1
|
Abstract
The polysaccharide capsule of Streptococcus pneumoniae is the dominant surface structure of the organism and plays a critical role in virulence, principally by interfering with host opsonophagocytic clearance mechanisms. The capsule is the target of current pneumococcal vaccines, but there are 98 currently recognised polysaccharide serotypes and protection is strictly serotype-specific. Widespread use of these vaccines is driving changes in serotype prevalence in both carriage and disease. This chapter summarises current knowledge on the role of the capsule and its regulation in pathogenesis, the mechanisms of capsule synthesis, the genetic basis for serotype differences, and provides insights into how so many structurally distinct capsular serotypes have evolved. Such knowledge will inform ongoing refinement of pneumococcal vaccination strategies.
Collapse
|
2
|
Bonofiglio L, García E, Mollerach M. The galU gene expression in Streptococcus pneumoniae. FEMS Microbiol Lett 2012; 332:47-53. [PMID: 22507173 DOI: 10.1111/j.1574-6968.2012.02572.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/29/2012] [Accepted: 04/12/2012] [Indexed: 11/30/2022] Open
Abstract
The polysaccharide capsule of Streptococcus pneumoniae is the main virulence factor making the bacterium resistant to phagocytosis. The galU gene of S. pneumoniae encodes a UDP-glucose pyrophosphorylase absolutely required for capsule biosynthesis. In silico analyses indicated that the galU gene is co-transcribed with the gpdA gene, and four putative promoter regions located upstream of gpdA were predicted. One of them behaved as a functional promoter in a promoter reporter system. It is conceivable that the sequence responsible for initiating transcription of gpdA-galU operon is an extended -10 site TATGATA(T/G)AAT. Semi-quantitative real-time reverse transcription PCR experiments indicated that galU was expressed mainly in the exponential phase of growth.
Collapse
Affiliation(s)
- Laura Bonofiglio
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
3
|
Sequence diversity within the capsular genes of Streptococcus pneumoniae serogroup 6 and 19. PLoS One 2011; 6:e25018. [PMID: 21949837 PMCID: PMC3174988 DOI: 10.1371/journal.pone.0025018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/22/2011] [Indexed: 11/30/2022] Open
Abstract
The main virulence factor of Streptococcus pneumoniae is the capsule. The polysaccharides comprising this capsule are encoded by approximately 15 genes and differences in these genes result in different serotypes. The aim of this study was to investigate the sequence diversity of the capsular genes of serotypes 6A, 6B, 6C, 19A and 19F and to explore a possible effect of vaccination on variation and distribution of these serotypes in the Netherlands. The complete capsular gene locus was sequenced for 25 serogroup 6 and for 20 serogroup 19 isolates. If one or more genes varied in 10 or more base pairs from the reference sequence, it was designated as a capsular subtype. Allele-specific PCRs and specific gene sequencing of highly variable capsular genes were performed on 184 serogroup 6 and 195 serogroup 19 isolates to identify capsular subtypes. This revealed the presence of 6, 3 and a single capsular subtype within serotypes 6A, 6B and 6C, respectively. The serotype 19A and 19F isolates comprised 3 and 4 capsular subtypes, respectively. For serogroup 6, the genetic background, as determined by multi locus sequence typing (MLST) and multiple- locus variable number of tandem repeat analysis (MLVA), seemed to be closely related to the capsular subtypes, but this was less pronounced for serogroup 19 isolates. The data also suggest shifts in the occurrence of capsular subtypes within serotype 6A and 19A after introduction of the 7-valent pneumococcal vaccine. The shifts within these non-vaccine serotypes might indicate that these capsular subtypes are filling the niche of the vaccine serotypes. In conclusion, there is considerable DNA sequence variation of the capsular genes within pneumococcal serogroup 6 and 19. Such changes may result in altered polysaccharides or in strains that produce more capsular polysaccharides. Consequently, these altered capsules may be less sensitive for vaccine induced immunity.
Collapse
|
4
|
Domenech M, García E, Moscoso M. Versatility of the capsular genes during biofilm formation by Streptococcus pneumoniae. Environ Microbiol 2009; 11:2542-55. [PMID: 19549167 DOI: 10.1111/j.1462-2920.2009.01979.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Streptococcus pneumoniae forms part of the natural microbiota of the nasopharynx. For the pneumococcus to cause infection, colonization needs to occur and this process is mediated by adherence of bacteria to the respiratory epithelium. Although the capsular polysaccharide (CPS) of S. pneumoniae is known to be important for infection to occur, its role in colonization is controversial. Biofilm models are starting to emerge as a promising tool to investigate the role of CPS during nasopharyngeal carriage, which is the first step in the dissemination and initiation of a pneumococcal infection. Using a well-defined model system to analyse in vitro biofilm formation in pneumococcus, here we explore the molecular changes underlying the appearance of capsular mutants using type 3 S. pneumoniae cells. Spontaneous colony phase variants show promoter mutations, as well as duplications, deletions and point mutations in the cap3A gene, which codes for a UDP-glucose dehydrogenase (UDP-GlcDH). Increased biofilm-forming capacity could usually be correlated with a reduction both in colony size and in the relative amount of CPS present on the cell surface of each colony variant. However, a mutation in Cap3A Thr83Ile (a strictly conserved residue in bacterial UDP-GlcDHs) that resulted in very low CPS production also led to impaired biofilm formation. We propose that non-encapsulated mutants of pneumococcal type 3 strains are essentially involved in the initial stages (the attachment stage) of biofilm formation during colonization/pathogenesis.
