1
|
Hu L, Gui W, Chen B, Chen L. Transcriptome profiling of maternal stress-induced wing dimorphism in pea aphids. Ecol Evol 2019; 9:11848-11862. [PMID: 31695892 PMCID: PMC6822051 DOI: 10.1002/ece3.5692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/29/2019] [Accepted: 08/27/2019] [Indexed: 11/30/2022] Open
Abstract
Wing dimorphism, that is, wingless and winged forms, can be induced by maternal stress signals and is an adaptive response of aphids to environmental changes. Here, we investigated the ecological and molecular effects of three kinds of stress, namely crowding, predation, and aphid alarm pheromone, on wing dimorphism. These three stressors induced high proportion of up to 60% of winged morphs in offspring. Transcriptome analysis of stress-treated female aphids revealed different changes in maternal gene expression induced by the three stressors. Crowding elicited widespread changes in the expression of genes involved in nutrient accumulation and energy mobilization. Distinct from crowding, predation caused dramatic expression changes in cuticle protein (CP) genes. Twenty-three CP genes that belong to CP RR2 subfamily and are highly expressed in legs and embryos were greatly repressed by the presence of ladybird. By contrast, application of alarm pheromone, E-β-farnesene, caused slight changes in gene expression. The three factors shared a responsive gene, cuticle protein 43. This study reveals the adaptive response of aphids to environmental stresses and provides a rich resource on genome-wide expression genes for exploring molecular mechanisms of ecological adaptation in aphids. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.55b2b15.
Collapse
Affiliation(s)
- Lin Hu
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of EducationNanning Normal UniversityNanningChina
| | - Wanying Gui
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of ScienceBeijingChina
| | - Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life ScienceHebei UniversityBaodingChina
| | - Li Chen
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Ebner JN, Ritz D, von Fumetti S. Comparative proteomics of stenotopic caddisfly Crunoecia irrorata identifies acclimation strategies to warming. Mol Ecol 2019; 28:4453-4469. [PMID: 31478292 PMCID: PMC6856850 DOI: 10.1111/mec.15225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022]
Abstract
Species' ecological preferences are often deduced from habitat characteristics thought to represent more or less optimal conditions for physiological functioning. Evolution has led to stenotopic and eurytopic species, the former having decreased niche breadths and lower tolerances to environmental variability. Species inhabiting freshwater springs are often described as being stenotopic specialists, adapted to the stable thermal conditions found in these habitats. Whether due to past local adaptation these species have evolved or have lost intra-generational adaptive mechanisms to cope with increasing thermal variability has, to our knowledge, never been investigated. By studying how the proteome of a stenotopic species changes as a result of increasing temperatures, we investigate if the absence or attenuation of molecular mechanisms is indicative of local adaptation to freshwater springs. An understanding of compensatory mechanisms is especially relevant as spring specialists will experience thermal conditions beyond their physiological limits due to climate change. In this study, the stenotopic species Crunoecia irrorata (Trichoptera: Lepidostomatidae, Curtis 1834) was acclimated to 10, 15 and 20°C for 168 hr. We constructed a homology-based database and via liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based shotgun proteomics identified 1,358 proteins. Differentially abundant proteins and protein norms of reaction revealed candidate proteins and molecular mechanisms facilitating compensatory responses such as trehalose metabolism, tracheal system alteration and heat-shock protein regulation. A species-specific understanding of compensatory physiologies challenges the characterization of species as having narrow tolerances to environmental variability if that characterization is based on occurrences and habitat characteristics alone.
Collapse
Affiliation(s)
- Joshua N. Ebner
- Geoecology Research GroupDepartment of Environmental SciencesUniversity of BaselBaselSwitzerland
| | - Danilo Ritz
- Proteomics Core FacilityBiozentrumUniversity of BaselBaselSwitzerland
| | - Stefanie von Fumetti
- Geoecology Research GroupDepartment of Environmental SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
3
|
Suzuki TK, Koshikawa S, Kobayashi I, Uchino K, Sezutsu H. Modular cis-regulatory logic of yellow gene expression in silkmoth larvae. INSECT MOLECULAR BIOLOGY 2019; 28:568-577. [PMID: 30737958 PMCID: PMC6849593 DOI: 10.1111/imb.12574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colour patterns in butterflies and moths are crucial traits for adaptation. Previous investigations have highlighted genes responsible for pigmentation (ie yellow and ebony). However, the mechanisms by which these genes are regulated in lepidopteran insects remain poorly understood. To elucidate this, molecular studies involving dipterans have largely analysed the cis-regulatory regions of pigmentation genes and have revealed cis-regulatory modularity. Here, we used well-developed transgenic techniques in Bombyx mori and demonstrated that cis-regulatory modularity controls tissue-specific expression of the yellow gene. We first identified which body parts are regulated by the yellow gene via black pigmentation. We then isolated three discrete regulatory elements driving tissue-specific gene expression in three regions of B. mori larvae. Finally, we found that there is no apparent sequence conservation of cis-regulatory regions between B. mori and Drosophila melanogaster, and no expression driven by the regulatory regions of one species when introduced into the other species. Therefore, the trans-regulatory landscapes of the yellow gene differ significantly between the two taxa. The results of this study confirm that lepidopteran species use cis-regulatory modules to control gene expression related to pigmentation, and represent a powerful cadre of transgenic tools for studying evolutionary developmental mechanisms.
