. The tubule formation was significantly inhibited by the depletion of 175-kD myosin from the S12 fraction but not BY-2 myosin VIII-1. Furthermore, a recombinant carboxyl-terminal tail region of 175-kD myosin also suppressed ER tubule formation. The tips of tubules moved along filamentous actin during tubule elongation. These results indicated that the motive force generated by the actomyosin system contributes to the formation of ER tubules, suggesting that myosin XI is responsible not only for the transport of ER in cytoplasm but also for the reticular organization of cortical ER.
Collapse
Affiliation(s)
- Etsuo Yokota
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Yao X, Horie T, Xue S, Leung HY, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI. Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. PLANT PHYSIOLOGY 2010; 152:341-55. [PMID: 19889878 PMCID: PMC2799368 DOI: 10.1104/pp.109.145722] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 10/26/2009] [Indexed: 05/18/2023]
Abstract
Na(+) and K(+) homeostasis are crucial for plant growth and development. Two HKT transporter/channel classes have been characterized that mediate either Na(+) transport or Na(+) and K(+) transport when expressed in Xenopus laevis oocytes and yeast. However, the Na(+)/K(+) selectivities of the K(+)-permeable HKT transporters have not yet been studied in plant cells. One study expressing 5' untranslated region-modified HKT constructs in yeast has questioned the relevance of cation selectivities found in heterologous systems for selectivity predictions in plant cells. Therefore, here we analyze two highly homologous rice (Oryza sativa) HKT transporters in plant cells, OsHKT2;1 and OsHKT2;2, that show differential K(+) permeabilities in heterologous systems. Upon stable expression in cultured tobacco (Nicotiana tabacum) Bright-Yellow 2 cells, OsHKT2;1 mediated Na(+) uptake, but little Rb(+) uptake, consistent with earlier studies and new findings presented here in oocytes. In contrast, OsHKT2;2 mediated Na(+)-K(+) cotransport in plant cells such that extracellular K(+) stimulated OsHKT2;2-mediated Na(+) influx and vice versa. Furthermore, at millimolar Na(+) concentrations, OsHKT2;2 mediated Na(+) influx into plant cells without adding extracellular K(+). This study shows that the Na(+)/K(+) selectivities of these HKT transporters in plant cells coincide closely with the selectivities in oocytes and yeast. In addition, the presence of external K(+) and Ca(2+) down-regulated OsHKT2;1-mediated Na(+) influx in two plant systems, Bright-Yellow 2 cells and intact rice roots, and also in Xenopus oocytes. Moreover, OsHKT transporter selectivities in plant cells are shown to depend on the imposed cationic conditions, supporting the model that HKT transporters are multi-ion pores.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (X.Y., T.H., S.X., H.-Y.L., D.E.B., J.I.S.); Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China (X.Y., Y.W.); and Group of Molecular and Functional Plant Biology, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710–0046, Japan (T.H., M.K.)
| |
Collapse
|
40
|
Bootten TJ, Harris PJ, Melton LD, Newman RH. Solid-state 13C NMR study of a composite of tobacco xyloglucan and Gluconacetobacter xylinus cellulose: molecular interactions between the component polysaccharides. Biomacromolecules 2009; 10:2961-7. [PMID: 19817435 DOI: 10.1021/bm900762m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate possible molecular interactions between xyloglucans (XGs) and cellulose in plant cell walls, a model composite was produced using cellulose from the bacterium Gluconacetobacter xylinus and XG from the walls of a tobacco cell-suspension culture that had been incubated with (13)C-labeled glucose. Solid-state (13)C NMR with cross-polarization (CP) and magic-angle spinning (MAS) was used in combination with proton spin-relaxation editing to separate signals from crystalline (rigid) and less rigid domains of the composite. Signals from XG were confined to subspectra of less rigid domains, with no detectable signals from XG attached to surfaces of cellulose crystallites. Signal displacements indicated XGs were more rigid than the mobile coil (twisted backbone) conformation expected for unattached XGs. Similar (13)C chemical shifts were observed in a single-pulse excitation experiment. The results were not compatible with extensive hydrogen bonding between XG and cellulose, but were consistent with a composite structure in which cellulose crystallites were embedded in a matrix of XG with a semirigid (straightened backbone) conformation, that is, a matrix that is partly ordered rather than amorphous.