Collapse
Affiliation(s)
- Mirian Domenech
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | | | | |
Collapse
|
5
|
Llull D, Veiga P, Tremblay J, Kulakauskas S. Immobilization-based isolation of capsule-negative mutants of Streptococcus pneumoniae. MICROBIOLOGY-SGM 2005; 151:1911-1917. [PMID: 15941998 DOI: 10.1099/mic.0.27862-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The capsular polysaccharide (CPS) is the most important identified virulence factor of Streptococcus pneumoniae, a human pathogen of the upper respiratory tract. One limitation in studies of S. pneumoniae surface virulence factors is the lack of a reliable procedure for isolation of capsule-negative mutants of clinical strains. This paper presents an approach, based on the immobilization of pneumococci in semi-liquid (0.04 % agar) medium, to easily distinguish and select for non-capsulated mutants. A clinical S. pneumoniae type 37 strain was used as a model to show that CPS production results in bacterial immobilization in semi-liquid agar medium and restricts cell sedimentation. Descendants of CPS(-) mutants sedimented faster under these conditions and therefore could be separated from immobilized parental cells. The CPS(-) phenotype of the obtained mutants was confirmed by both immunoagglutination and immunostaining experiments using specific type 37 capsular antibodies. Complementation of immobilization with the cloned tts gene, encoding type 37 CPS synthase, confirmed that faster sedimentation of mutants was specifically due to loss of the capsule. DNA sequence determination of three independent mutants revealed a point mutation, a 46 nt deletion and a heptanucleotide duplication in the tts gene. Immobilization of strains producing other CPSs (type 2, 3 and 6) also resulted in the appearance of CPS(-) mutants, thus showing that immobilization-based isolation is not restricted to type 37 pneumococci. Bacterial growth in semi-liquid medium proved to be a useful model system to identify the genetic consequences of immobilization. The results indicate that immobilization due to CPS may impose selective pressure against capsule production and thus contribute to capsule plasticity.
Collapse
Affiliation(s)
- Daniel Llull
- Unité de Recherches Laitières et Génétique Appliquée, INRA, Domaine de Vilvert, 78352 Jouy en Josas CEDEX, France
| | - Patrick Veiga
- Unité de Recherches Laitières et Génétique Appliquée, INRA, Domaine de Vilvert, 78352 Jouy en Josas CEDEX, France
| | - Josselyne Tremblay
- Unité de Recherches Laitières et Génétique Appliquée, INRA, Domaine de Vilvert, 78352 Jouy en Josas CEDEX, France
| | - Saulius Kulakauskas
- Unité de Recherches Laitières et Génétique Appliquée, INRA, Domaine de Vilvert, 78352 Jouy en Josas CEDEX, France
| |
Collapse
|
6
|
Gu X, Bar-Peled M. The biosynthesis of UDP-galacturonic acid in plants. Functional cloning and characterization of Arabidopsis UDP-D-glucuronic acid 4-epimerase. PLANT PHYSIOLOGY 2004; 136:4256-64. [PMID: 15563616 PMCID: PMC535855 DOI: 10.1104/pp.104.052365] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 10/25/2004] [Accepted: 10/25/2004] [Indexed: 05/17/2023]
Abstract
UDP-GlcA 4-epimerase (UGlcAE) catalyzes the epimerization of UDP-alpha-D-glucuronic acid (UDP-GlcA) to UDP-alpha-D-galacturonic acid (UDP-GalA). UDP-GalA is a precursor for the synthesis of numerous cell-surface polysaccharides in bacteria and plants. Using a biochemical screen, a gene encoding AtUGlcAE1 in Arabidopsis (Arabidopsis thaliana) was identified and the recombinant enzyme biochemically characterized. The gene belongs to a small gene family composed of six isoforms. All members of the UGlcAE gene family encode a putative type-II membrane protein and have two domains: a variable N-terminal region approximately 120 amino acids long composed of a predicted cytosolic, transmembrane, and stem domain, followed by a large conserved C-terminal catalytic region approximately 300 amino acids long composed of a highly conserved catalytic domain found in a large protein family of epimerase/dehydratases. The recombinant epimerase has a predicted molecular mass of approximately 43 kD, although size-exclusion chromatography suggests that it may exist as a dimer (approximately 88 kD). AtUGlcAE1 forms UDP-GalA with an equilibrium constant value of approximately 1.9 and has an apparent K(m) value of 720 microm for UDP-GlcA. The enzyme has maximum activity at pH 7.5 and is active between 20 degrees C and 55 degrees C. Arabidopsis AtUGlcAE1 is not inhibited by UDP-Glc, UDP-Gal, or UMP. However, the enzyme is inhibited by UDP-Xyl and UDP-Ara, suggesting that these nucleotide sugars have a role in regulating the synthesis of pectin. The cloning of the AtUGlcAE1 gene will increase our ability to investigate the molecular factors that regulate pectin biosynthesis in plants. The availability of a functional recombinant UDP-GlcA 4-epimerase will be of considerable value for the facile generation of UDP-d-GalA in the amounts required for detailed studies of pectin biosynthesis.
