1
|
Vaucheret H. Epigenetic management of self and non-self: lessons from 40 years of transgenic plants. C R Biol 2023; 345:149-174. [PMID: 36847123 DOI: 10.5802/crbiol.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Plant varieties exhibiting unstable or variegated phenotypes, or showing virus recovery have long remained a mystery. It is only with the development of transgenic plants 40 years ago that the epigenetic features underlying these phenomena were elucidated. Indeed, the study of transgenic plants that did not express the introduced sequences revealed that transgene loci sometimes undergo transcriptional gene silencing (TGS) or post-transcriptional gene silencing (PTGS) by activating epigenetic defenses that naturally control transposable elements, duplicated genes or viruses. Even when they do not trigger TGS or PTGS spontaneously, stably expressed transgenes driven by viral promoters set apart from endogenous genes in their epigenetic regulation. As a result, transgenes driven by viral promoters are capable of undergoing systemic PTGS throughout the plant, whereas endogenous genes can only undergo local PTGS in cells where RNA quality control is impaired. Together, these results indicate that the host genome distinguishes self from non-self at the epigenetic level, allowing PTGS to eliminate non-self, and preventing PTGS to become systemic and kill the plant when it is locally activated against deregulated self.
Collapse
|
2
|
Lowder LG, Zhou J, Zhang Y, Malzahn A, Zhong Z, Hsieh TF, Voytas DF, Zhang Y, Qi Y. Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems. MOLECULAR PLANT 2018; 11:245-256. [PMID: 29197638 DOI: 10.1016/j.molp.2017.11.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 05/22/2023]
Abstract
User-friendly tools for robust transcriptional activation of endogenous genes are highly demanded in plants. We previously showed that a dCas9-VP64 system consisting of the deactivated CRISPR-associated protein 9 (dCas9) fused with four tandem repeats of the transcriptional activator VP16 (VP64) could be used for transcriptional activation of endogenous genes in plants. In this study, we developed a second generation of vector systems for enhanced transcriptional activation in plants. We tested multiple strategies for dCas9-based transcriptional activation, and found that simultaneous recruitment of VP64 by dCas9 and a modified guide RNA scaffold gRNA2.0 (designated CRISPR-Act2.0) yielded stronger transcriptional activation than the dCas9-VP64 system. Moreover, we developed a multiplex transcription activator-like effector activation (mTALE-Act) system for simultaneous activation of up to four genes in plants. Our results suggest that mTALE-Act is even more effective than CRISPR-Act2.0 in most cases tested. In addition, we explored tissue-specific gene activation using positive feedback loops. Interestingly, our study revealed that certain endogenous genes are more amenable than others to transcriptional activation, and tightly regulated genes may cause target gene silencing when perturbed by activation probes. Hence, these new tools could be used to investigate gene regulatory networks and their control mechanisms. Assembly of multiplex CRISPR-Act2.0 and mTALE-Act systems are both based on streamlined and PCR-independent Golden Gate and Gateway cloning strategies, which will facilitate transcriptional activation applications in both dicots and monocots.
Collapse
Affiliation(s)
- Levi G Lowder
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Jianping Zhou
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Aimee Malzahn
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Zhaohui Zhong
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology and Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yong Zhang
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yiping Qi
- Department of Biology, East Carolina University, Greenville, NC 27858, USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| |
Collapse
|
3
|
Mori A, Sato H, Kasai M, Yamada T, Kanazawa A. RNA silencing in the life cycle of soybean: multiple restriction systems and spatiotemporal variation associated with plant architecture. Transgenic Res 2017; 26:349-362. [PMID: 28417275 DOI: 10.1007/s11248-017-0011-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/21/2017] [Indexed: 01/12/2023]
Abstract
The expression of transgenes introduced into a plant genome is sometimes suppressed by RNA silencing. Although local and systemic spread of RNA silencing have been studied, little is known about the mechanisms underlying spatial and temporal variation in transgene silencing between individual plants or between plants of different generations, which occurs seemingly stochastically. Here, we analyzed the occurrence, spread, and transmission of RNA silencing of the green fluorescent protein (GFP) gene over multiple generations of the progeny of a single soybean transformant. Observation of GFP fluorescence in entire plants of the T3-T5 generations indicated that the initiation and subsequent spread of GFP silencing varied between individuals, although this GFP silencing most frequently began in the primary leaves. In addition, GFP silencing could spread into the outer layer of seed coat tissues but was hardly detectable in the embryos. These results are consistent with the notion that transgene silencing involves its reset during reproductive phase, initiation after germination, and systemic spread in each generation. GFP silencing was absent in the pulvinus, suggesting that its cortical cells inhibit cell-to-cell spread or induction of RNA silencing. The extent of GFP silencing could differ between the stem and a petiole or between petiolules, which have limited vascular bundles connecting them and thus deter long-distant movement of silencing. Taken together, these observations indicate that the initiation and/or spread of RNA silencing depend on specific features of the architecture of the plant in addition to the mechanisms that can be conserved in higher plants.
Collapse
Affiliation(s)
- Ayumi Mori
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Hiroshi Sato
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Tetsuya Yamada
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|
4
|
Maessen G. Genomic stability and stability of expression in genetically modified plants. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/plb.1997.46.1.3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Sujii ER, Togni PHB, de A Ribeiro P, de A Bernardes T, Milane PVGN, Paula DP, Pires CSS, Fontes EMG. Field evaluation of Bt cotton crop impact on nontarget pests: cotton aphid and boll weevil. NEOTROPICAL ENTOMOLOGY 2013; 42:102-11. [PMID: 23949719 DOI: 10.1007/s13744-012-0094-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 10/01/2012] [Indexed: 05/25/2023]
Abstract
Bt cotton plants expressing Cry1Ac protein have high specificity for the control of lepidopteran larvae. However, studies conducted in several countries have shown these plants have a differential impact on nontarget herbivores. The aim of this study was to compare the colonization rates and population abundance of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) and the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), in plots of Bt (Nuopal) and non-Bt cotton (Delta Opal) in an experimental field in Brasilia, DF, Brazil. No difference was observed in the preference and colonization by winged aphids to plants from the two treatments. There was no significant difference in abundance of wingless aphids or in the production of winged aphids between treatments. Apparently, the parameters that control factors such as fecundity, survival, and dispersal were similar on both Bt and non-Bt plants. Monitoring of plants for coccinellids, a specialist predator of aphids, and ants that act on the dispersal of aphids among plants showed no significant difference between Bt and non-Bt plants, supporting the inference above. Regarding the effect on boll weevil, there was also no significant difference between treatments in the total number of fruiting structures attacked in each plot, the percentage of fruiting structures attacked per plant or on the number of weevils emerging from fruits with boll weevil damage from egg-laying, when damaged fruit samples were held in the laboratory. Based on these results, we conclude that there is no impact of Bt cotton crop expressing Cry1Ac on the nontarget herbivores tested under field conditions.