Collapse
Affiliation(s)
- T. K. Suzuki
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - S. Koshikawa
- Faculty of Environmental Earth ScienceHokkaido UniversitySapporo060‐0810Japan
| | - I. Kobayashi
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - K. Uchino
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - H. Sezutsu
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| |
Collapse
|
4
|
Pérez MM, Bochicchio PA, Rabossi A, Quesada-Allué LA. Extracellular activity of NBAD-synthase is responsible for colouration of brown spots in Ceratitis capitata wings. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:224-232. [PMID: 29656100 DOI: 10.1016/j.jinsphys.2018.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
After the emergence of the Ceratitis capitata imago, the pale and folded wings are expanded and sclerotized to acquire the definitive form and to stabilize the cuticle. The wings of this fly show a specific pattern of brownish and black spots. Black spots are pigmented by melanin, whereas there was scarce information about the development of the brownish spots. N-beta-alanydopamine (NBAD) is the main tanning precursor in C. capitata body cuticle, and we hypothesized that it may be responsible for the colouration of the brownish spots. We determined the topology and timing of NBAD synthesis and deposition to attain the species-specific colouration pattern. We demonstrated that during the first hours the colour of the brownish spots was principally determined by the tanning of the hairs. Haemolymph circulation through the veins is required to tan the wings. We confirmed that soon after wing spreading, most of the wing epidermal cells disappeared. Thus, the tanning of the brown spots was accomplished when the wing lamina was devoid of cells. NBAD synthase (NBAD-S; Ebony protein in D. melanogaster) activity in wings was detected in pharate adults and lasted several days after the emergence, even after the end of the tanning process. This observation is in contrast to epidermal NBAD-S activity in the body, where it was nearly undetectable 48 h post emergence. Our results indicate that NBAD-S was exported and deposited into the extracellular matrix of the brown spot areas before cell death and that tanning occurs through gradual export of NBAD precursors (dopamine and b-alanine) from veins.
Collapse
Affiliation(s)
- Martín M Pérez
- IIBBA-CONICET, Av Patricias Argentinas 435 (1405), Buenos Aires, Argentina; Fundación Instituto Leloir, Av. Patricias Argentinas 435 (1405), Buenos Aires, Argentina
| | - Pablo A Bochicchio
- IIBBA-CONICET, Av Patricias Argentinas 435 (1405), Buenos Aires, Argentina; Fundación Instituto Leloir, Av. Patricias Argentinas 435 (1405), Buenos Aires, Argentina
| | - Alejandro Rabossi
- IIBBA-CONICET, Av Patricias Argentinas 435 (1405), Buenos Aires, Argentina; Fundación Instituto Leloir, Av. Patricias Argentinas 435 (1405), Buenos Aires, Argentina.
| | - Luis A Quesada-Allué
- IIBBA-CONICET, Av Patricias Argentinas 435 (1405), Buenos Aires, Argentina; Fundación Instituto Leloir, Av. Patricias Argentinas 435 (1405), Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Patricias Argentinas 435 (1405), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Hinaux H, Bachem K, Battistara M, Rossi M, Xin Y, Jaenichen R, Le Poul Y, Arnoult L, Kobler JM, Grunwald Kadow IC, Rodermund L, Prud'homme B, Gompel N. Revisiting the developmental and cellular role of the pigmentation gene yellow in Drosophila using a tagged allele. Dev Biol 2018; 438:111-123. [PMID: 29634916 DOI: 10.1016/j.ydbio.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
Pigmentation is a diverse and ecologically relevant trait in insects. Pigment formation has been studied extensively at the genetic and biochemical levels. The temporality of pigment formation during animal development, however, is more elusive. Here, we examine this temporality, focusing on yellow, a gene involved in the formation of black melanin. We generated a protein-tagged yellow allele in the fruit fly Drosophila melanogaster, which allowed us to precisely describe Yellow expression pattern at the tissue and cellular levels throughout development. We found Yellow expressed in the pupal epidermis in patterns prefiguring black pigmentation. We also found Yellow expressed in a few central neurons from the second larval instar to adult stages, including a subset of neurons adjacent to the clock neurons marked by the gene Pdf. We then specifically examined the dynamics of Yellow expression domain and subcellular localization in relationship to pigment formation. In particular, we showed how a late step of re-internalization is regulated by the large low-density lipoprotein receptor-related protein Megalin. Finally we suggest a new function for Yellow in the establishment of sharp pigmentation pattern boundaries, whereby this protein may assume a structural role, anchoring pigment deposits or pigmentation enzymes in the cuticle.