Collapse
Affiliation(s)
- Tracey J Bootten
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
41
|
Islam MM, Hoque MA, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y, Murata Y. Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1587-97. [PMID: 19423184 DOI: 10.1016/j.jplph.2009.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/01/2009] [Accepted: 04/01/2009] [Indexed: 05/21/2023]
Abstract
Environmental stress, including heavy metal stress, can cause oxidative damage to plants. Up-regulation of the antioxidant defense system induced by proline and glycinebetaine (betaine) alleviates the damaging effects of oxidative stress in plants. Here, we investigated the protective effects of exogenously applied proline and betaine on growth, accumulation of proline and betaine, lipid peroxidation and activity of antioxidant enzymes in cultured tobacco Bright Yellow-2 (BY-2) cells exposed to cadmium (Cd) stress. Cadmium stress (at 100 microM Cd) caused a significant inhibition of the growth of BY-2 cells, and both proline and betaine significantly mitigated this inhibition. In addition, the mitigating effect of proline was more pronounced than that of betaine. Cadmium stress leads to an accumulation of Cd and endogenous proline in cultured cells, increased lipid peroxidation and peroxidase (POX) activity, and decreased activity of superoxide dismutase (SOD) and catalase (CAT). Exogenous application of proline resulted in a decrease in lipid peroxidation and an increase in SOD and CAT activities without reducing Cd contents under Cd stress, while application of betaine resulted in a decrease in lipid peroxidation and an increase in CAT activity with reducing Cd accumulation. Furthermore, exogenous proline and betaine intensified the accumulation of proline and betaine in Cd-stressed BY-2 cells, respectively. The present study suggests that proline and betaine confer tolerance to Cd stress in tobacco BY-2 cells by different mechanisms.
Collapse
|
42
|
Hamada T, Igarashi H, Taguchi R, Fujiwara M, Fukao Y, Shimmen T, Yokota E, Sonobe S. The putative RNA-processing protein, THO2, is a microtubule-associated protein in tobacco. PLANT & CELL PHYSIOLOGY 2009; 50:801-11. [PMID: 19218314 DOI: 10.1093/pcp/pcp024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
THO2 is a component of the THO-TREX (transcription and export factor) complex that participates in mRNA metabolism and export from the nucleus in yeast and animal cells. Here we report that tobacco putative THO2-related protein (NtTHO2) is a microtubule-associated protein, which directly binds to microtubules in vitro and co-localizes with cortical microtubules in vivo. We purified endogenous NtTHO2 by cycles of microtubule polymerization-depolymerization from crude extracts of tobacco BY-2 miniprotoplasts. Purified NtTHO2 sedimented with microtubules in vitro. Immunofluorescence revealed that NtTHO2 was present in both the nucleus and cytoplasm. In interphase, cytoplasmic NtTHO2 was localized along cortical microtubules. In the mitotic phase, NtTHO2 was localized to the mitotic spindle but not to either the preprophase band or the phragmoplast. In mature cells of seedling roots, and in BY-2 cells in which proliferation was stopped by removing 2,4-D, NtTHO2 staining was confined mainly to the nucleolus. These results suggest that NtTHO2 is a multifunctional protein that participates in mRNA metabolism, and also functions within the cortical microtubules and mitotic spindle.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Banu NA, Hoque A, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, Murata Y. Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:146-56. [PMID: 18471929 DOI: 10.1016/j.jplph.2008.03.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/12/2008] [Accepted: 03/12/2008] [Indexed: 05/08/2023]
Abstract
Salt stress causes oxidative damage and cell death in plants. Plants accumulate proline and glycinebetaine (betaine) to mitigate detrimental effects of salt stress. The aim of this study was to investigate the protective effects of proline and betaine on cell death in NaCl-unadapted tobacco (Nicotiana tabacum) Bright Yellow-2 suspension-cultured cells subjected to salt stress. Salt stress increased reactive oxygen species (ROS) accumulation, lipid peroxidation, nuclear deformation and degradation, chromatin condensation, apoptosis-like cell death and ATP contents. Neither proline nor betaine affected apoptosis-like cell death and G(1) phase population, and increased ATP contents in the 200mM NaCl-stressed cells. However, both of them effectively decreased ROS accumulation and lipid peroxidation, and suppressed nuclear deformation and chromatin condensation induced by severe salt stress. Evans Blue staining experiment showed that both proline and betaine significantly suppressed increment of membrane permeability induced by 200mM NaCl. Furthermore, among the ROS scavenging antioxidant defense genes studied here, mRNA levels of salicylic acid-binding (SAbind) catalase (CAT) and lignin-forming peroxidase (POX) were found to be increased by proline and betaine under salt stress. It is concluded that both proline and betaine provide a protection against NaCl-induced cell death via decreasing level of ROS accumulation and lipid peroxidation as well as improvement of membrane integrity.