Collapse
Affiliation(s)
- E R Sujii
- Embrapa Recursos Genéticos e Biotcnologia-Cenargen, Brasilia, DF, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
In plants, transgenes often induce rapid turnover of homologous endogenous transcripts. This "cosuppression" of homologous genes is an extremely nonlinear response to small increases in gene expression or dosage, inversely amplifying them into dramatic phenotypic alterations. Pigment transgenes elicit metastable cosuppression patterns organized by flower morphology. Pattern organization and metastability reflect regulatory states (probably transgene transcription states) that respond to morphological features and are labile to physiology and development. Shifts between regulatory states can be highly ordered; for example, a shift may be imposed on a population of cells defining a meristem, which then stably maintains and transmits the new state throughout growth.
Collapse
|
7
|
Rimando AM, Pan Z, Polashock JJ, Dayan FE, Mizuno CS, Snook ME, Liu CJ, Baerson SR. In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:269-83. [PMID: 21902799 DOI: 10.1111/j.1467-7652.2011.00657.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Resveratrol and related stilbenes are thought to play important roles in defence responses in several plant species and have also generated considerable interest as nutraceuticals owing to their diverse health-promoting properties. Pterostilbene, a 3,5-dimethylether derivative of resveratrol, possesses properties similar to its parent compound and, additionally, exhibits significantly higher fungicidal activity in vitro and superior pharmacokinetic properties in vivo. Recombinant enzyme studies carried out using a previously characterized O-methyltransferase sequence from Sorghum bicolor (SbOMT3) demonstrated its ability to catalyse the A ring-specific 3,5-bis-O-methylation of resveratrol, yielding pterostilbene. A binary vector was constructed for the constitutive co-expression of SbOMT3 with a stilbene synthase sequence from peanut (AhSTS3) and used for the generation of stably transformed tobacco and Arabidopsis plants, resulting in the accumulation of pterostilbene in both species. A reduced floral pigmentation phenotype observed in multiple tobacco transformants was further investigated by reversed-phase HPLC analysis, revealing substantial decreases in both dihydroquercetin-derived flavonoids and phenylpropanoid-conjugated polyamines in pterostilbene-producing SbOMT3/AhSTS3 events. These results demonstrate the potential utility of this strategy for the generation of pterostilbene-producing crops and also underscore the need for the development of additional approaches for minimizing concomitant reductions in key phenylpropanoid-derived metabolites.
Collapse
Affiliation(s)
- Agnes M Rimando
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, MS, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Velten J, Cakir C, Youn E, Chen J, Cazzonelli CI. Transgene silencing and transgene-derived siRNA production in tobacco plants homozygous for an introduced AtMYB90 construct. PLoS One 2012; 7:e30141. [PMID: 22363419 PMCID: PMC3281821 DOI: 10.1371/journal.pone.0030141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/10/2011] [Indexed: 12/15/2022] Open
Abstract
Transgenic tobacco (Nicotiana tabacum) lines were engineered to ectopically over-express AtMYB90 (PAP2), an R2-R3 Myb gene associated with regulation of anthocyanin production in Arabidopsis thaliana. Independently transformed transgenic lines, Myb27 and Myb237, accumulated large quantities of anthocyanin, generating a dark purple phenotype in nearly all tissues. After self-fertilization, some progeny of the Myb27 line displayed an unexpected pigmentation pattern, with most leaves displaying large sectors of dramatically reduced anthocyanin production. The green-sectored 27Hmo plants were all found to be homozygous for the transgene and, despite a doubled transgene dosage, to have reduced levels of AtMYB90 mRNA. The observed reduction in anthocyanin pigmentation and AtMYB90 mRNA was phenotypically identical to the patterns seen in leaves systemically silenced for the AtMYB90 transgene, and was associated with the presence of AtMYB90-derived siRNA homologous to both strands of a portion of the AtMYB90 transcribed region. Activation of transgene silencing in the Myb27 line was triggered when the 35S::AtMYB90 transgene dosage was doubled, in both Myb27 homozygotes, and in plants containing one copy of each of the independently segregating Myb27 and Myb237 transgene loci. Mapping of sequenced siRNA molecules to the Myb27 TDNA (including flanking tobacco sequences) indicated that the 3' half of the AtMYB90 transcript is the primary target for siRNA associated silencing in both homozygous Myb27 plants and in systemically silenced tissues. The transgene within the Myb27 line was found to consist of a single, fully intact, copy of the AtMYB90 construct. Silencing appears to initiate in response to elevated levels of transgene mRNA (or an aberrant product thereof) present within a subset of leaf cells, followed by spread of the resulting small RNA to adjacent leaf tissues and subsequent amplification of siRNA production.
Collapse
MESH Headings
- Anthocyanins/metabolism
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Base Sequence
- DNA, Bacterial/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Plant
- Gene Silencing
- Genetic Loci/genetics
- Genome, Plant/genetics
- Hemizygote
- Homozygote
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Data
- Mutagenesis, Insertional/genetics
- Phenotype
- Pigmentation/genetics
- Plants, Genetically Modified
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Nicotiana/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transgenes/genetics
Collapse
Affiliation(s)
- Jeff Velten
- United States Department of Agriculture-Agricultural Research Service, Lubbock, Texas, United States of America.
| | | | | | | | | |
Collapse
|
9
|
Molnar A, Melnyk C, Baulcombe DC. Silencing signals in plants: a long journey for small RNAs. Genome Biol 2011; 12:215. [PMID: 21235831 PMCID: PMC3091295 DOI: 10.1186/gb-2010-11-12-219] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent research shows that short RNA molecules act as mobile signals that direct mRNA cleavage and DNA methylation in recipient cells.
Collapse
Affiliation(s)
- Attila Molnar
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | | | | |
Collapse
|
10
|
Molnar A, Melnyk C, Baulcombe DC. Silencing signals in plants: a long journey for small RNAs. Genome Biol 2011. [PMID: 21235831 DOI: 10.1186/gb-2010-ll-12-219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Recent research shows that short RNA molecules act as mobile signals that direct mRNA cleavage and DNA methylation in recipient cells.
Collapse
Affiliation(s)
- Attila Molnar
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | | | | |
Collapse
|
11
|
Boyko A, Molinier J, Chatter W, Laroche A, Kovalchuk I. Acute but not chronic exposure to abiotic stress results in transient reduction of expression levels of the transgene driven by the 35S promoter. N Biotechnol 2010; 27:70-7. [PMID: 19800040 DOI: 10.1016/j.nbt.2009.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 08/31/2009] [Accepted: 09/22/2009] [Indexed: 11/20/2022]
Abstract
The transgenic plant performance depends on the stable expression of the integrated transgene. In this paper, we have analyzed the stability of the most frequently used constitutive promoter, the cauliflower mosaic virus (CaMV) 35S promoter. We used several independent Nicotiana tabacum lines transgenic for the luciferase (LUC) or green fluorescence protein (GFP) coding genes driven by the same 35S promoter. As an indication of the expression level, we measured the steady state RNA level, protein level and protein activity. Exposure of plants to an acute single dose of UVC, UVB or X-ray radiation resulted in a decrease of the transgene expression level, whereas exposure to high temperature increased it. In most of the cases, the expression changed at one to two hours post exposure and returned to normal at four hours. By contrast, plants germinated and grown in the presence of a low dose of either UVB radiation or CuSO(4) for two weeks did not show any changes in expression level. We conclude that although the expression level of the transgenes driven by the 35S promoter can be transiently altered by the acute exposure, no substantial changes occur upon constant low exposure.