Collapse
Affiliation(s)
- Hélène Hinaux
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Katharina Bachem
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Margherita Battistara
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Matteo Rossi
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Yaqun Xin
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Rita Jaenichen
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Yann Le Poul
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Laurent Arnoult
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Johanna M Kobler
- Technical University of Munich, School of Life Sciences, ZIEL - Institute for Food And Health, Liesel-Beckmann-Str. 4, 85354 Freising, Germany; Chemosensory Coding, Max-Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| | - Ilona C Grunwald Kadow
- Technical University of Munich, School of Life Sciences, ZIEL - Institute for Food And Health, Liesel-Beckmann-Str. 4, 85354 Freising, Germany
| | - Lisa Rodermund
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Benjamin Prud'homme
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Nicolas Gompel
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
6
|
Two genomic regions together cause dark abdominal pigmentation in Drosophila tenebrosa. Heredity (Edinb) 2013; 112:454-62. [PMID: 24326291 DOI: 10.1038/hdy.2013.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 11/08/2022] Open
Abstract
Pigmentation is a rapidly evolving trait that is under both natural and sexual selection in many organisms. In the quinaria group of Drosophila, nearly all of the 30 species have an abdomen that is light in color with distinct markings; D. tenebrosa is the exception in that it has a completely melanic abdomen with no visible markings. In this study, we use a combination of quantitative genetic and candidate gene approaches to investigate the genetic basis of abdominal pigmentation in D. tenebrosa. We find that abdominal pigmentation is invariant across wild-caught lines of D. tenebrosa and is not sexually dimorphic. Quantitative genetic mapping utilizing crosses between D. tenebrosa and the light-colored D. suboccidentalis indicates that two genomic regions together underlie abdominal pigmentation, including the X-chromosome and an autosome (Muller Element C/E). Further support for their central importance in pigmentation is that experimental introgression of one phenotype into the other species, in either direction, results in introgression of these two genomic regions. Finally, the expression of the X-linked gene yellow in the pupae exactly foreshadows the adult melanization pattern in the abdomen of both species, suggesting that changes in the regulation of yellow are important for the phenotypic divergence of D. tenebrosa from the rest of the quinaria group. These results contribute to a body of work that demonstrates how changes in expression of highly conserved genes can cause substantial phenotypic differences even between closely related species.
Collapse
|
7
|
Riedel F, Vorkel D, Eaton S. Megalin-dependent yellow endocytosis restricts melanization in the Drosophila cuticle. Development 2011; 138:149-58. [PMID: 21138977 DOI: 10.1242/dev.056309] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cuticular exoskeleton of arthropods is a composite material comprising well-separated layers that differ in function and molecular constituents. Epidermal cells secrete these layers sequentially, synthesizing components of distal cuticle layers before proximal ones. Could the order of synthesis and secretion be sufficient to account for the precision with which cuticle components localize to specific layers? We addressed this question by studying the spatial restriction of melanization in the Drosophila wing. Melanin formation is confined to a narrow layer within the distal procuticle. Surprisingly, this tight localization depends on the multi-ligand endocytic receptor Megalin (Mgl). Mgl acts, in part, by promoting endocytic clearance of Yellow. Yellow is required for black melanin formation, and its synthesis begins as cuticle is secreted. Near the end of cuticle secretion, its levels drop precipitously by a mechanism that depends on Mgl and Rab5-dependent endocytosis. In the absence of Mgl, Yellow protein persists at higher levels and melanin granules form ectopically in more proximal layers of the procuticle. We propose that the tight localization of the melanin synthesis machinery to the distal procuticle depends not only on the timing of its synthesis and secretion, but also on the rapid clearance of these components before synthesis of subsequent cuticle layers.
Collapse
Affiliation(s)
- Falko Riedel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse-108, Dresden 01307, Germany
| | | | | |
Collapse
|
8
|
Andrew DJ, Baker BS. Expression of the Drosophila secreted cuticle protein 73 (dsc73) requires Shavenbaby. Dev Dyn 2008; 237:1198-206. [PMID: 18351665 DOI: 10.1002/dvdy.21512] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low stringency genomic library screens with genomic fragments from the sex determination gene doublesex identified the Drosophila secreted cuticle protein 73 (dsc73) gene, which encodes an 852-residue protein with an N-terminal signal sequence. In embryos, dsc73 RNA and protein are expressed to high levels in the epidermal cells that secrete the larval cuticle as well as in other cuticle-secreting tissues such as the trachea and salivary duct. Embryonic expression of dsc73 requires Shavenbaby, a transcription factor regulating cuticle formation. Double-labeling experiments with alphaCrb and alphaSAS reveal that, as with chitin and other known cuticle proteins, Dsc73 is secreted apically. Zygotic loss of dsc73 results in larval lethality but loss does not result in overt patterning defects or overt morphological defects in the embryonic tissues in which it is expressed. Thus, dsc73 encodes a novel secreted protein, and it is conserved within the Drosophila group. dsc73 may serve as a useful embryonic marker for cuticular patterning.
Collapse
Affiliation(s)
- Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
9
|
Moussian B, Veerkamp J, Müller U, Schwarz H. Assembly of the Drosophila larval exoskeleton requires controlled secretion and shaping of the apical plasma membrane. Matrix Biol 2007; 26:337-47. [PMID: 17360167 DOI: 10.1016/j.matbio.2007.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 12/19/2006] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
The apical plasma membrane of epithelial cells plays a central role in producing and shaping the apical extracellular matrix (aECM) that eventually adopts a stereotypic architecture required for the physical and physiological needs of the epithelium. To assess the implication of the apical plasma membrane on aECM differentiation, we have studied the function of the apical plasma membrane t-SNARE Syntaxin 1A in the embryo of the fruit fly Drosophila melanogaster during differentiation of the stratified exoskeleton, the cuticle, which is composed of proteins and the polysaccharide chitin. The cuticle layers of syntaxin1A deficient larvae are rudimentary. Consistently, Syntaxin 1A is required for the secretion of O-glycosylated proteins and components involved in pigmentation and protein cross-linking. By contrast, localization of chitin synthesis and organising proteins to the apical plasma membrane or to the extracellular space does not depend on Syntaxin 1A activity. However, chitin microfibrils have a random orientation instead of being arranged in parallel. This correlates with the lack of corrugations at the apical plasma membrane of epidermal cells, the apical undulae that have been proposed to be crucial for chitin microfibril orientation. Hence, Syntaxin 1A contributes to cuticle differentiation by controlling correct apical plasma membrane topology as well as mediating secretion of a subset of extracellular proteins required for layer organisation. Our data also indicate that yet another unidentified t-SNARE is needed in parallel to Syntaxin 1A to deliver extracellular material for complete cuticle assembly. Evidently, coordination of apical membrane modelling and two secretion routes are essential for stereotypic aECM organisation.