Collapse
Affiliation(s)
- Xiaogang Gu
- Complex Carbohydrate Research Center and Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712, USA
| | | |
Collapse
|
7
|
Trzciński K, Thompson CM, Lipsitch M. Single-step capsular transformation and acquisition of penicillin resistance in Streptococcus pneumoniae. J Bacteriol 2004; 186:3447-52. [PMID: 15150231 PMCID: PMC415782 DOI: 10.1128/jb.186.11.3447-3452.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capsule (cps) locus of Streptococcus pneumoniae is flanked by the pbp2x and pbp1a genes, coding for penicillin-binding proteins, enzymes involved in cell wall synthesis that are targets for beta-lactams. This linkage suggested to us that selection for beta-lactam resistance might coselect for capsular transformants. The recombination event would then involve PBP genes, as well as the cps operon, and would change both the serotype and the resistance profile of the strain. We transformed beta-lactam-susceptible strain TIGR4 by using whole genomic DNA extracted from multidrug-resistant strain GA71, a serotype 19F variant of pneumococcal clone Spain(23F)-1, and selected beta-lactam-resistant transformants. Smooth colonies appearing on selective plates were subcultured, serotyped by the Quellung reaction, and genotyped to confirm the presence of the GA71 pbp2x-cps19-pbp1a locus in the TIGR4 genetic background by restriction fragment length polymorphism analysis of the whole locus and its flanking regions. The results showed that a new serotype, combined with resistance to beta-lactams, could emerge in a susceptible strain via a single transformation event. Quantitative analysis showed that transfer of the cps locus had occurred at an elevated rate in beta-lactam-selected transformants. This suggests that in natural settings selection by host immunity and selection by antibiotics may be interrelated because of "hitchhiking" effects due to linkage of resistance determinants and the capsule locus.
Collapse
Affiliation(s)
- Krzysztof Trzciński
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
8
|
Llull D, Garcia E, Lopez R. Tts, a processive beta-glucosyltransferase of Streptococcus pneumoniae, directs the synthesis of the branched type 37 capsular polysaccharide in Pneumococcus and other gram-positive species. J Biol Chem 2001; 276:21053-61. [PMID: 11264282 DOI: 10.1074/jbc.m010287200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type 37 capsule of Streptococcus pneumoniae is a homopolysaccharide built up from repeating units of [beta-d-Glcp-(1-->2)]-beta-d-Glcp-(1-->3). The elements governing the expression of the tts gene, coding for the glucosyltransferase involved in the synthesis of the type 37 pneumococcal capsular polysaccharide, have been studied. Primer extension analysis and functional tests demonstrated the presence of four new transcriptional start points upstream of the previously reported tts promoter (ttsp). Most interesting, three of these transcriptional start points are located in a RUP element thought to be involved in recombinational events (Oggioni, M. R., and Claverys, J. P. (1999) Microbiology 145, 2647-2653). Transformation experiments using either a recombinant plasmid containing the whole transcriptional unit of tts or chromosomal DNA from a type 37 pneumococcus showed that tts is the only gene required to drive the biosynthesis of a type 37 capsule in S. pneumoniae and other Gram-positive bacteria, namely Streptococcus oralis, Streptococcus gordonii, and Bacillus subtilis. The Tts synthase was overproduced in S. pneumoniae and purified as a membrane-associated enzyme. These membrane preparations used UDP-Glc as substrate to catalyze the synthesis of a high molecular weight polysaccharide immunologically identical to the type 37 capsule. In addition, UDP-Gal was also a substrate to produce type 37 polysaccharide since a strong UDP-Glc-4'-epimerase activity is associated to the membrane fraction of S. pneumoniae. These results indicated that Tts has a dual biochemical activity that leads to the synthesis of the branched type 37 polysaccharide.