Collapse
Affiliation(s)
- Alex Boyko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB. T1K 3M4, Canada
| | | | | | | | | |
Collapse
|
12
|
Zainal Z, Marouf E, Ismail I, Fei C. Expression of the Capsicuum annum (Chili) Defensin Gene in Transgenic Tomatoes Confers Enhanced Resistance to Fungal Pathogens. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/ajpp.2009.70.79] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Chen R, Zhao X, Shao Z, Wei Z, Wang Y, Zhu L, Zhao J, Sun M, He R, He G. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. THE PLANT CELL 2007; 19:847-61. [PMID: 17400897 PMCID: PMC1867369 DOI: 10.1105/tpc.106.044123] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
UDP-glucose pyrophosphorylase (UGPase) catalyzes the reversible production of glucose-1-phosphate and UTP to UDP-glucose and pyrophosphate. The rice (Oryza sativa) genome contains two homologous UGPase genes, Ugp1 and Ugp2. We report a functional characterization of rice Ugp1, which is expressed throughout the plant, with highest expression in florets, especially in pollen during anther development. Ugp1 silencing by RNA interference or cosuppression results in male sterility. Expressing a double-stranded RNA interference construct in Ugp1-RI plants resulted in complete suppression of both Ugp1 and Ugp2, together with various pleiotropic developmental abnormalities, suggesting that UGPase plays critical roles in plant growth and development. More importantly, Ugp1-cosuppressing plants contained unprocessed intron-containing primary transcripts derived from transcription of the overexpression construct. These aberrant transcripts undergo temperature-sensitive splicing in florets, leading to a novel thermosensitive genic male sterility. Pollen mother cells (PMCs) of Ugp1-silenced plants appeared normal before meiosis, but during meiosis, normal callose deposition was disrupted. Consequently, the PMCs began to degenerate at the early meiosis stage, eventually resulting in complete pollen collapse. In addition, the degeneration of the tapetum and middle layer was inhibited. These results demonstrate that rice Ugp1 is required for callose deposition during PMC meiosis and bridges the apoplastic unloading pathway and pollen development.
Collapse
Affiliation(s)
- Rongzhi Chen
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Petsch KA, Mylne J, Botella JR. Cosuppression of eukaryotic release factor 1-1 in Arabidopsis affects cell elongation and radial cell division. PLANT PHYSIOLOGY 2005; 139:115-26. [PMID: 16113224 PMCID: PMC1203362 DOI: 10.1104/pp.105.062695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Revised: 05/30/2005] [Accepted: 05/30/2005] [Indexed: 05/04/2023]
Abstract
The role of the eukaryotic release factor 1 (eRF1) in translation termination has previously been established in yeast; however, only limited characterization has been performed on any plant homologs. Here, we demonstrate that cosuppression of eRF1-1 in Arabidopsis (Arabidopsis thaliana) has a profound effect on plant morphology, resulting in what we term the broomhead phenotype. These plants primarily exhibit a reduction in internode elongation causing the formation of a broomhead-like cluster of malformed siliques at the top of the inflorescence stem. Histological analysis of broomhead stems revealed that cells are reduced in height and display ectopic lignification of the phloem cap cells, some phloem sieve cells, and regions of the fascicular cambium, as well as enhanced lignification of the interfascicular fibers. We also show that cell division in the fascicular cambial regions is altered, with the majority of vascular bundles containing cambial cells that are disorganized and possess enlarged nuclei. This is the first attempt at functional characterization of a release factor in vivo in plants and demonstrates the importance of eRF1-1 function in Arabidopsis.
Collapse
Affiliation(s)
- Katherine Anne Petsch
- Plant Genetic Engineering Laboratory, Department of Botany, School of Integrative Biology, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
15
|
Abstract
This article describes the discovery of RNA-activated sequence-specific RNA degradation, a phenomenon now referred to as RNA silencing or RNA interference (RNAi). From 1992 to 1996, a series of articles were published on virus resistant transgenic plants expressing either translatable or nontranslatable versions of the coat protein gene of Tobacco etch virus (TEV). Certain transgenic plant lines were resistant to TEV but not to closely related viruses. In these plants a surprising correlation was observed: Transgenic plant lines with the highest degree of TEV resistance had actively transcribed transgenes but low steady-state levels of transgene RNA. Molecular analysis of these transgenic plants demonstrated the existence of a cellular-based, sequence-specific, posttranscriptional RNA-degradation system that was programmed by the transgene-encoded RNA sequence. This RNA-degradation activity specifically targeted both the transgene RNA and TEV (viral) RNA for degradation and was the first description of RNA-mediated gene silencing.
Collapse
Affiliation(s)
- John A Lindbo
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA.
| | | |
Collapse
|
16
|
James VA, Worland B, Snape JW, Vain P. Development of a standard operating procedure (SOP) for the precise quantification of transgene expression levels in rice plants. PHYSIOLOGIA PLANTARUM 2004; 120:650-656. [PMID: 15032827 DOI: 10.1111/j.0031-9317.2004.0276.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Variation in transgene expression levels can result from uncontrolled differences in experimental protocols. It is important to quantify and eliminate this unwanted variation as much as possible in order to attain precision in transgenic studies. Large-scale transgenic studies could, by their design, generate additional variation. The influence of different plant growth, sampling and analysis strategies in generating spurious variation in transgene expression level quantification in rice plant populations was assessed. The use of multiple independent plant phenotypic analyses (enzymatic assays in this study) was identified as the major source of spurious variation (doubling or tripling the variation). The quantification of transgene expression levels was also found to be significantly influenced by plant age, the choice of leaf sampled and leaf size. All of these factors reduced the precision of molecular genetic studies and generated artefactual results in transgenic studies. Identification of the sources of extraneous variation allowed the development of a new standard operating procedure (SOP) for rice, designed to control spurious variation. SOP allowed the influence of differences in growth period and independent phenotypic analyses to be minimized. The coefficient of variation in transgene expression levels, between and within genetically identical rice plants, was reduced to approximately 10 to 15% using SOP. Adoption of quality assurance (QA) criteria such as SOP is key to improving the reproducibility of transgenic studies.
Collapse
Affiliation(s)
- Victoria A. James
- John Innes Centre, Crop Genetics Department, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
17
|
Mitsuhara I, Shirasawa-Seo N, Iwai T, Nakamura S, Honkura R, Ohashi Y. Release from post-transcriptional gene silencing by cell proliferation in transgenic tobacco plants: possible mechanism for noninheritance of the silencing. Genetics 2002; 160:343-52. [PMID: 11805069 PMCID: PMC1461942 DOI: 10.1093/genetics/160.1.343] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transgenic tobacco plants that overproduce luciferase (Luc) frequently exhibit post-transcriptional gene silencing (PTGS) of luc. The silencing was observed over five generations and found not to be inherited but acquired by the next generation at a certain frequency. Luc imaging analysis of silenced plants revealed Luc activity only in proliferating tissues such as shoot meristem and developing flower. The luc gene expression has been recovered from silencing before development of germ cells, excluding a possible recovery from the PTGS at meiosis. A systemic silencing signal transferred from older tissue likely induces gene silencing of younger tissues in which cell proliferation has been completed. Only seeds maintained Luc activity, probably because of isolation from the silencing signal by a possible partition from the parent placenta. Calli newly induced from the leaf pieces of silenced plants recovered from the silencing and exhibited strong Luc activity similar to nonsilenced leaves, further indicating that the silencing cannot be maintained in proliferating cells. Thus release from PTGS in proliferating cells is a possible mechanism for noninheritance of silencing.