Collapse
Affiliation(s)
- Nasrin Akhter Banu
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Chapter 10 FRET and FLIM applications in plants. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s0075-7535(08)00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
|
45
|
Fujie M, Shintaku H, Maeno H, Kajihara R, Usami S, Yamada T. Molecular Cytological Analysis of Cysteine Proteinases from Nodules of Lotus japonicus. CYTOLOGIA 2009. [DOI: 10.1508/cytologia.74.343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Makoto Fujie
- Graduate School of Advanced Sciences of Matter, Hiroshima University
| | - Hiroshi Shintaku
- Graduate School of Advanced Sciences of Matter, Hiroshima University
| | - Hiroki Maeno
- Graduate School of Advanced Sciences of Matter, Hiroshima University
| | - Ryo Kajihara
- Graduate School of Advanced Sciences of Matter, Hiroshima University
| | - Shoji Usami
- Graduate School of Advanced Sciences of Matter, Hiroshima University
| | - Takashi Yamada
- Graduate School of Advanced Sciences of Matter, Hiroshima University
| |
Collapse
|
46
|
Koshiba T, Kobayashi M, Matoh T. Boron nutrition of tobacco BY-2 cells. V. oxidative damage is the major cause of cell death induced by boron deprivation. PLANT & CELL PHYSIOLOGY 2009; 50:26-36. [PMID: 19054807 PMCID: PMC2638710 DOI: 10.1093/pcp/pcn184] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/26/2008] [Indexed: 05/18/2023]
Abstract
Boron (B) is an essential micronutrient for vascular plants. However, it remains unclear how B deficiency leads to various metabolic disorders and cell death. To understand this mechanism, we analyzed the physiological changes in suspension-cultured tobacco (Nicotiana tabacum) BY-2 cells upon B deprivation. When 3-day-old cells were transferred to B-free medium, cell death was detectable as early as 12 h after treatment. The B-deprived cells accumulated more reactive oxygen species and lipid peroxides than control cells, and showed a slight but significant decrease in the cellular ascorbate pool. Supplementing the media with lipophilic antioxidants effectively suppressed the death of B-deprived cells, suggesting that the oxidative damage is the immediate and major cause of cell death under B deficiency. Dead cells in B-free culture exhibited a characteristic morphology with a shrunken cytoplasm, which is often seen in cells undergoing programmed cell death (PCD). However, they did not display other hallmarks of PCD such as internucleosomal DNA fragmentation, decreased ascorbate peroxidase expression and protection from death by cycloheximide. These results suggest that the death of tobacco cells induced by B deprivation is not likely to be a typical PCD.
Collapse
Affiliation(s)
| | - Masaru Kobayashi
- Laboratory of Plant Nutrition, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | | |
Collapse
|
47
|
Yokota E, Ueda S, Tamura K, Orii H, Uchi S, Sonobe S, Hara-Nishimura I, Shimmen T. An isoform of myosin XI is responsible for the translocation of endoplasmic reticulum in tobacco cultured BY-2 cells. JOURNAL OF EXPERIMENTAL BOTANY 2008; 60:197-212. [PMID: 19039101 PMCID: PMC3071767 DOI: 10.1093/jxb/ern280] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/14/2008] [Accepted: 10/16/2008] [Indexed: 05/18/2023]
Abstract
The involvement of myosin XI in generating the motive force for cytoplasmic streaming in plant cells is becoming evident. For a comprehensive understanding of the physiological roles of myosin XI isoforms, it is necessary to elucidate the properties and functions of each isoform individually. In tobacco cultured BY-2 cells, two types of myosins, one composed of 175 kDa heavy chain (175 kDa myosin) and the other of 170 kDa heavy chain (170 kDa myosin), have been identified biochemically and immunocytochemically. From sequence analyses of cDNA clones encoding heavy chains of 175 kDa and 170 kDa myosin, both myosins have been classified as myosin XI. Immunocytochemical studies using a polyclonal antibody against purified 175 kDa myosin heavy chain showed that the 175 kDa myosin is distributed throughout the cytoplasm as fine dots in interphase BY-2 cells. During mitosis, some parts of 175 kDa myosin were found to accumulate in the pre-prophase band (PPB), spindle, the equatorial plane of a phragmoplast and on the circumference of daughter nuclei. In transgenic BY-2 cells, in which an endoplasmic reticulum (ER)-specific retention signal, HDEL, tagged with green fluorescent protein (GFP) was stably expressed, ER showed a similar behaviour to that of 175 kDa myosin. Furthermore, this myosin was co-fractionated with GFP-ER by sucrose density gradient centrifugation. From these findings, it was suggested that the 175 kDa myosin is a molecular motor responsible for translocating ER in BY-2 cells.