Collapse
Affiliation(s)
- D Llull
- Centro de Investigaciones Biológicas, CSIC, Velázquez 144, 28006 Madrid, Spain
| | | | | |
Collapse
|
9
|
Cieslewicz MJ, Kasper DL, Wang Y, Wessels MR. Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J Biol Chem 2001; 276:139-46. [PMID: 11027683 DOI: 10.1074/jbc.m005702200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several species of streptococci produce extracellular polysaccharides in the form of secreted exopolysaccharides or cell-associated capsules. Although the biological properties and repeating unit structures of these polysaccharides are diverse, sequence analysis of the genes required for their production has revealed a surprising degree of conservation among five genes found in the capsule gene cluster of each of several polysaccharide-producing streptococci. To determine the function of these conserved genes, we characterized a series of isogenic mutants derived from a wild-type strain of type Ia group B Streptococcus by selectively inactivating each gene. Inactivation of cpsIaE resulted in an acapsular phenotype, consistent with previous work that identified the cpsIaE product as the glycosyltransferase that initiates synthesis of the polysaccharide repeating unit. Mutants in cpsIaA, cpsIaB, cpsIaC, or cpsIaD produced type Ia capsular polysaccharide, but in reduced amounts compared with the wild type. Analysis of the mutant polysaccharides and of capsule gene transcription in the mutant strains provided evidence that cpsIaA encodes a transcriptional activator that regulates expression of the capsule gene operon. Mutants in cpsIaC or cpsIaD produced polysaccharide of reduced molecular size but with an identical repeating unit structure as the wild-type strain. We conclude that CpsA to -D are not required for polysaccharide repeating unit biosynthesis but rather that they direct the coordinated polymerization and export of high molecular weight polysaccharide.
Collapse
Affiliation(s)
- M J Cieslewicz
- Channing Laboratory, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
10
|
Gindreau E, López R, García P. MM1, a temperate bacteriophage of the type 23F Spanish/USA multiresistant epidemic clone of Streptococcus pneumoniae: structural analysis of the site-specific integration system. J Virol 2000; 74:7803-13. [PMID: 10933687 PMCID: PMC112310 DOI: 10.1128/jvi.74.17.7803-7813.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized a temperate phage (MM1) from a clinical isolate of the multiply antibiotic-resistant Spanish/American 23F Streptococcus pneumoniae clone (Spain(23F)-1 strain). The 40-kb double-stranded genome of MM1 has been isolated as a DNA-protein complex. The use of MM1 DNA as a probe revealed that the phage genome is integrated in the host chromosome. The host and phage attachment sites, attB and attP, respectively, have been determined. Nucleotide sequencing of the attachment sites identified a 15-bp core site (5'-TTATAATTCATCCGC-3') that has not been found in any bacterial genome described so far. Sequence information revealed the presence of an integrase gene (int), which represents the first identification of an integrase in the pneumococcal system. A 1.5-kb DNA fragment embracing attP and the int gene contained all of the genetic information needed for stable integration of a nonreplicative plasmid into the attB site of a pneumococcal strain. This vector will facilitate the introduction of foreign genes into the pneumococcal chromosome. Interestingly, DNAs highly similar to that of MM1 have been detected in several clinical pneumococcal isolates of different capsular types, suggesting a widespread distribution of these phages in relevant pathogenic strains.
Collapse
Affiliation(s)
- E Gindreau
- Centro de Investigaciones Biológicas, CSIC, Velázquez 144, 28006 Madrid, Spain
| | | | | |
Collapse
|
11
|
Hardy GG, Caimano MJ, Yother J. Capsule biosynthesis and basic metabolism in Streptococcus pneumoniae are linked through the cellular phosphoglucomutase. J Bacteriol 2000; 182:1854-63. [PMID: 10714989 PMCID: PMC101867 DOI: 10.1128/jb.182.7.1854-1863.2000] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthesis of the type 3 capsular polysaccharide of Streptococcus pneumoniae requires UDP-glucose (UDP-Glc) and UDP-glucuronic acid (UDP-GlcUA) for production of the [3)-beta-D-GlcUA-(1-->4)-beta-D-Glc-(1-->](n) polymer. The generation of UDP-Glc proceeds by conversion of Glc-6-P to Glc-1-P to UDP-Glc and is mediated by a phosphoglucomutase (PGM) and a Glc-1-P uridylyltransferase, respectively. Genes encoding both a Glc-1-P uridylyltransferase (cps3U) and a PGM homologue (cps3M) are present in the type 3 capsule locus, but these genes are not essential for capsule production. In this study, we characterized a mutant that produces fourfold less capsule than the type 3 parent. The spontaneous mutation resulting in this phenotype was not contained in the type 3 capsule locus but was instead located in a distant gene (pgm) encoding a second PGM homologue. The function of this gene product as a PGM was demonstrated through enzymatic and complementation studies. Insertional inactivation of pgm reduced capsule production to less than 10% of the parental level. The loss of PGM activity in the insertion mutants also caused growth defects and a strong selection for isolates containing second-site suppressor mutations. These results demonstrate that most of the PGM activity required for type 3 capsule biosynthesis is derived from the cellular PGM.