Collapse
Affiliation(s)
- Ichiro Mitsuhara
- Department of Molecular Genetics, National Institute of Agrobiological Sciences, Tsukuba City, Ibaraki 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Mourrain P, Béclin C, Vaucheret H. Are gene silencing mutants good tools for reliable transgene expression or reliable silencing of endogenous genes in plants? GENETIC ENGINEERING 2001; 22:155-70. [PMID: 11501375 DOI: 10.1007/978-1-4615-4199-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- P Mourrain
- Laboratoire de Biologie Cellulaire INRA 78026 Versailles, France
| | | | | |
Collapse
|
19
|
Down RE, Ford L, Bedford SJ, Gatehouse LN, Newell C, Gatehouse JA, Gatehouse AM. Influence of plant development and environment on transgene expression in potato and consequences for insect resistance. Transgenic Res 2001; 10:223-36. [PMID: 11437279 DOI: 10.1023/a:1016612912999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clonal replicates of different transformed potato plants expressing transgene constructs containing the constitutive Cauliflower Mosaic Virus (CaMV) 35S promoter, and sequences encoding the plant defensive proteins snowdrop lectin (Galanthus nivalis agglutinin; GNA), and bean chitinase (BCH) were propagated in tissue culture. Plants were grown to maturity, at first under controlled environmental conditions, and later in the glasshouse. For a given transgene product, protein accumulation was found to vary between the different lines of clonal replicates (where each line was derived from a single primary transformant plant), as expected. However, variability was also found to exist within each line of clonal replicates, comparable to the variation of mean expression levels observed between the different clonal lines. Levels of GNA, accumulated in different parts of a transgenic potato plant, also showed variation but to a lesser extent than plant-plant variation in expression. With the majority of the clonal lines investigated, accumulation of the transgene product was found to increase as the potato plant developed, with maximum levels found in mature plants. The variation in accumulation of GNA among transgenic plants within a line of clonal replicates was exploited to demonstrate that the enhanced resistance towards larvae of the tomato moth, Lacanobia oleracea L., caused by expression of this protein in potato, was directly correlated with the level of GNA present in the plants, and that conditions under which the plants were grown affect the levels of GNA expression and subsequent levels of insect resistance.
Collapse
Affiliation(s)
- R E Down
- Department of Agricultural and Environmental Science, University of Newcastle, Newcastle upon Tvne, UK.
| | | | | | | | | | | | | |
Collapse
|
20
|
Belbahri L, Chevalier L, Bensaddek L, Gillet F, Fliniaux MA, Boerjan W, Inzé D, Thomas D, Thomasset B. Different expression of anS-adenosylmethionine synthetase gene in transgenic tobacco callus modifies alkaloid biosynthesis. Biotechnol Bioeng 2000. [DOI: 10.1002/(sici)1097-0290(20000705)69:1<11::aid-bit2>3.0.co;2-j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
De Wilde C, Van Houdt H, De Buck S, Angenon G, De Jaeger G, Depicker A. Plants as bioreactors for protein production: avoiding the problem of transgene silencing. PLANT MOLECULAR BIOLOGY 2000; 43:347-359. [PMID: 10999415 DOI: 10.1007/978-94-011-4183-3_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants are particularly attractive as large-scale production systems for proteins intended for therapeutical or industrial applications: they can be grown easily and inexpensively in large quantities that can be harvested and processed with the available agronomic infrastructures. The effective use of plants as bioreactors depends on the possibility of obtaining high protein accumulation levels that are stable during the life cycle of the transgenic plant and in subsequent generations. Silencing of the introduced transgenes has frequently been observed in plants, constituting a major commercial risk and hampering the general economic exploitation of plants as protein factories. Until now, the most efficient strategy to avoid transgene silencing involves careful design of the transgene construct and thorough analysis of transformants at the molecular level. Here, we focus on different aspects of the generation of transgenic plants intended for protein production and on their influence on the stability of heterologous gene expression.
Collapse
Affiliation(s)
- C De Wilde
- Vakgroep Moleculaire Genetica en Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
Angell SM, Baulcombe DC. Technical advance: potato virus X amplicon-mediated silencing of nuclear genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:357-62. [PMID: 10571896 DOI: 10.1046/j.1365-313x.1999.t01-1-00597.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Transgenic expression of a replicating potato virus X (PVX) construct (termed an 'amplicon') reproducibly and consistently activates post-transcriptional gene silencing (PTGS) in every plant. The amplicon-mediated PTGS mechanism can target transiently expressed RNAs that share homology with the amplicon transgene. We show that amplicons can also be used to silence stably integrated transgenes and endogenous genes. Plants expressing both a transgene and an amplicon targeting part of the transgene show low accumulation of the transgene RNA. Similarly, plants expressing an amplicon targeting an endogenous gene show low accumulation of the endogenous RNA and display a mutant phenotype matching a previously characterised mutation. These data demonstrate that PVX amplicons present a novel approach for the consistent activation of PTGS that can be used to specifically target and suppress gene expression in plants.
Collapse
Affiliation(s)
- S M Angell
- The Sainsbury Laboratory, John Innes Centre, Colney, UK
| | | |
Collapse
|
23
|
Haldrup A, Naver H, Scheller HV. The interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem I. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:689-98. [PMID: 10230065 DOI: 10.1046/j.1365-313x.1999.00419.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The PSI-N subunit of photosystem I (PSI) is restricted to higher plants and is the only subunit located entirely in the thylakoid lumen. The role of the PSI-N subunit in the PSI complex was investigated in transgenic Arabidopsis plants which were generated using antisense and co-suppression strategies. Several lines without detectable levels of PSI-N were identified. The plants lacking PSI-N assembled a functional PSI complex and were capable of photoautotrophic growth. When grown on agar media for several weeks the plants became chlorotic and developed significantly more slowly. However, under optimal growth conditions, the plants without PSI-N were visually indistinguishable from the wild-type although several photosynthetic parameters were affected. In the transformants, the second-order rate constant for electron transfer from plastocyanin to P700+, the oxidized reaction centre of PSI, was only 55% of the wild-type value, and steady-state NADP+ reduction was decreased to a similar extent. Quantum yield of oxygen evolution and PSII photochemistry were about 10% lower than in the wild-type at leaf level. Photochemical fluorescence quenching was lowered to a similar extent. Thus, the 40-50% lower activity of PSI at the molecular level was much less significant at the whole-plant level. This was partly explained by a 17% increase in PSI content in the plants lacking PSI-N.