Collapse
Affiliation(s)
- Etsuo Yokota
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hoque MA, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y. Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:813-24. [PMID: 17920727 DOI: 10.1016/j.jplph.2007.07.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 07/23/2007] [Accepted: 07/23/2007] [Indexed: 05/04/2023]
Abstract
Salt stress impairs reactive oxygen species (ROS) and methylglyoxal (MG) detoxification systems, and causes oxidative damage to plants. Up-regulation of the antioxidant and glyoxalase systems provides protection against NaCl-induced oxidative damage in plants. Thiol-disulfide contents, glutathione content and its associated enzyme activities involved in the antioxidant defense and glyoxalase systems, and protein carbonylation in tobacco Bright Yellow-2 cells grown in suspension culture were investigated to assess the protection offered by proline and glycinebetaine against salt stress. Salt stress increased protein carbonylation, contents of thiol, disulfide, reduced (GSH) and oxidized (GSSG) forms of glutathione, and the activity of glutathione-S-transferase and glyoxalase II enzymes, but decreased redox state of both thiol-disulfide and glutathione, and the activity of glutathione peroxidase and glyoxalase I enzymes involved in the ROS and MG detoxification systems. Exogenous application of proline or glycinebetaine resulted in a reduction of protein carbonylation, and in an increase in glutathione redox state and activity of glutathione peroxidase, glutathione-S-transferase and glyoxalase I under salt stress. Neither proline nor glycinebetaine, however, had any direct protective effect on NaCl-induced GSH-associated enzyme activities. The present study, therefore, suggests that both proline and glycinebetaine provide a protective action against NaCl-induced oxidative damage by reducing protein carbonylation, and enhancing antioxidant defense and MG detoxification systems.
Collapse
Affiliation(s)
- Md Anamul Hoque
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
49
|
Yoshii A, Shimizu T, Yoshida A, Hamada K, Sakurai K, Yamaji Y, Suzuki M, Namba S, Hibi T. NTH201, a novel class II KNOTTED1-like protein, facilitates the cell-to-cell movement of Tobacco mosaic virus in tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:586-96. [PMID: 18393618 DOI: 10.1094/mpmi-21-5-0586] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
NTH201, a novel class II KNOTTED1-like protein gene, was cloned from tobacco (Nicotiana tabacum cv. Xanthi) and its role in Tobacco mosaic virus (TMV) infection was analyzed. Virus-induced gene silencing of NTH201 caused a delay in viral RNA accumulation as well as virus spread in infected tobacco plants. Overexpression of the gene in a transgenic tobacco plant (N. tabacum cv. Xanthi nc) infected by TMV showed larger local lesions than those of the nontransgenic plant. NTH201 exhibited no intercellular trafficking ability but did exhibit colocalization with movement protein (MP) at the plasmodesmata. When NTH201-overexpressing tobacco BY-2 cultured cells were infected with TMV, the accumulation of MP but not of viral genomic and subgenomic RNA clearly was accelerated compared with those in nontransgenic cells at an early infection period. The formation of virus replication complexes (VRC) also was accelerated in these transgenic cells. Conversely, NTH201-silenced cells showed less MP accumulations and fewer VRC formations than did nontransgenic cells. These results suggested that NTH201 might indirectly facilitate MP accumulation and VRC formation in TMV-infected cells, leading to rapid viral cell-to-cell movement in plants at an early infection stage.
Collapse
Affiliation(s)
- Atsushi Yoshii
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
OHLSSON MONIKA, ERIKSSON TAGE. Transformation of Brassica campestris protoplasts with Agrobacterium tumefaciens. Hereditas 2008. [DOI: 10.1111/j.1601-5223.1988.tb00298.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|