Collapse
Affiliation(s)
- G G Hardy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
12
|
Caimano MJ, Hardy GG, Yother J. Capsule genetics in Streptococcus pneumoniae and a possible role for transposition in the generation of the type 3 locus. Microb Drug Resist 2000; 4:11-23. [PMID: 9533721 DOI: 10.1089/mdr.1998.4.11] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The capsule genes of Streptococcus pneumoniae have a cassette-like organization in which the type-specific biosynthetic genes are flanked by genes shared among the different capsular serotypes. This general organization has been identified in the capsule loci of all serotypes analyzed to date, but significant differences that may help explain novel capsule type formation are beginning to emerge. In particular, analysis of the type 3 locus has revealed its most striking feature to be a preponderance of partial genes that have homology to sequences involved in polysaccharide biosynthesis and transposition. The predicted proteins of cps3M, the most downstream type 3-specific gene, and tnpA and plpA, the non-type-specific flanking sequences downstream of cps3M, have homologies with phosphomutases, transposases, and peptide permeases, respectively. All three of these sequences are truncated when compared to their respective homologs. Mutation and transcription analyses of these partial sequences showed that none of these sequences is essential for type 3 polysaccharide synthesis but that all are transcribed. Partial sequences were also identified in the region upstream of the type 3-specific genes. The type 3 locus structure is conserved among independent type 3 isolates but similar deletions are not apparent in the common, non-type-specific flanking sequences in other capsular types. A role for transposition-mediated events in the generation of the type 3 locus, and possibly other pneumococcal capsule loci, is suggested by these findings.
Collapse
Affiliation(s)
- M J Caimano
- Department of Microbiology, University of Alabama at Birmingham, 35294-2170, USA
| | | | | |
Collapse
|
13
|
Ramirez M, Tomasz A. Acquisition of new capsular genes among clinical isolates of antibiotic-resistant Streptococcus pneumoniae. Microb Drug Resist 2000; 5:241-6. [PMID: 10647080 DOI: 10.1089/mdr.1999.5.241] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antibiotic-resistant clones of Streptococcus pneumoniae are recognizable through a combination of unique molecular, microbiological, and serological properties. In the course of surveillance of epidemic clones of S. pneumoniae, several isolates were identified that shared the clone-specific pulsed-field gel electrophoretic (PFGE) pattern and antibiotype but expressed serotypes atypical for the particular clone. A selected group of isolates belonging to the Spanish/USA clone but expressing serotypes 19, 14, or 3, instead of the expected serotype 23F, were tested using DNA probes for each of the 18 open reading frames (ORFs) of the 23F capsular locus. In no case were there any 23F-specific genes retained, with the possible exception of genes already known to be common to the capsular loci involved. Analysis of the sequence of the capsular locus of a penicillin-resistant serotype 23F isolate from Mexico showed that part of the cpsA gene of this strain, as well as genes cpsQ and cpsR, had high degrees of identity to the sequence of the homologous genes in isolates expressing serotype 19F. The capsular locus of this Mexican strain may have originated from an in vivo capsular switch event in which the original 19F locus was replaced by 23F-specific capsular genes.
Collapse
Affiliation(s)
- M Ramirez
- The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
14
|
García E, Arrecubieta C, Muñoz R, Mollerach M, López R. A functional analysis of the Streptococcus pneumoniae genes involved in the synthesis of type 1 and type 3 capsular polysaccharides. Microb Drug Resist 2000; 3:73-88. [PMID: 9109098 DOI: 10.1089/mdr.1997.3.73] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Type 3 pneumococci produce a capsule composed of cellobiuronic acid units connected in a beta (1-->3) linkage. Cellobiuronic acid is a disaccharide consisting of D-glucuronic acid (GlcA) beta (1-->4) linked to D-glucose (Glc). The genes implicated in the biosynthesis of the type 3 capsule have been cloned, expressed, and biochemically characterized. The three type 3-specific genes--designated as cap3ABC--are transcribed together. However, the two complete open reading frames located upstream of cap3A are not transcribed and, consequently, are not required for capsule formation. The promoter of the cap3 operon was localized by primer extension analysis. The products of cap3A, cap3B, and cap3C were biochemically characterized as a UDP-Glc dehydrogenase, the type 3 polysaccharide synthase, and a Glc-1-P uridyltransferase, respectively. The Cap3B synthase was expressed in Escherichia coli, and pneumococcal type 3 polysaccharide was synthesized in this heterologous system. When a recombinant plasmid (pLSE3B) containing cap3B was introduced by transformation into encapsulated pneumococci of types 1, 2, 5, or 8, the lincomycin-resistant transformants displayed a binary type of capsule, this is, they showed a type 3 capsule in addition to that of the recipient type. Unencapsulated (S2) laboratory strains of S. pneumoniae also synthesized a type 3 capsule when transformed with pLSE3B. On the other hand, we have cloned and sequenced seven type 1-specific genes (designated as cap1A-G), and their functions have been preliminarily assigned based on sequence similarities.