Collapse
Affiliation(s)
- Bernard Moussian
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Genetik Spemannstr. 35, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
10
|
Drapeau MD, Albert S, Kucharski R, Prusko C, Maleszka R. Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genes Dev 2006; 16:1385-94. [PMID: 17065613 PMCID: PMC1626640 DOI: 10.1101/gr.5012006] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Accepted: 06/07/2006] [Indexed: 11/25/2022]
Abstract
The genomic architecture underlying the evolution of insect social behavior is largely a mystery. Eusociality, defined by overlapping generations, parental brood care, and reproductive division of labor, has most commonly evolved in the Hymenopteran insects, including the honey bee Apis mellifera. In this species, the Major Royal Jelly Protein (MRJP) family is required for all major aspects of eusocial behavior. Here, using data obtained from the A. mellifera genome sequencing project, we demonstrate that the MRJP family is encoded by nine genes arranged in an approximately 60-kb tandem array. Furthermore, the MRJP protein family appears to have evolved from a single progenitor gene that encodes a member of the ancient Yellow protein family. Five genes encoding Yellow-family proteins flank the genomic region containing the genes encoding MRJPs. We describe the molecular evolution of these protein families. We then characterize developmental-stage-specific, sex-specific, and caste-specific expression patterns of the mrjp and yellow genes in the honey bee. We review empirical evidence concerning the functions of Yellow proteins in fruit flies and social ants, in order to shed light on the roles of both Yellow and MRJP proteins in A. mellifera. In total, the available evidence suggests that Yellows and MRJPs are multifunctional proteins with diverse, context-dependent physiological and developmental roles. However, many members of the Yellow/MRJP family act as facilitators of reproductive maturation. Finally, it appears that MRJP protein subfamily evolution from the Yellow protein family may have coincided with the evolution of honey bee eusociality.
Collapse
Affiliation(s)
- Mark David Drapeau
- Department of Biology, New York University, New York, New York 10003, USA
| | - Stefan Albert
- Institut für Medizinische Strahlenkunde und Zellforschung, Universität Würzburg, 97078 Würzburg, Germany
| | - Robert Kucharski
- Visual Sciences and Centre for the Molecular Genetics of Development, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200, Australia
| | - Carsten Prusko
- Institut für Medizinische Strahlenkunde und Zellforschung, Universität Würzburg, 97078 Würzburg, Germany
| | - Ryszard Maleszka
- Visual Sciences and Centre for the Molecular Genetics of Development, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
11
|
Drapeau MD, Cyran SA, Viering MM, Geyer PK, Long AD. A cis-regulatory sequence within the yellow locus of Drosophila melanogaster required for normal male mating success. Genetics 2005; 172:1009-30. [PMID: 16272418 PMCID: PMC1456202 DOI: 10.1534/genetics.105.045666] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster males perform a courtship ritual consisting of a series of dependent fixed-action patterns. The yellow (y) gene is required for normal male courtship behavior and subsequent mating success. To better characterize the requirement for y in the manifestation of innate male sexual behavior, we measured the male mating success (MMS) of 12 hypomorphic y mutants and matched-outbred-background controls using a y+ rescue element on a freely segregating minichromosome. We found that 4 hypomorphs significantly reduced MMS to varying degrees. Reduced MMS was largely independent of adult pigmentation patterns. These mutations defined a 300-bp regulatory region upstream of the transcription start, the mating-success regulatory sequence (MRS), whose function is required for normal MMS. Visualization of gene action via GFP and a Yellow antibody suggests that the MRS directs y transcription in a small number of cells in the third instar CNS, the developmental stage previously implicated in the role of y with regard to male courtship behavior. The presence of Yellow protein in these cells positively correlates with MMS in a subset of mutants. The MRS contains a regulatory sequence controlling larval pigmentation and a 35-bp sequence that is highly conserved within the genus Drosophila and is predicted to bind known transcription factors.