Collapse
Affiliation(s)
- A Haldrup
- Department of Plant Biology, Royal Veterinary and Agricultural University, Frederiksberg, Copenhagen, Denmark.
| | | | | |
Collapse
|
24
|
Morino K, Olsen OA, Shimamoto K. Silencing of an aleurone-specific gene in transgenic rice is caused by a rearranged transgene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:275-285. [PMID: 10097385 DOI: 10.1046/j.1365-313x.1999.00373.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In rice, silencing of the aleurone-specific Ltp2-gus transgene, causing easily detectable staining patterns on the grain surface, offers a convenient tool to study quantitative aspects of gene silencing in monocots. In this paper we analyzed phenotypes, occurrence, inheritance and environmental effects on the silencing. We also report on the cloning of transgenes, determination of their structure and analysis of transcripts from the transgene loci. The results show that various patterns of silencing appeared in the R2 generation at which most of the transgenes became homozygous and that they were inherited for five generations. In addition, silencing independently occurred in three generations and reversion to full expression was also found. Cloning of transgenes from a silenced L3.3 line demonstrated that this line carried two transgene loci: one carried an intact Ltp2-gus gene and the other carried a rearranged transgene in which part of the gus gene was in the antisense orientation. Analysis of gus transcripts indicated that partial antisense RNA derived from the rearranged transgene was present in silenced lines and was polyadenylated but that it was absent in non-silenced lines. RNA analyses suggested that the Ltp2-gus silencing in the aleurone layer was post-transcriptional and that it may be caused by interaction of partial antisense gus transcripts with normal sense transcripts. Possible involvement of antisense transcripts in post-transcriptional silencing is discussed.
Collapse
Affiliation(s)
- K Morino
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | |
Collapse
|
25
|
Vaucheret H, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC, Vernhettes S. Transgene-induced gene silencing in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:651-659. [PMID: 10069073 DOI: 10.1046/j.1365-313x.1998.00337.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- H Vaucheret
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Palauqui JC, Vaucheret H. Transgenes are dispensable for the RNA degradation step of cosuppression. Proc Natl Acad Sci U S A 1998; 95:9675-80. [PMID: 9689140 PMCID: PMC21398 DOI: 10.1073/pnas.95.16.9675] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/1998] [Indexed: 02/08/2023] Open
Abstract
Cosuppression results in the degradation of RNA from host genes and homologous transgenes after transcription in the nucleus. By using grafting experiments, we have shown previously that a systemic signal mediates the propagation of cosuppression of Nia host genes and 35S-Nia2 transgenes from silenced 35S-Nia2 transgenic stocks to nonsilenced 35S-Nia2 transgenic scions but not to wild-type scions. Here, we examined the requirements for triggering and maintenance of cosuppression in various types of scions. Grafting-induced silencing occurred in 35S-Nia2 transgenic lines over-accumulating Nia mRNA whether they are able to spontaneously trigger cosuppression or not and in 35S-Nia2 transgene-free plants over-accumulating host Nia mRNA caused by metabolic derepression. When grafting-induced silenced scions were removed from the silenced stocks and regrafted onto wild-type plants, silencing was not maintained in the 35S-Nia2 transgene-free plants and in the 35S-Nia2 transgenic lines that are not able to trigger cosuppression spontaneously. Conversely, silencing was maintained in the 35S-Nia2 transgenic lines that are able to trigger cosuppression spontaneously. Our results indicate that the presence of a 35S-Nia2 transgene is dispensable for the RNA degradation step of posttranscriptional silencing when host Nia mRNA over-accumulate above the level of wild-type plants. They also suggest that grafting-induced RNA degradation does not result in the production of the systemic silencing signal required for spontaneous triggering and maintenance.
Collapse
Affiliation(s)
- J C Palauqui
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France
| | | |
Collapse
|
27
|
Abstract
In recent years the concept of pathogen-derived resistance (PDR) has been successfully exploited for conferring resistance against viruses in many crop plants. Starting with coat protein-mediated resistance, the range has been broadened to the use of other viral genes as a source of PDR. However, in the course of the efforts, often no clear correlation could be made between expression levels of the transgenes and observed virus resistance levels. Several reports mentioned high resistance levels using genes incapable of producing protein, but in these cases, even plants accumulating high amounts of transgene RNA were not most resistant. To accommodate these unexplained observations, a resistance mechanism involving specific breakdown of viral RNAs has been proposed. Recent progress towards understanding the RNA-mediated resistance mechanism and similarities with the co-suppression phenomenon will be discussed.
Collapse
Affiliation(s)
- M Prins
- Department of Virology, Wageningen Agricultural University, The Netherlands
| | | |
Collapse
|
28
|
Abstract
The repertoire of cis-regulatory elements has increased to a level of sophistication that offers considerable spatial and temporal control over transgene expression. Recent advances made with transgenes have revealed that the control of their expression is also influenced by factors that range from transgene copy number and arrangement to nuclear architecture and chromosomal location. These factors must now be included with the standard considerations of transcriptional and translational enhancers of gene expression during transgene design.
Collapse
Affiliation(s)
- D R Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| |
Collapse
|
29
|
Caplan A, Berger PH, Naderi M. Phenotypic Variation Between Transgenic Plants: What is Making Gene Expression Unpredictable? ACTA ACUST UNITED AC 1998. [DOI: 10.1007/978-94-015-9125-6_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
30
|
Pang SZ, Jan FJ, Gonsalves D. Nontarget DNA sequences reduce the transgene length necessary for RNA-mediated tospovirus resistance in transgenic plants. Proc Natl Acad Sci U S A 1997; 94:8261-6. [PMID: 9223349 PMCID: PMC21591 DOI: 10.1073/pnas.94.15.8261] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
RNA-mediated virus resistance has recently been shown to be the result of post-transcriptional transgene silencing in transgenic plants. This study was undertaken to characterize the effect of transgene length and nontarget DNA sequences on RNA-mediated tospovirus resistance in transgenic plants. Transgenic Nicotiana benthamiana plants were generated to express different regions of the nucleocapsid (N) protein of tomato spotted wilt (TSWV) tospovirus. Transgenic plants expressing half-gene segments (387-453 bp) of the N gene displayed resistance through post-transcriptional gene silencing. Although smaller N gene segments (92-235 bp) were ineffective in conferring resistance when expressed alone in transgenic plants, these segments conferred resistance when fused to the nontarget green fluorescent protein gene DNA. These results demonstrate that (i) a critical length of N transgene (236-387 bp) is required for a high level of transgene expression and consequent gene silencing, and (ii) the post-transcriptional gene silencing mechanism can trans-inactivate the incoming tospovirus genome with homologous transgene segments that are as short as 110 bp. Therefore, the activation of post-transcriptional transgene silencing requires a significantly larger transgene than is required for the trans-inactivation of the incoming viral genome. These results raise the possibility of developing a simple new strategy for engineering multiple virus resistance in transgenic plants.