Collapse
Affiliation(s)
- E García
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | | | |
Collapse
|
15
|
Muñoz R, Mollerach M, López R, García E. Characterization of the type 8 capsular gene cluster of Streptococcus pneumoniae. J Bacteriol 1999; 181:6214-9. [PMID: 10498742 PMCID: PMC103657 DOI: 10.1128/jb.181.19.6214-6219.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequence of the capsular gene cluster (cap8) responsible for the biosynthesis of the capsular polysaccharide of Streptococcus pneumoniae type 8 has been determined. The cap8 gene cluster, located between the genes dexB and aliA, is composed of 12 open reading frames. A 14.7-kb DNA fragment embracing the cap8 genes was sufficient to transform an unencapsulated type 3 S. pneumoniae strain to a strain with the type 8 capsule. A possible scenario for the evolution of pneumococcal types 2 and 8 is outlined.
Collapse
Affiliation(s)
- R Muñoz
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
16
|
Llull D, Muñoz R, López R, García E. A single gene (tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide. Type 37 pneumococci are natural, genetically binary strains. J Exp Med 1999; 190:241-51. [PMID: 10432287 PMCID: PMC2195575 DOI: 10.1084/jem.190.2.241] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/1999] [Accepted: 05/18/1999] [Indexed: 11/12/2022] Open
Abstract
The molecular aspects of the type 37 pneumococcal capsular biosynthesis, a homopolysaccharide composed of sophorosyl units (beta-d-Glc-(1-->2)-beta-d-Glc) linked by beta-1,3 bonds, have been studied. Remarkably, the biosynthesis of the type 37 capsule is driven by a single gene (tts) located far apart from the cap locus responsible for capsular formation in all of the types characterized to date in Streptococcus pneumoniae. However, a cap37 locus virtually identical to the cap33f cluster has been found in type 37 strains, although some of its genes are inactivated by mutations. The tts gene has been sequenced and its transcription start point determined. Tts shows sequence motifs characteristic of cellulose synthases and other beta-glycosyltransferases. Insertion of the tts gene into the pneumococcal DNA causes a noticeable genome reorganization in such a way that genes normally separated by more than 350 kb in the chromosome are located together in clinical isolates of type 37. Encapsulated pneumococcal strains belonging to 10 different serotypes (or serogroups) transformed with tts synthesized type 37 polysaccharide, leading to the formation of strains that display the binary type of capsule. Type 37 pneumococcus constitutes the first case of a natural, genetically binary strain and represents a novel alternative to the mechanisms of intertype transformation.
Collapse
Affiliation(s)
- Daniel Llull
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Rosario Muñoz
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Rubens López
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Ernesto García
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| |
Collapse
|
17
|
Muñoz R, López R, de Frutos M, García E. First molecular characterization of a uridine diphosphate galacturonate 4-epimerase: an enzyme required for capsular biosynthesis in Streptococcus pneumoniae type 1. Mol Microbiol 1999; 31:703-13. [PMID: 10027985 DOI: 10.1046/j.1365-2958.1999.01211.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uridine diphosphate galacturonate 4-epimerases (UDPGLEs) are enzymes that convert UDP-glucuronate into UDP-galacturonate. Although the presence of UDPGLEs has been reported in prokaryoic and eukaryotic organisms, the genes coding for these enzymes are completely unknown. The galacturonic acid-containing capsular polysaccharide of Streptococcus pneumoniae type 1 is synthesized through the action of a specific UDPGLE. We have constructed a defined deletion mutant in the cap1J gene (one of the 15 cap1 genes responsible for the synthesis of the type 1 capsule) that exhibited an unencapsulated phenotype. This mutant was unable to synthesize UDPGLE, suggesting that Cap1J was the type 1-specific UDPGLE of S. pneumoniae. Escherichia coli cells harbouring the recombinant plasmid pRMM38 (cap1J) overproduced a 40 kDa protein, characterized as Cap1J on the basis of the N-terminal amino acid sequence analysis, and expressed high levels of enzymatically active Cap1J epimerase. Cap1J was partially purified, although purification to electrophoretic homogeneity inactivated the enzyme irreversibly. The enzyme has the following characteristics: K(m) for UDP-glucuronate, 0.24 mM; pH optimum, 7.5; equilibrium constant (in the direction of UDP-galacturonate formation), 1.3; and an approximate M(r) of 80,000 for the active form. The Cap1J protein exhibited a fluorescence emission spectrum similar to that of NADH. Upon inactivation with p-hydroxymercuribenzoate, the addition of NAD+ and 2-mercaptoethanol were sufficient to reactivate the enzyme. Among several compounds tested, UDP-galactose and UDP-xylose exhibited the highest inhibition of the UDPGLE activity. Inactivation of UDPGLE activity was also observed in the presence of UMP and several reducing sugars. To our knowledge, this is the first example of a thoroughly molecular characterization of a UDPGLE.