Collapse
Affiliation(s)
- Mark David Drapeau
- Department of Ecology and Evolutionary Biology, University of California, Irvine 92697, USA.
| | | | | | | | | |
Collapse
|
12
|
Moussian B, Schwarz H, Bartoszewski S, Nüsslein-Volhard C. Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster. J Morphol 2005; 264:117-30. [PMID: 15747378 DOI: 10.1002/jmor.10324] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exoskeletons stabilize cell, tissue, and body morphology in many living organisms including fungi, plants, and arthropods. In insects, the exoskeleton, the cuticle, is produced by epidermal cells as a protein extracellular matrix containing lipids and the polysaccharide chitin, and its formation requires coordinated synthesis, distribution, and modification of these components. Eventually, the stepwise secretion and sorting of the cuticle material results in a layered structure comprising the envelope, the proteinaceous epicuticle, and the chitinous procuticle. To study the role of chitin during cuticle development, we analyzed the consequences of chitin absence in the embryo of Drosophila melanogaster caused by mutations in the Chitin Synthase-1 (CS-1) gene, called krotzkopf verkehrt (kkv). Our histological data confirm that chitin is essential for procuticle integrity and further demonstrate that an intact procuticle is important to assemble and to stabilize the chitin-less epicuticle. Moreover, the phenotype of CS-1/kkv mutant embryos indicates that chitin is required to attach the cuticle to the epidermal cells, thereby maintaining epidermal morphology. Finally, sclerotization and pigmentation, which are the last steps in cuticle differentiation, are impaired in tissues lacking CS-1/kkv function, suggesting that proper cuticle structure is crucial for the activity of the underlying enzymes.
Collapse
Affiliation(s)
- Bernard Moussian
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Genetik, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
13
|
Kostyuchenko MV, Georgiev PG, Savitskaya EE. The promoter region of the yellow gene of Drosophila melanogaster contains excess regulatory elements. DOKL BIOCHEM BIOPHYS 2005; 399:374-5. [PMID: 15714950 DOI: 10.1007/s10628-005-0012-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- M V Kostyuchenko
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 117334, Russia
| | | | | |
Collapse
|
14
|
Wilder JA, Dyreson EG, O'Neill RJ, Spangler ML, Gupta R, Wilder AS, Hollocher H. Contrasting modes of natural selection acting on pigmentation genes in the Drosophila dunni subgroup. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 302:469-82. [PMID: 15384167 DOI: 10.1002/jez.b.21012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Genes that encode for divergent adaptive traits may have genealogies that contrast with those from loci that are not functionally involved in differentiation. Here, we examine DNA sequence variation among the species of the eastern Caribbean Drosophila dunni subgroup at two loci, yellow and dopa decaboxylase (Ddc), which both play integral roles in pigmentation patterning of adult Drosophila. Phylogenetic analyses of these loci produce gene genealogies with topologies that mirror those described for other nuclear genes: the six morphologically distinct species within the subgroup are divided into only three lineages, with one lineage containing four species that share extensive ancestral polymorphism. At the Ddc locus these major lineages are delineated only by silent site variation. We observe a significantly higher rate of synonymous site divergence than non-synonymous divergence, consistent with strong purifying selection acting on the locus. In contrast, the yellow locus exhibits patterns of amino acid divergence and nucleotide diversity that are consistent with recent diversifying selection acting in two different lineages. This selection appears to be targeting amino acid variants in the signal sequence of the Yellow protein, a region which is tightly constrained among members of the larger D. cardini radiation. This result highlights not only the potential importance of yellow in the evolution of divergent pigmentation patterns among members of the D. dunni subgroup, but also hints that variation in signal peptide sequences may play a role in phenotypic diversification.
Collapse
Affiliation(s)
- J A Wilder
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Drapeau MD. A novel hypothesis on the biochemical role of the Drosophila Yellow protein. Biochem Biophys Res Commun 2004; 311:1-3. [PMID: 14575686 DOI: 10.1016/j.bbrc.2003.09.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In Drosophila melanogaster, the protein product of the yellow gene is necessary for normal pigmentation and male sexual behavior. Although one of the best characterized loci from a genetic standpoint, the function of the Yellow protein in the development of either phenotype is unknown. Here I propose that Yellow acts as a growth factor- or hormone-like molecule in the development of pigmentation and sexual behavior, and discuss the consistency of this theory with experimental observations in flies and humans.
Collapse
Affiliation(s)
- Mark David Drapeau
- Department of Ecology and Evolutionary Biology, University of California, Irvine 92697, USA.
| |
Collapse
|
16
|
Drapeau MD, Radovic A, Wittkopp PJ, Long AD. A gene necessary for normal male courtship, yellow, acts downstream of fruitless in the Drosophila melanogaster larval brain. JOURNAL OF NEUROBIOLOGY 2003; 55:53-72. [PMID: 12605459 DOI: 10.1002/neu.10196] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The fruitless (fru) gene is a member of the Drosophila melanogaster somatic sex determination genetic pathway. Although it has been hypothesized that the primary function of fru is to regulate a genetic hierarchy specifying development of adult male courtship behavior, genes acting downstream of fru have not yet been identified. Here we demonstrate that the yellow (y) gene is genetically downstream of fru in the 3(rd)-instar larval brain. Yellow protein is present at elevated levels in neuroblasts, which also show expression of male-specific FRU proteins, compared to control neuroblasts without FRU. A location for y downstream of fru in a genetic pathway was experimentally demonstrated by analysis of fru mutants lacking transcription of zinc-finger DNA binding domains, and of animals with temporal, spatial, or sexual mis-expression of male-specific FRU. A subset of fru and y mutants is known to reduce levels of a specific behavioral component of the male courtship ritual, wing extension, and FRU and Yellow were detected in the general region of the brain whose maleness is necessary for development of that behavior. We therefore hypothesized that ectopic expression of Yellow in the 3(rd)-instar brain, in a y null background, would rescue low levels of wing extension and male competitive mating success, and this was found to be the case. Overall, these data suggest that y is a downstream member of the fru branch of the D. melanogaster sex determination hierarchy, where it plays a currently unknown role in the development of adult male wing extension during courtship.
