1
|
Abstract
Colicin B is a 55 kDa dumbbell-shaped protein toxin that uses the TonB system (outer membrane transporter, FepA, and three cytoplasmic membrane proteins TonB/ExbB/ExbD) to enter and kill Escherichia coli. FepA is a 22-stranded beta-barrel with its lumen filled by an amino-terminal globular domain containing an N-terminal semiconserved region, known as the TonB box, to which TonB binds. To investigate the mechanism of colicin B translocation across the outer membrane, we engineered cysteine (Cys) substitutions in the globular domain of FepA. Colicin B caused increased exposure to biotin maleimide labelling of all Cys substitutions, but to different degrees, with TonB as well as the FepA TonB box required for all increases. Because of the large increases in exposure for Cys residues from T13 to T51, we conclude that colicin B is translocated through the lumen of FepA, rather than along the lipid-barrel interface or through another protein. Part of the FepA globular domain (residues V91-V142) proved relatively refractory to labelling, indicating either that the relevant Cys residues were sequestered by an unknown protein or that a significant portion of the FepA globular domain remained inside the barrel, requiring concomitant conformational rearrangement of colicin B during its translocation. Unexpectedly, TonB was also required for colicin-induced exposure of the FepA TonB box, suggesting that TonB binds FepA at a different site prior to interaction with the TonB box.
Collapse
|
2
|
Khursigara CM, De Crescenzo G, Pawelek PD, Coulton JW. Deletion of the proline-rich region of TonB disrupts formation of a 2:1 complex with FhuA, an outer membrane receptor of Escherichia coli. Protein Sci 2005; 14:1266-73. [PMID: 15802653 PMCID: PMC2253273 DOI: 10.1110/ps.051342505] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
TonB protein of Escherichia coli couples the electrochemical potential of the cytoplasmic membrane (CM) to active transport of iron-siderophores and vitamin B(12) across the outer membrane (OM). TonB interacts with OM receptors and transduces conformationally stored energy. Energy for transport is provided by the proton motive force through ExbB and ExbD, which form a ternary complex with TonB in the CM. TonB contains three distinct domains: an N-terminal signal/anchor sequence, a C-terminal domain, and a proline-rich region. The proline-rich region was proposed to extend TonB's structure across the periplasm, allowing it to contact spatially distant OM receptors. Having previously identified a 2:1 stoichiometry for the complex of full-length (FL) TonB and the OM receptor FhuA, we now demonstrate that deletion of the proline-rich region of TonB (TonBDelta66-100) prevents formation of the 2:1 complex. Sedimentation velocity analytical ultracentrifugation of TonBDelta66-100 with FhuA revealed that a 1:1 TonB-FhuA complex is formed. Interactions between TonBDelta66-100 and FhuA were assessed by surface plasmon resonance, and their affinities were determined to be similar to those of TonB (FL)-FhuA. Presence of the FhuA-specific siderophore ferricrocin altered neither stoichiometry nor affinity of interaction, leading to our conclusion that the proline-rich region in TonB is important in forming a 2:1 high-affinity TonB-FhuA complex in vitro. Furthermore, TonBDelta66-100-FhuADelta21-128 interactions demonstrated that the cork region of the OM receptor was also important in forming a complex. Together, these results demonstrate a novel function of the proline-rich region of TonB in mediating TonB-TonB interactions within the TonB-FhuA complex.
Collapse
Affiliation(s)
- Cezar M Khursigara
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec, Canada H3A 2B4
| | | | | | | |
Collapse
|
3
|
Abstract
The TonB system of Gram-negative bacteria appears to exist for the purpose of transducing the protonmotive force energy from the cytoplasmic membrane, where it is generated, to the outer membrane, where it is needed for active transport of iron siderophores, vitamin B12 and, in pathogens, iron from host-binding proteins. In this review, we bring the reader up to date on the developments in the field since the authors each wrote reviews in this journal in 1990.