Collapse
Affiliation(s)
- S Z Pang
- Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | | | | |
Collapse
|
31
|
Angell SM, Baulcombe DC. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J 1997; 16:3675-84. [PMID: 9218808 PMCID: PMC1169991 DOI: 10.1093/emboj/16.12.3675] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tobacco plants were transformed with constructs in which the transgene was a cDNA of replicating potato virus X (PVX) RNA. The constructs, referred to here as amplicons, were the intact genome of PVX and PVX constructs modified to carry the beta-glucuronidase (GUS) reporter gene either as an additional gene or as a replacement for the coat protein gene (PVX/GUS/CP and PVX/GUS respectively). Transformed plants carrying these constructs displayed several phenotypes that we attribute to post-transcriptional gene silencing. These phenotypes include the absence of viral symptoms, low accumulation of transgene-derived RNA, extreme strain-specific resistance against PVX, low and non-uniform GUS expression (in the PVX/GUS and PVX/GUS/CP plants) and suppression of transiently expressed RNA sharing homology with the transgene. Importantly, the amplicon-mediated gene silencing was exhibited in all lines tested. There was no evidence of gene silencing in seven lines expressing a PVX RNA that was unable to replicate. From these data we conclude that the replicating viral RNA is a potent trigger of gene silencing. Moreover, amplicon-mediated gene silencing provides an important new strategy for the consistent activation of gene silencing in transgenic plants.
Collapse
Affiliation(s)
- S M Angell
- The Sainsbury Laboratory, John Innes Centre, Colney, Norwich, UK
| | | |
Collapse
|
32
|
Baulcombe DC. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. PLANT MOLECULAR BIOLOGY 1996; 32:79-88. [PMID: 8980475 DOI: 10.1007/978-94-009-0353-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Post-transcriptional gene silencing in transgenic plants is the manifestation of a mechanism that suppresses RNA accumulation in a sequence-specific manner. The target RNA species may be the products of transgenes, endogenous plant genes or viral RNAs. For an RNA to be a target it is necessary only that it has sequence homology to the sense RNA product of the transgene. There are three current hypotheses to account for the mechanism of post transcriptional gene silencing. These models all require production of an antisense RNA of the RNA targets to account for the specificity of the mechanism. There could be either direct transcription of the antisense RNA from the transgene, antisense RNA produced in response to over expression of the transgene or antisense RNA produced in response to the production of an aberrant sense RNA product of the transgene. To determine which of these models is correct it will be necessary to find out whether transgene methylation, which is frequently associated with the potential of transgenes to confer post-transcriptional gene silencing, is a cause or a consequence of the process.
Collapse
Affiliation(s)
- D C Baulcombe
- Sainsbury Laboratory, John Innes Centre, Norwich, UK
| |
Collapse
|
33
|
Baulcombe DC. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. PLANT MOLECULAR BIOLOGY 1996; 32:79-88. [PMID: 8980475 DOI: 10.1007/bf00039378] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Post-transcriptional gene silencing in transgenic plants is the manifestation of a mechanism that suppresses RNA accumulation in a sequence-specific manner. The target RNA species may be the products of transgenes, endogenous plant genes or viral RNAs. For an RNA to be a target it is necessary only that it has sequence homology to the sense RNA product of the transgene. There are three current hypotheses to account for the mechanism of post transcriptional gene silencing. These models all require production of an antisense RNA of the RNA targets to account for the specificity of the mechanism. There could be either direct transcription of the antisense RNA from the transgene, antisense RNA produced in response to over expression of the transgene or antisense RNA produced in response to the production of an aberrant sense RNA product of the transgene. To determine which of these models is correct it will be necessary to find out whether transgene methylation, which is frequently associated with the potential of transgenes to confer post-transcriptional gene silencing, is a cause or a consequence of the process.
Collapse
Affiliation(s)
- D C Baulcombe
- Sainsbury Laboratory, John Innes Centre, Norwich, UK
| |
Collapse
|
34
|
Mittelsten Scheid O, Jakovleva L, Afsar K, Maluszynska J, Paszkowski J. A change of ploidy can modify epigenetic silencing. Proc Natl Acad Sci U S A 1996; 93:7114-9. [PMID: 8692954 PMCID: PMC38945 DOI: 10.1073/pnas.93.14.7114] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A silent transgene in Arabidopsis thaliana was reactivated in an outcross but not upon selfing of hemizygous plants. This result could only be explained by assuming a genetic difference between the transgene-free gametes of the wild-type and hemizygous transgenic plants, respectively, and led to the discovery of ploidy differences between the parental plants. To investigate whether a change of ploidy by itself can indeed influence gene expression, we performed crosses of diploid or tetraploid plants with a strain containing a single copy of a transgenic resistance gene in an active state. We observed reduced gene expression of the transgene in triploid compared with diploid hybrids. This led to loss of the resistant phenotype at various stages of seedling development in part of the population. The gene inactivation was reversible. Thus, an increased number of chromosomes can result in a new type of epigenetic gene inactivation, creating differences in gene expression patterns. We discuss the possible impact of this finding for genetic diploidization in the light of widespread, naturally occurring polyploidy and polysomaty in plants.
Collapse
|
35
|
Abstract
Homology-dependent gene silencing phenomena in plants have received considerable attention, especially when it was discovered that the presence of homologous sequences not only affected the stability of transgene expression, but that the activity of endogenous genes could be altered after insertion of homologous transgenes into the genome. Homology-mediated inactivation most likely comprises at least two different molecular mechanisms that induce gene silencing at the transcriptional or posttranscriptional level, respectively. In this review we discuss different mechanistic models for plant-specific inactivation mechanisms and their relationship with repeat-specific silencing phenomena in other species.
Collapse
Affiliation(s)
- P. Meyer
- Max-Delbruck-Laboratorium in der MPG, Carl-von-Linne Weg 10, Koln, D-50829 Germany, Centre for Plant Biochemistry & Biotechnology and Department of Genetics, University of Leeds, Leeds LS2 9JT, United Kingdom, Max-Planck-Institut fur Zuchtungsforschung, Carl-von-Line Weg 10, Koln, D-50829 Germany
| | | |
Collapse
|
36
|
DIXON RICHARDA, LAMB CHRISJ, PAIVA NANCYL, MASOUD SAMEER. Improvement of Natural Defense Responses. Ann N Y Acad Sci 1996. [DOI: 10.1111/j.1749-6632.1996.tb32499.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Baulcombe DC, English JJ. Ectopic pairing of homologous DNA and post-transcriptional gene silencing in transgenic plants. Curr Opin Biotechnol 1996. [DOI: 10.1016/s0958-1669(96)80009-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
de Feyter R, Young M, Schroeder K, Dennis ES, Gerlach W. A ribozyme gene and an antisense gene are equally effective in conferring resistance to tobacco mosaic virus on transgenic tobacco. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:329-38. [PMID: 8602148 DOI: 10.1007/bf02174391] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ribozymes of the hammerhead class can be designed to cleave a target RNA in a sequence-specific manner and can potentially be used to specifically modulate gene activity. We have targeted the tobacco mosaic virus (TMV) genome with a ribozyme containing three catalytic hammerhead domains embedded within a 1 kb antisense RNA. The ribozyme was able to cleave TMV RNA at all three target sites in vitro at 25 degrees C. Transgenic tobacco plants were generated which expressed the ribozyme or the corresponding antisense constructs directed at the TMV genome. Six of 38 independent transgenic plant lines expressing the ribozyme and 6 of 39 plant lines expressing the antisense gene showed some level of protection against TMV infection. Homozygous progeny of some lines were highly resistant to TMV; at least 50% of the plants remained asymptomatic even when challenged with high levels of TMV. These plants also displayed resistance to infection with TMV RNA or the related tomato mosaic virus (ToMV). In contrast, hemizygous plants of the same lines displayed only very weak resistance when inoculated with low amounts of TMV and no resistance against high inoculation levels. Resistance in homozygous plants was not overcome by a TMV strain which was altered at the three target sites to abolish ribozyme-mediated cleavage, suggesting that the ribozyme conferred resistance primarily by an antisense mechanism.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Crosses, Genetic
- DNA Primers/chemistry
- Genes, Viral/genetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/virology
- Plants, Toxic
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Nicotiana/genetics
- Nicotiana/virology
- Tobacco Mosaic Virus/genetics
- Tobacco Mosaic Virus/physiology
- Transformation, Genetic
Collapse
Affiliation(s)
- R de Feyter
- CSIRO Division of Plant Industry, Canberra, Australia
| | | | | | | | | |
Collapse
|
39
|
Henskens YM, Veerman EC, Nieuw Amerongen AV. Cystatins in health and disease. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1996; 377:71-86. [PMID: 8868064 DOI: 10.1515/bchm3.1996.377.2.71] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteolytic enzymes have many physiological functions in plants, bacteria, viruses, protozoa and mammals. They play a role in processes such as food digestion, complement activation or blood coagulation. The action of proteolytic enzymes is biologically controlled by proteinase inhibitors and increasing attention is being paid to the physiological significance of these natural inhibitors in pathological processes. The reason for this growing interest is that uncontrolled proteolysis can lead to irreversible damage e.g. in chronic inflammation or tumor metastasis. This review focusses on the possible role of the cystatins, natural and specific inhibitors of the cysteine proteinases, in pathological processes.