Collapse
Affiliation(s)
- Mark David Drapeau
- Department of Ecology and Evolutionary Biology, University of California - Irvine, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|
17
|
Bíliková K, Hanes J, Nordhoff E, Saenger W, Klaudiny J, Simúth J. Apisimin, a new serine-valine-rich peptide from honeybee (Apis mellifera L.) royal jelly: purification and molecular characterization. FEBS Lett 2002; 528:125-9. [PMID: 12297291 DOI: 10.1016/s0014-5793(02)03272-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A peptide named apisimin was found in honeybee (Apis mellifera L.) royal jelly (RJ). N-terminal sequencing showed that this peptide corresponded to the sequence of a cDNA clone isolated from an expression cDNA library prepared from heads of nurse honeybees. No homology was found between the protein sequence of apisimin with a molecular mass of 5540.4 Da and sequences deposited in the Swiss-Prot database. The 54 amino acids of apisimin do not include Cys, Met, Pro, Arg, His, Tyr, and Trp residues. The peptide shows a well-defined secondary structure as observed by CD spectroscopy, and has the tendency to form oligomers. Isoelectrofocusing showed apisimin to be an acidic peptide.
Collapse
Affiliation(s)
- K Bíliková
- Laboratory of Genetic Engineering, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84238 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
BACKGROUND Changes in developmental gene expression are central to phenotypic evolution, but the genetic mechanisms underlying these changes are not well understood. Interspecific differences in gene expression can arise from evolutionary changes in cis-regulatory DNA and/or in the expression of trans-acting regulatory proteins, but few case studies have distinguished between these mechanisms. Here, we compare the regulation of the yellow gene, which is required for melanization, among distantly related Drosophila species with different pigment patterns and determine the phenotypic effects of divergent Yellow expression. RESULTS Yellow expression has diverged among D. melanogaster, D. subobscura, and D. virilis and, in all cases, correlates with the distribution of black melanin. Species-specific Yellow expression patterns were retained in D. melanogaster transformants carrying the D. subobscura and D. virilis yellow genes, indicating that sequence evolution within the yellow gene underlies the divergence of Yellow expression. Evolutionary changes in the activity of orthologous cis-regulatory elements are responsible for differences in abdominal Yellow expression; however, cis-regulatory element evolution is not the sole cause of divergent Yellow expression patterns. Transformation of the D. melanogaster yellow gene into D. virilis altered its expression pattern, indicating that trans-acting factors that regulate the D. melanogaster yellow gene have also diverged between these two species. Finally, we found that the phenotypic effects of evolutionary changes in Yellow expression depend on epistatic interactions with other genes. CONCLUSIONS Evolutionary changes in Yellow expression correlate with divergent melanin patterns and are a result of evolution in both cis- and trans-regulation. These changes were likely necessary for the divergence of pigmentation, but evolutionary changes in other genes were also required.
Collapse
Affiliation(s)
- Patricia J Wittkopp
- Howard Hughes Medical Institute, Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
19
|
Radovic A, Wittkopp PJ, Long AD, Drapeau MD. Immunohistochemical colocalization of Yellow and male-specific Fruitless in Drosophila melanogaster neuroblasts. Biochem Biophys Res Commun 2002; 293:1262-4. [PMID: 12054512 DOI: 10.1016/s0006-291x(02)00366-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Drosophila melanogaster fruitless gene encodes multiple male-specific transcription factors that are hypothesized to regulate a hierarchy of genes responsible for the development of male courtship behavior. Here we show that there are dramatically increased levels of the protein product of the male courtship behavior gene yellow associated with male-specific Fruitless protein in a subset of neuroblasts in third-instar larval male brains. We hypothesize that yellow is downstream of fruitless in a male courtship behavior developmental genetic pathway.
Collapse
Affiliation(s)
- Anna Radovic
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | | | | | | |
Collapse
|
20
|
Wittkopp PJ, True JR, Carroll SB. Reciprocal functions of the Drosophila Yellow and Ebony proteins in the development and evolution of pigment patterns. Development 2002; 129:1849-58. [PMID: 11934851 DOI: 10.1242/dev.129.8.1849] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Body coloration affects how animals interact with the environment. In insects, the rapid evolution of black and brown melanin patterns suggests that these are adaptive traits. The developmental and molecular mechanisms that generate these pigment patterns are largely unknown. We demonstrate that the regulation and function of the yellow and ebony genes in Drosophila melanogaster play crucial roles in this process. The Yellow protein is required to produce black melanin, and is expressed in a pattern that correlates with the distribution of this pigment. Conversely, Ebony is required to suppress some melanin formation, and is expressed in cells that will produce both melanized and non-melanized cuticle. Ectopic expression of Ebony inhibits melanin formation, but increasing Yellow expression can overcome this effect. In addition, ectopic expression of Yellow is sufficient to induce melanin formation, but only in the absence of Ebony. These results suggest that the patterns and levels of Yellow and Ebony expression together determine the pattern and intensity of melanization. Based on their functions in Drosophila melanogaster, we propose that changes in the expression of Yellow and/or Ebony may have evolved with melanin patterns. Consistent with our hypothesis, we find that Yellow and Ebony are expressed in complementary spatial patterns that correlate with the formation of an evolutionary novel, male-specific pigment pattern in Drosophila biarmipes wings. These findings provide a developmental and genetic framework for understanding the evolution of melanin patterns.