Collapse
Affiliation(s)
- R Muñoz
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Mollerach M, López R, García E. Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J Exp Med 1998; 188:2047-56. [PMID: 9841918 PMCID: PMC2212384 DOI: 10.1084/jem.188.11.2047] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Revised: 09/09/1998] [Indexed: 11/05/2022] Open
Abstract
The galU gene of Streptococcus pneumoniae has been cloned and sequenced. Escherichia coli cells harboring the recombinant plasmid pMMG2 (galU) overproduced a protein that has been shown to correspond to a uridine 5'-triphosphate:glucose-1-phosphate uridylyltransferase (uridine diphosphoglucose [UDP-Glc] pyrophosphorylase) responsible for the synthesis of UDP-Glc, a key compound in the biosynthesis of polysaccharides. A gene very similar to the S. pneumoniae galU has been found in a partial nucleotide sequence of the Streptococcus pyogenes genome. Knockout galU mutants of type 1 pneumococci are unable to synthesize a detectable capsule. An identical result was found in type 3 S. pneumoniae cells in spite of the fact that these bacteria contain a type-specific gene (cap3C) that also encodes a UDP-Glc pyrophosphorylase. Since eukaryotic UDP-Glc pyrophosphorylases appear to be completely unrelated to their prokaryotic counterparts, we postulate that GalU may be an appropriate target for the search of new drugs to control the pathogenicity of bacteria like pneumococcus and S. pyogenes.
Collapse
Affiliation(s)
- M Mollerach
- Departamento de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | | | | |
Collapse
|
19
|
Ramirez M, Tomasz A. Molecular characterization of the complete 23F capsular polysaccharide locus of Streptococcus pneumoniae. J Bacteriol 1998; 180:5273-8. [PMID: 9748469 PMCID: PMC107572 DOI: 10.1128/jb.180.19.5273-5278.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete DNA sequence of the capsular locus 23F of Streptococcus pneumoniae is presented. The 18.6-kb cps23f locus is composed of 18 open reading frames flanked at the 5' and 3' ends by the genes dexB and aliA, an arrangement similar to those of some of the other identified cps loci.
Collapse
Affiliation(s)
- M Ramirez
- The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
20
|
Muñoz R, López R, García E. Characterization of IS1515, a functional insertion sequence in Streptococcus pneumoniae. J Bacteriol 1998; 180:1381-8. [PMID: 9580131 PMCID: PMC107034 DOI: 10.1128/jb.180.6.1381-1388.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We describe the characterization of a new insertion sequence, IS1515, identified in the genome of Streptococcus pneumoniae I41R, an unencapsulated mutant isolated many years ago (R. Austrian, H. P. Bernheimer, E. E. B. Smith, and G. T. Mills, J. Exp. Med. 110:585-602, 1959). A copy of this element located in the cap1EI41R gene was sequenced. The 871-bp-long IS1515 element possesses 12-bp perfect inverted repeats and generates a 3-bp target duplication upon insertion. The IS encodes a protein of 271 amino acid residues similar to the putative transposases of other insertion sequences, namely IS1381 from S. pneumoniae, ISL2 from Lactobacillus helveticus, IS702 from the cyanobacterium Calothrix sp. strain PCC 7601, and IS112 from Streptomyces albus G. IS1515 appears to be present in the genome of most type 1 pneumococci in a maximum of 13 copies, although it has also been found in the chromosome of pneumococcal isolates belonging to other serotypes. We have found that the unencapsulated phenotype of strain 141R is the result of both the presence of an IS1515 copy and a frameshift mutation in the cap1EI41R gene. Precise excision of the IS was observed in the type 1 encapsulated transformants isolated in experiments designed to repair the frameshift. These results reveal that IS1515 behaves quite differently from other previously described pneumococcal insertion sequences. Several copies of IS1515 were also able to excise and move to another locations in the chromosome of S. pneumoniae. To our knowledge, this is the first report of a functional IS in pneumococcus.