Collapse
Affiliation(s)
- Kathleen Postle
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, USA
| | | |
Collapse
|
4
|
Howard SP, Herrmann C, Stratilo CW, Braun V. In vivo synthesis of the periplasmic domain of TonB inhibits transport through the FecA and FhuA iron siderophore transporters of Escherichia coli. J Bacteriol 2001; 183:5885-95. [PMID: 11566987 PMCID: PMC99666 DOI: 10.1128/jb.183.20.5885-5895.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The siderophore transport activities of the two outer membrane proteins FhuA and FecA of Escherichia coli require the proton motive force of the cytoplasmic membrane. The energy of the proton motive force is postulated to be transduced to the transport proteins by a protein complex that consists of the TonB, ExbB, and ExbD proteins. In the present study, TonB fragments lacking the cytoplasmic membrane anchor were exported to the periplasm by fusing them to the cleavable signal sequence of FecA. Overexpressed TonB(33-239), TonB(103-239), and TonB(122-239) fragments inhibited transport of ferrichrome by FhuA and of ferric citrate by FecA, transcriptional induction of the fecABCDE transport genes by FecA, infection by phage phi80, and killing of cells by colicin M via FhuA. Transport of ferrichrome by FhuADelta5-160 was also inhibited by TonB(33-239), although FhuADelta5-160 lacks the TonB box which is involved in TonB binding. The results show that TonB fragments as small as the last 118 amino acids of the protein interfere with the function of wild-type TonB, presumably by competing for binding sites at the transporters or by forming mixed dimers with TonB that are nonfunctional. In addition, the interactions that are inhibited by the TonB fragments must include more than the TonB box, since transport through corkless FhuA was also inhibited. Since the periplasmic TonB fragments cannot assume an energized conformation, these in vivo studies also agree with previous cross-linking and in vitro results, suggesting that neither recognition nor binding to loaded siderophore receptors is the energy-requiring step in the TonB-receptor interactions.
Collapse
Affiliation(s)
- S P Howard
- Mikrobiologie II, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
5
|
Cadieux N, Bradbeer C, Kadner RJ. Sequence changes in the ton box region of BtuB affect its transport activities and interaction with TonB protein. J Bacteriol 2000; 182:5954-61. [PMID: 11029413 PMCID: PMC94727 DOI: 10.1128/jb.182.21.5954-5961.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uptake of cobalamins by the transporter protein BtuB in the outer membrane of Escherichia coli requires the proton motive force and the transperiplasmic protein TonB. The Ton box sequence near the amino terminus of BtuB is conserved among all TonB-dependent transporters and is the only known site of mutations that confer a transport-defective phenotype which can be suppressed by certain substitutions at residue 160 in TonB. The crystallographic structures of the TonB-dependent transporter FhuA revealed that the region near the Ton box, which itself was not resolved, is exposed to the periplasmic space and undergoes an extensive shift in position upon binding of substrate. Site-directed disulfide bonding in intact cells has been used to show that the Ton box of BtuB and residues around position 160 of TonB approach each other in a highly oriented and specific manner to form BtuB-TonB heterodimers that are stimulated by the presence of transport substrate. Here, replacement of Ton box residues with proline or cysteine revealed that residue side chain recognition is not important for function, although replacement with proline at four of the seven Ton box positions impaired cobalamin transport. The defect in cobalamin utilization resulting from the L8P substitution was suppressed by cysteine substitutions in adjacent residues in BtuB or in TonB. This suppression did not restore active transport of cobalamins but may allow each transporter to function at most once. The uncoupled proline substitutions in BtuB markedly affected the pattern of disulfide bonding to TonB, both increasing the extent of cross-linking and shifting the pairs of residues that can be joined. Cross-linking of BtuB and TonB in the presence of the BtuB V10P substitution became independent of the presence of substrate, indicating an additional distortion of the exposure of the Ton box in the periplasmic space. TonB action thus requires a specific orientation for functional contact with the Ton box, and changes in the conformation of this region block transport by preventing substrate release and repeated transport cycles.