Collapse
Affiliation(s)
- Y M Henskens
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Netherlands
| | | | | |
Collapse
|
40
|
Schmülling T, Röhrig H. Gene silencing in transgenic tobacco hybrids: frequency of the event and visualization of somatic inactivation pattern. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:375-90. [PMID: 8552042 DOI: 10.1007/bf00287099] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have investigated the stability of the expression of different T-DNA-borne genes in hybrid tobacco lines. These lines were constructed to rescue rolC-induced male sterility in kanamycin-resistant P35s-rolC transgenic tobacco plants by expression of rolC antisense genes. Using five different tester lines, a total of 158 hybrids was obtained. We observed inactivation of transgene expression in 20% of the F1 progeny and in 35% of the backcrossed F2 progeny, as indicated by the loss of kanamycin resistance. In 3% of all crosses complete loss of antibiotic resistance was noted, while in most affected hybrid progeny only part of the population became kanamycin sensitive. Single genes could be selectively inactivated on T-DNAs harboring several genes. Gene inactivation was not restricted to one of the two T-DNAs examined. Somatic silencing, visualized by a cell-specific 35SGUSINT marker gene, occurred in a random fashion or exhibited an inherited specific pattern. The type of somatic silencing pattern observed indicated developmental control of the process. Two phenotypic classes could be distinguished with respect to frequency and timing of the inactivation process. Rapid gene inactivation, occurring within a few weeks after germination of hybrid seedlings, was characterized by complete methylation of restriction sites in the promoter of the silenced gene, resetting of gene expression during meiosis, heredity of the developmentally controlled program of gene silencing in subsequent generations, and rapid reactivation of gene expression after genetic separation of the different T-DNAs. In contrast, a slow type of gene inactivation was of a more stochastic nature and was recognized only in hybrids of the backcrossed F2 generation. In this case the degree of promoter methylation, which could extend beyond the T-DNA borders, was not correlated with the reduction in steady-state poly(A)+ mRNA levels, the silenced state was transmitted through meiosis and reactivation lasted several generations. The implications of the observations for our understanding of the gene inactivation process are discussed.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Southern
- Cinnamates
- Crosses, Genetic
- DNA, Bacterial/genetics
- Drug Resistance/genetics
- Gene Expression Regulation, Plant
- Genotype
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Histocytochemistry
- Hygromycin B/analogs & derivatives
- Hygromycin B/pharmacology
- Kanamycin/metabolism
- Kanamycin/pharmacology
- Methylation
- Phenotype
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/genetics
- Plants, Toxic
- Promoter Regions, Genetic/genetics
- Nicotiana/drug effects
- Nicotiana/genetics
- Transcription, Genetic/genetics
- Transgenes
Collapse
Affiliation(s)
- T Schmülling
- Universität Tübingen, Lehrstuhl für Allgemeine Genetik, Germany
| | | |
Collapse
|
41
|
Palauqui JC, Vaucheret H. Field trial analysis of nitrate reductase co-suppression: a comparative study of 38 combinations of transgene loci. PLANT MOLECULAR BIOLOGY 1995; 29:149-59. [PMID: 7579160 DOI: 10.1007/bf00019126] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Co-suppression of host genes and 35S transgenes encoding nitrate reductase was previously reported in transgenic tobacco plants (Nicotiana tabacum cv. Paraguay or Burley) using either a full-length cDNA or fragments devoid of the 3' and/or 5' UTR. Co-suppression was previously shown to affect a limited fraction of the progeny of one transgenic tobacco line homozygous for a single transgene locus, and the phenomenon occurred at each generation. In this work, 38 combinations of transgene loci derived from 13 independent transgenic lines homozygous for a single transgene locus were field-tested under two different conditions in an attempt to determine the corresponding frequencies of co-suppression, i.e. the percentage of plants showing co-suppression. Each of the 13 homozygous lines exhibited a different frequency of co-suppression, ranging from 0% to 57%. High frequencies were found to be associated with transgene loc carrying a high number of copy of the transgene, suggesting a transgene dose effect. Combinations carrying 2 non-allelic transgene loci in a hemizygous state exhibited frequencies of co-suppression between those of each of the 2 transgene loci in a homozygous state, while combinations carrying 2 non-allelic transgene loci in a homozygous state exhibited frequencies of co-suppression higher than the sum of those of the 2 transgene loci alone in a homozygous state, clearly confirming a transgene dose effect. Co-suppression frequencies were increased when the plants were grown initially in vitro, suggesting some environmental effect. The roles of transgene copy number, number of transgene loci and environmental factors are discussed in the light of a threshold hypothesis.
Collapse
Affiliation(s)
- J C Palauqui
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France
| | | |
Collapse
|
42
|
Instability of Transgene Expression in Field Grown Tobacco Carrying the csr1-1 Gene for Sulfonylurea Herbicide Resistance. Nat Biotechnol 1995. [DOI: 10.1038/nbt0995-994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Vaucheret H, Palauqui JC, Elmayan T, Moffatt B. Molecular and genetic analysis of nitrite reductase co-suppression in transgenic tobacco plants. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:311-7. [PMID: 7565593 DOI: 10.1007/bf02191598] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Silencing of Nia host genes and transgenes (encoding nitrate reductase) was previously achieved by introducing into tobacco plants the tobacco Nia2 cDNA cloned downstream of the cauliflower mosaic virus (CaMV) 35S promoter. To check whether Nii host genes and transgenes (encoding nitrite reductase, the second enzyme of the nitrate assimilation pathway) were also susceptible to silencing, a transgene consisting of the tobacco Nii1 gene with two copies of the enhancer of the 35S promoter cloned 1 kb upstream of the Nii promoter region was introduced into tobacco plants. Among nine independent transformants analysed, two showed silencing of Nii host genes and transgenes in some descendants after selfing, but never after back-crossing with wild-type plants, suggesting that silencing depends on the number of transgene loci and/or on certain allelic or ectopic combinations of transgene loci. In one transformant carrying a single transgene locus in a homozygous state, silencing was triggered in all progeny plants of each generation, 20 to 50 days after germination. Field trial analysis confirmed that silencing was not triggered when the transgene locus of this latter line was present in a hemizygous state. In addition, it was revealed that silencing can be triggered, albeit at low frequency and later during the development, when this transgene locus is brought into the presence of a non-allelic transgene locus by crossing, suggesting that a homozygous state is not absolutely required.