Collapse
Affiliation(s)
- Patricia J Wittkopp
- Howard Hughes Medical Institute, Laboratory of Molecular Biology, University of Wisconsin, 1525 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
21
|
Affiliation(s)
- M D Drapeau
- Department of Ecology and Evolutionary Biology, University of California at Irvine, 321 Steinhaus Hall, Irvine, California, 92697-2525, USA.
| |
Collapse
|
22
|
Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 2001; 65:44-79. [PMID: 11238985 PMCID: PMC99018 DOI: 10.1128/mmbr.65.1.44-79.2001] [Citation(s) in RCA: 486] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Deinococcus radiodurans shows remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation, oxidizing agents, and electrophilic mutagens. D. radiodurans is best known for its extreme resistance to ionizing radiation; not only can it grow continuously in the presence of chronic radiation (6 kilorads/h), but also it can survive acute exposures to gamma radiation exceeding 1,500 kilorads without dying or undergoing induced mutation. These characteristics were the impetus for sequencing the genome of D. radiodurans and the ongoing development of its use for bioremediation of radioactive wastes. Although it is known that these multiple resistance phenotypes stem from efficient DNA repair processes, the mechanisms underlying these extraordinary repair capabilities remain poorly understood. In this work we present an extensive comparative sequence analysis of the Deinococcus genome. Deinococcus is the first representative with a completely sequenced genome from a distinct bacterial lineage of extremophiles, the Thermus-Deinococcus group. Phylogenetic tree analysis, combined with the identification of several synapomorphies between Thermus and Deinococcus, supports the hypothesis that it is an ancient group with no clear affinities to any of the other known bacterial lineages. Distinctive features of the Deinococcus genome as well as features shared with other free-living bacteria were revealed by comparison of its proteome to the collection of clusters of orthologous groups of proteins. Analysis of paralogs in Deinococcus has revealed several unique protein families. In addition, specific expansions of several other families including phosphatases, proteases, acyltransferases, and Nudix family pyrophosphohydrolases were detected. Genes that potentially affect DNA repair and recombination and stress responses were investigated in detail. Some proteins appear to have been horizontally transferred from eukaryotes and are not present in other bacteria. For example, three proteins homologous to plant desiccation resistance proteins were identified, and these are particularly interesting because of the correlation between desiccation and radiation resistance. Compared to other bacteria, the D. radiodurans genome is enriched in repetitive sequences, namely, IS-like transposons and small intergenic repeats. In combination, these observations suggest that several different biological mechanisms contribute to the multiple DNA repair-dependent phenotypes of this organism.
Collapse
Affiliation(s)
- K S Makarova
- Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799,USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Denef N, Neubüser D, Perez L, Cohen SM. Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 2000; 102:521-31. [PMID: 10966113 DOI: 10.1016/s0092-8674(00)00056-8] [Citation(s) in RCA: 417] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Secreted signaling proteins of the Hedgehog family organize spatial pattern during animal development. Two integral membrane proteins have been identified with distinct roles in Hedgehog signaling. Patched functions in Hedgehog binding, and Smoothened functions in transducing the signal. Current models view Patched and Smoothened as a preformed receptor complex that is activated by Hedgehog binding. Here we present evidence that Patched destabilizes Smoothened in the absence of Hedgehog. Hedgehog binding causes removal of Patched from the cell surface. In contrast, Hedgehog causes phosphorylation, stabilization, and accumulation of Smoothened at the cell surface. Comparable effects can be produced by removing Patched from cells by RNA-mediated interference. These findings raise the possibility that Patched acts indirectly to regulate Smoothened activity.
Collapse
Affiliation(s)
- N Denef
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
24
|
Walter MF, Zeineh LL, Black BC, McIvor WE, Wright TR, Biessmann H. Catecholamine metabolism and in vitro induction of premature cuticle melanization in wild type and pigmentation mutants of Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1996; 31:219-233. [PMID: 8580497 DOI: 10.1002/(sici)1520-6327(1996)31:2<219::aid-arch9>3.0.co;2-u] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The major pathway leading to adult cuticle melanization in Drosophila melanogaster has been investigated by a combination of biochemical and genetic approaches. By comparing catecholamine pools in newly emerged flies and in frass (excreta) collected 1 to 4 days after eclosion from wild type with those obtained from several pigmentation mutants, the major flow of catecholamines through the pathway to an unidentified final catabolite was determined. We also demonstrate that incubation with dopamine in vitro induces premature melanization in wild type unpigmented pharate adults several hours before the developmentally programmed onset of melanization, supporting the hypothesis that the availability of catecholamines may be the limiting factor determining the onset of melanization and that the major enzymatic activities that act downstream of dopa decarboxylase in the pathway are deposited into the cuticle before pigmentation begins. In vitro melanization studies with various pigmentation mutants that are associated with critical enzymatic steps in Drosophila catecholamine metabolism are consistent with their proposed function and suggest a central role of N-beta-alanyldopamine in adult cuticle pigmentation.