Collapse
Affiliation(s)
- N Cadieux
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908-0734, USA
| | | | | |
Collapse
|
6
|
Moeck GS, Coulton JW, Postle K. Cell envelope signaling in Escherichia coli. Ligand binding to the ferrichrome-iron receptor fhua promotes interaction with the energy-transducing protein TonB. J Biol Chem 1997; 272:28391-7. [PMID: 9353297 DOI: 10.1074/jbc.272.45.28391] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ferrichrome-iron receptor of Escherichia coli is FhuA, an outer membrane protein that is dependent upon the energy-coupling protein TonB to enable active transport of specific hydroxamate siderophores, infection by certain phages, and cell killing by the protein antibiotics colicin M and microcin 25. In vivo cross-linking studies were performed to establish at the biochemical level the interaction between FhuA and TonB. In an E. coli strain in which both proteins were expressed from the chromosome, a high molecular mass complex was detected when the ferrichrome homologue ferricrocin was added immediately prior to addition of cross-linker. The complex included both proteins; it was absent from strains of E. coli that were devoid of either FhuA or TonB, and it was detected with anti-FhuA and anti-TonB monoclonal antibodies. These results indicate that, in vivo, the binding of ferricrocin to FhuA enhances complex formation between the receptor and TonB. An in vitro system was established with which to examine the FhuA-TonB interaction. Incubation of TonB with histidine-tagged FhuA followed by addition of Ni2+-nitrilotriacetate-agarose led to the specific recovery of both TonB and FhuA. Addition of ferricrocin or colicin M to FhuA in this system greatly increased the coupling between FhuA and TonB. Conversely, a monoclonal antibody that binds near the N terminus of FhuA reduced the retention of TonB by histidine-tagged FhuA. These studies demonstrate the significance of ligand binding at the external surface of the cell to mediate signal transduction across the outer membrane.
Collapse
Affiliation(s)
- G S Moeck
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | |
Collapse
|
7
|
Jaskula JC, Letain TE, Roof SK, Skare JT, Postle K. Role of the TonB amino terminus in energy transduction between membranes. J Bacteriol 1994; 176:2326-38. [PMID: 8157601 PMCID: PMC205356 DOI: 10.1128/jb.176.8.2326-2338.1994] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Escherichia coli TonB protein is an energy transducer, coupling cytoplasmic membrane energy to active transport of vitamin B12 and iron-siderophores across the outer membrane. TonB is anchored in the cytoplasmic membrane by its hydrophobic amino terminus, with the remainder occupying the periplasmic space. In this report we establish several functions for the hydrophobic amino terminus of TonB. A G-26-->D substitution in the amino terminus prevents export of TonB, suggesting that the amino terminus contains an export signal for proper localization of TonB within the cell envelope. Substitution of the first membrane-spanning domain of the cytoplasmic membrane protein TetA for the TonB amino terminus eliminates TonB activity without altering TonB export, suggesting that the amino terminus contains sequence-specific information. Detectable TonB cross-linking to ExbB is also prevented, suggesting that the two proteins interact primarily through their transmembrane domains. In vivo cleavage of the amino terminus of TonB carrying an engineered leader peptidase cleavage site eliminates (i) TonB activity, (ii) detectable interaction with a membrane fraction having a density intermediate to those of the cytoplasmic and outer membranes, and (iii) cross-linking to ExbB. In contrast, the amino terminus is not required for cross-linking to other proteins with which TonB can form complexes, including FepA. Additionally, although the amino terminus clearly is a membrane anchor, it is not the only means by which TonB associates with the cytoplasmic membrane. TonB lacking its amino-terminal membrane anchor still remains largely associated with the cytoplasmic membrane.
Collapse
Affiliation(s)
- J C Jaskula
- Department of Microbiology, Washington State University, Pullman 99164-4233
| | | | | | | | | |
Collapse
|
8
|
Abstract
TonB protein couples cytoplasmic membrane electrochemical potential to active transport of iron-siderophore complexes and vitamin B12 through high-affinity outer membrane receptors of Gram-negative bacteria. The mechanism of energy transduction remains to be determined, but important concepts have already begun to emerge. Consistent with its function, TonB is anchored in the cytoplasmic membrane by its uncleaved amino terminus while largely occupying the periplasm. Both the connection to the cytoplasmic membrane and the amino acid sequences of the anchor are essential for activity. TonB directly associates with a number of envelope proteins, among them the outer membrane receptors and cytoplasmic membrane protein ExbB. ExbB and TonB interact through their respective transmembrane domains. ExbB is proposed to recycle TonB to an active conformation following energy transduction to the outer membrane. TonB most likely associates with the outer membrane receptors through its carboxy terminus, which is required for function. In contrast, the novel proline-rich region of TonB can be deleted without affecting function. A model that incorporates this information, as well as tempered speculation, is presented.