Collapse
MESH Headings
- Cloning, Molecular
- Crosses, Genetic
- DNA/genetics
- Enhancer Elements, Genetic
- Gene Expression Regulation, Plant
- Genes, Plant
- Germination
- Homozygote
- Nitrite Reductases/genetics
- Plants, Genetically Modified
- Plants, Toxic
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- Suppression, Genetic/genetics
- Time Factors
- Nicotiana/enzymology
- Nicotiana/genetics
- Nicotiana/physiology
- Transformation, Genetic
Collapse
Affiliation(s)
- H Vaucheret
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France
| | | | | | | |
Collapse
|
44
|
Lin W, Anuratha C, Datta K, Potrykus I, Muthukrishnan S, Datta SK. Genetic Engineering of Rice for Resistance to Sheath Blight. Nat Biotechnol 1995. [DOI: 10.1038/nbt0795-686] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Liu Z, Ma J, Sanford JC. The location of untranscribed DNA sequences within ras genes essential for eliciting plant growth suppression. PLANT MOLECULAR BIOLOGY 1995; 28:195-201. [PMID: 7787184 DOI: 10.1007/bf00042050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Three heterologous ras DNA-coding sequences and their deletion derivatives were introduced into plant cells to investigate the role of the ras-coding sequences, especially conserved regions, in eliciting growth inhibition. All three ras-coding sequences caused a similar inhibition of plant cell growth, and it was the conserved coding regions which were responsible for this inhibitory effect. The 493 bp conserved region within the v-Ha-ras-coding sequence was studied further, and was shown to be responsible for the inhibitory effect. This region is conserved (over 44%) among the three ras genes studied and encodes a catalytic region of the Ras protein. Small deletions at either the 5' or 3' end of this 493 bp sequence could abolish or dramatically reduce the inhibitory effect. A 36 bp region at the 5' end of the 493 bp region was found to be highly conserved between v-Ha-ras and eight different plant ras or ras-related genes based upon analysis of published sequences. Small deletions affecting this highly conserved 36 bp region completely abolished the inhibitory effect, while deletion of a similar number of base pairs in adjacent regions did not. These results indicate that plant growth inhibition by ras DNA requires small regions at both ends of the 493 bp conserved region.
Collapse
Affiliation(s)
- Z Liu
- Department of Horticultural Sciences, Cornell University, Geneva, NY 14456, USA
| | | | | |
Collapse
|
46
|
Choi GH, Chen B, Nuss DL. Virus-mediated or transgenic suppression of a G-protein alpha subunit and attenuation of fungal virulence. Proc Natl Acad Sci U S A 1995; 92:305-9. [PMID: 7816838 PMCID: PMC42867 DOI: 10.1073/pnas.92.1.305] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Strains of the chestnut blight fungus Cryphonectria parasitica harboring RNA viruses of the genus Hypovirus exhibit significantly reduced levels of virulence (called hypovirulence). The accumulation of a heterotrimeric GTP-binding protein (G protein) alpha subunit of the Gi class was found to be reduced in hypovirus-containing C. parasitica strains. Transgenic cosuppression, a phenomenon frequently observed in transgenic plants, reduced the accumulation of this alpha subunit in virus-free fungal strains. Significantly, the resulting transgenic fungal strains were also hypovirulent. These results indicate a crucial role for G-protein-linked signal transduction in fungal pathogenesis and suggest a molecular basis for virus-mediated attenuation of fungal virulence.
Collapse
Affiliation(s)
- G H Choi
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110
| | | | | |
Collapse
|
47
|
de Carvalho Niebel F, Frendo P, Inzé D, Cornelissen M, Van Montagu M. Co-suppression of beta-1,3-glucanase genes in Nicotiana tabacum. Curr Top Microbiol Immunol 1995; 197:91-103. [PMID: 7493499 DOI: 10.1007/978-3-642-79145-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
MESH Headings
- Crosses, Genetic
- Enzyme Induction
- Epistasis, Genetic
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Synthetic
- Glucan 1,3-beta-Glucosidase
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Plants, Genetically Modified/genetics
- Plants, Toxic
- RNA Processing, Post-Transcriptional
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Plant/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Sequence Homology, Nucleic Acid
- Nicotiana/enzymology
- Nicotiana/genetics
- beta-Glucosidase/biosynthesis
- beta-Glucosidase/genetics
Collapse
|
48
|
Hamilton AJ, Fray RG, Grierson D. Sense and antisense inactivation of fruit ripening genes in tomato. Curr Top Microbiol Immunol 1995; 197:77-89. [PMID: 7493498 DOI: 10.1007/978-3-642-79145-1_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A J Hamilton
- BBSRC Research Group in Plant Gene Regulation, University of Nottingham, Loughborough, UK
| | | | | |
Collapse
|
49
|
Cooley J, Ford T, Christou P. Molecular and genetic characterization of elite transgenic rice plants produced by electric-discharge particle acceleration. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 90:97-104. [PMID: 24173789 DOI: 10.1007/bf00221001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/1994] [Accepted: 05/30/1994] [Indexed: 06/02/2023]
Abstract
The recovery of transgenic rice plants expressing a number of exogenous genes was reported previously. Using immature embryo explants as the target tissue, plasmids containing both selectable and screenable marker genes were introduced into elite rice varieties via electric-discharge particle acceleration. Co-integration, copy number, expression, and inheritance of these genes were analyzed. A 100% co-integration frequency was confirmed by Southern-blot analyses of R0 plants. The majority of transgenic plants contained between one and ten copies of exogenous DNA and molecular and genetic analyses of progeny indicated that all copies in almost all R0 plants were inherited as a single dominant hemizygous locus. Co-expression of unselected genes ranged from 30-66% for gus/hmr constructs, depending on the promotor used, and up to 90% for bar/hmr constructs. The integrative structures of two unlinked transgenic loci of a rare R0 plant were analyzed in detail by Southern-blot analysis of its progeny.
Collapse
Affiliation(s)
- J Cooley
- Agracetus Inc., 8520 University Green, 53562, Middleton, WI, USA
| | | | | |
Collapse
|
50
|
Meins F, Kunz C. Gene silencing in transgenic plants: a heuristic autoregulation model. Curr Top Microbiol Immunol 1995; 197:105-20. [PMID: 7493487 DOI: 10.1007/978-3-642-79145-1_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- F Meins
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|