Collapse
Affiliation(s)
- M F Walter
- Developmental Biology Center, University of California, Irvine 92727, USA
| | | | | | | | | | | |
Collapse
|
25
|
Eaton S, Auvinen P, Luo L, Jan YN, Simons K. CDC42 and Rac1 control different actin-dependent processes in the Drosophila wing disc epithelium. J Biophys Biochem Cytol 1995; 131:151-64. [PMID: 7559772 PMCID: PMC2120599 DOI: 10.1083/jcb.131.1.151] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cdc42 and Rac1 are members of the rho family of small guanosinetriphosphatases and are required for a diverse set of cytoskeleton-membrane interactions in different cell types. Here we show that these two proteins contribute differently to the organization of epithelial cells in the Drosophila wing imaginal disc. Drac1 is required to assemble actin at adherens junctions. Failure of adherens junction actin assembly in Drac1 dominant-negative mutants is associated with increased cell death. Dcdc42, on the other hand, is required for processes that involve polarized cell shape changes during both pupal and larval development. In the third larval instar, Dcdc42 is required for apico-basal epithelial elongation. Whereas normal wing disc epithelial cells increase in height more than twofold during the third instar, cells that express a dominant-negative version of Dcdc42 remain short and are abnormally shaped. Dcdc42 localizes to both apical and basal regions of the cell during these events, and mediates elongation, at least in part, by effecting a reorganization of the basal actin cytoskeleton. These observations suggest that a common cdc42-based mechanism may govern polarized cell shape changes in a wide variety of cell types.
Collapse
Affiliation(s)
- S Eaton
- European Cell Biology Laboratory, Cell Biology Programme, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
26
|
Wodarz A, Hinz U, Engelbert M, Knust E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 1995; 82:67-76. [PMID: 7606787 DOI: 10.1016/0092-8674(95)90053-5] [Citation(s) in RCA: 546] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The crumbs protein of Drosophila is an integral membrane protein, with 30 EGF-like and 4 laminin A G domain-like repeats in its extracellular segment, which is expressed on the apical plasma membrane of all ectodermally derived epithelia. Here, we present evidence to show that the insertion of crumbs into the plasma membrane is necessary and sufficient to confer apical character on a membrane domain. Overexpression of crumbs results in an enormous expansion of the apical plasma membrane and the concomitant reduction of the basolateral domain. This is followed by the redistribution of beta Heavy-spectrin, a component of the membrane cytoskeleton, and by the ectopic deposition of cuticle and other apical components into these areas. Strikingly, overexpression of the membrane-bound cytoplasmic portion of crumbs alone is sufficient to produce this dominant phenotype. Our results suggest that crumbs plays a key role in specifying the apical plasma membrane domain of ectodermal epithelial cells of Drosophila.
Collapse
Affiliation(s)
- A Wodarz
- Institut für Entwicklungsbiologie, Universität zu Köln, Federal Republic of Germany
| | | | | | | |
Collapse
|
27
|
Andersen SO, Højrup P, Roepstorff P. Insect cuticular proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1995; 25:153-76. [PMID: 7711748 DOI: 10.1016/0965-1748(94)00052-j] [Citation(s) in RCA: 298] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Insect cuticles are composite structural materials with mechanical properties optimal for their biological functions. The bulk properties of cuticles are to a large extent determined by the interactions between the various components, mainly the chitin filament system and the proteins. The various cuticular types show pronounced differences in mechanical properties, and it is suggested that these differences can be related to the properties of the individual proteins and to the degree of secondary stabilization (sclerotization). The amino acid sequences, which have been obtained for insect cuticular proteins either by direct sequencing of purified proteins or by deduction from corresponding DNA-sequences, are listed according to insect order and species. Extensive sequence similarity is observed among several cuticular proteins obtained from different insect orders. Other cuticular proteins are characterized by repeated occurrence of a few small motifs consisting mainly of hydrophobic residues. The latter group of proteins has so far only been reported from stiff cuticles. The possible relevance of the various motifs and repeats for protein interaction and the mechanical properties of cuticles is discussed.
Collapse
Affiliation(s)
- S O Andersen
- August Krogh Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
28
|
Wodarz A, Grawe F, Knust E. CRUMBS is involved in the control of apical protein targeting during Drosophila epithelial development. Mech Dev 1993; 44:175-87. [PMID: 8155580 DOI: 10.1016/0925-4773(93)90066-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The gene crumbs (crb) of Drosophila encodes a transmembrane protein with 30 EGF-like and four laminin A G-domain-like repeats in its extracellular domain. Loss-of-function mutations lead to severe disorganization and degeneration of ectodermally derived embryonic epithelia. In embryos homozygous for crb8F105, an amorphic allele, the CRUMBS protein is diffusely distributed in the cytoplasm instead of being apically localized as in wild-type; this mislocation occurs before any morphologically detectable cellular phenotype becomes manifest, suggesting that apical targeting of proteins is affected in crb mutant embryos. This has been confirmed by using an antibody directed against YELLOW, another apically expressed protein. A single base exchange in crb8F105 leads to the introduction of a premature stop codon, thus eliminating the C-terminal part of the cytoplasmic domain. A possible role for crb in controlling apical-basal polarity is discussed.
Collapse
Affiliation(s)
- A Wodarz
- Institut für Entwicklungsbiologie, Universität zu Köln, Germany
| | | | | |
Collapse
|