Collapse
Affiliation(s)
- K Postle
- Department of Microbiology, Washington State University, Pullman 99164-4233
| |
Collapse
|
9
|
Larsen RA, Wood GE, Postle K. The conserved proline-rich motif is not essential for energy transduction by Escherichia coli TonB protein. Mol Microbiol 1993; 10:943-53. [PMID: 7934870 DOI: 10.1111/j.1365-2958.1993.tb00966.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
TonB protein functions as an energy transducer, coupling cytoplasmic membrane electrochemical potential to the active transport of vitamin B12 and Fe(III)-siderophore complexes across the outer membrane of Escherichia coli and other Gram-negative bacteria. Accumulated evidence indicates that TonB is anchored in the cytoplasm, but spans the periplasmic space to interact physically with outer membrane receptors. It has been presumed that this ability is caused by a conserved (Glu-Pro)n-(Lys-Pro)m repeat motif, predicted to assume a rigid, linear conformation of sufficient length to reach the outer membrane. Based on in vitro studies with synthetic peptides and purified FhuA outer membrane receptor, it has been suggested that this region contains a site that directly binds outer membrane receptors and is essential for energy transduction. We have found a TonB lacking the (Glu-Pro)n-(Lys-Pro)m repeat motif (TonB delta(66-100)). TonB delta(66-100) is fully capable of irreversible phi 80 adsorption, except under physiological circumstances where the periplasmic space is expanded. Based on the ability of TonB delta(66-100) to interact with outer membrane receptors and components of the energy transduction apparatus under normal physiological conditions, it is evident that the TonB proline-rich region has no role in energy transduction other than to provide a physical extension sufficient to reach the outer membrane.
Collapse
Affiliation(s)
- R A Larsen
- Department of Microbiology, Washington State University, Pullman 99164
| | | | | |
Collapse
|
10
|
Bruske AK, Heller KJ. Molecular characterization of the Enterobacter aerogenes tonB gene: identification of a novel type of tonB box suppressor mutant. J Bacteriol 1993; 175:6158-68. [PMID: 8407788 PMCID: PMC206710 DOI: 10.1128/jb.175.19.6158-6168.1993] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The tonB gene of Enterobacter aerogenes was cloned, sequenced, and expressed in Escherichia coli. It complemented an E. coli tonB mutant as efficiently as E. coli tonB, except for colicin B and D sensitivities. However, colicin B and D sensitivities were complemented by a derivative in which the aspartate at position 165 was replaced by a glutamine (TonBD-165-->Q) by site-directed mutagenesis. In E. coli, the corresponding amino acid is a glutamine (Q-160) which is known to be altered in most mutants showing suppression of the btuB451 mutation. Fourteen independent btuB451 suppressor mutations in E. aerogenes tonB which all had suffered the same point mutation resulting in a change from glycine to valine at position 239 (G-239-->V) of the C-terminal end of the protein were isolated. The mutation was located within a region which is nonessential for function of E. aerogenes TonB as well as E. coli TonB. A constructed double mutation, expressing a D-165-->Q/G-239-->V derivative, no longer acted as a btuB451 suppressor. However, it restored colicin B and D sensitivities even more efficiently than the D-165-->Q derivative. Corresponding mutations constructed in E. coli tonB, giving rise to Q-160-->D, G-234-->V, and Q-160-->D/G-234-->V derivatives, showed phenotypes comparable to the E. aerogenes mutations. We take this as evidence that at least a functional interaction between the D-165 (Q-160 in E. coli) and the G-239 (G-234 in E. coli) region is necessary for TonB function. The implications of this interaction for functional instability of TonB are discussed.
Collapse
Affiliation(s)
- A K Bruske
- Fakultät für Biologie, Universität Konstanz, Germany
| | | |
Collapse
|