Collapse
Affiliation(s)
- R Muñoz
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
21
|
Coffey TJ, Enright MC, Daniels M, Morona JK, Morona R, Hryniewicz W, Paton JC, Spratt BG. Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol Microbiol 1998; 27:73-83. [PMID: 9466257 DOI: 10.1046/j.1365-2958.1998.00658.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serotype 19F variants of the major Spanish multiresistant serotype 23F clone of Streptococcus pneumoniae have been proposed to have arisen by recombinational exchanges at the capsular biosynthetic locus. Members of the Spanish multiresistant serotype 23F clone and the serotype 19F variants were confirmed to be essentially identical in overall genotype, as they were indistinguishable by REP-PCR, and had identical sequences at three polymorphic housekeeping genes. Eight serotype 19F variants were studied and all had large recombinational replacements at the capsular biosynthetic locus. In all cases, one of the recombinational cross-over points appeared to be upstream of dexB, which flanks one end of the capsular locus, and in six of the variants the other cross-over point was downstream of aliA, which flanks the other end of the locus. In two strains a recombinational cross-over point between the introduced serotype 19F capsular region and that of the Spanish serotype 23F clone could be clearly identified, within cpsN in one strain and within cpsM in the other. The differences in the recombinational junctions and sequence polymorphisms within the introduced capsular genes, suggested that the eight serotype 19F variants emerged on at least four separate occasions. Changes in capsular type by recombination may therefore be relatively frequent in pneumococci and this has implications for the long-term efficacy of conjugate pneumococcal vaccines that will protect against only a limited number of serotypes.
Collapse
MESH Headings
- Base Sequence
- Crossing Over, Genetic
- DNA Fingerprinting
- DNA, Bacterial/chemistry
- Drug Resistance, Multiple/physiology
- Molecular Sequence Data
- Phenotype
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- Polysaccharides, Bacterial/biosynthesis
- Polysaccharides, Bacterial/chemistry
- Polysaccharides, Bacterial/genetics
- Recombination, Genetic/physiology
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Serotyping
- Spain
- Streptococcus pneumoniae/chemistry
- Streptococcus pneumoniae/classification
- Streptococcus pneumoniae/genetics
Collapse
Affiliation(s)
- T J Coffey
- Molecular Microbiology Group, School of Biological Sciences, University of Sussex, Brighton, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Bacterial polysaccharides are usually associated with the outer surface of the bacterium. They can form an amorphous layer of extracellular polysaccharide (EPS) surrounding the cell that may be further organized into a distinct structure termed a capsule. Additional polysaccharide molecules such as lipopolysaccharide (LPS) or lipooligosaccharide (LOS) may also decorate the cell surface. Polysaccharide capsules may mediate a number of biological processes, including invasive infections of human beings. Discussed here are the genetics and biochemistry of selected bacterial capsular polysaccharides and the basis of capsule diversity but not the genetics and biochemistry of LPS biosynthesis (for reviews see 100, 140).
Collapse
Affiliation(s)
- I S Roberts
- School of Biological Siences, University of Manchester, United Kingdom
| |
Collapse
|
23
|
Arrecubieta C, López R, García E. Type 3-specific synthase of Streptococcus pneumoniae (Cap3B) directs type 3 polysaccharide biosynthesis in Escherichia coli and in pneumococcal strains of different serotypes. J Exp Med 1996; 184:449-55. [PMID: 8760798 PMCID: PMC2192726 DOI: 10.1084/jem.184.2.449] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The cap3B gene, which is involved in the formation of the capsule of Streptococcus pneumoniae type 3, encodes a 49-kD protein that has been identified as a polysaccharide synthase. Escherichia coli cells harboring the recombinant plasmid pTBP3 (cap3B) produced pneumococcal type 3 polysaccharide, as demonstrated by immunological tests. Biochemical and cell fractionation analyses revealed that this polysaccharide had a high molecular mass and was localized in substantial amounts in the periplasmic space of E. coli. Unencapsulated (S-2), laboratory pneumococcal strains synthesized type 3 polysaccharide by transformation with plasmid pLSE3B harboring cap3B. In addition, encapsulated pneumococci of types 1, 2, 5, or 8 transformed with pLSE3B can direct the synthesis of pneumococcal type 3 polysaccharide, leading to the formation of strains that display binary type of capsule.
Collapse
Affiliation(s)
- C Arrecubieta
- Centro de Investigaciones Biológicas, Cousejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
24
|
Kolkman MA, Morrison DA, Van Der Zeijst BA, Nuijten PJ. The capsule polysaccharide synthesis locus of streptococcus pneumoniae serotype 14: Identification of the glycosyl transferase gene cps14E. J Bacteriol 1996; 178:3736-41. [PMID: 8682774 PMCID: PMC232630 DOI: 10.1128/jb.178.13.3736-3741.1996] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To identify a chromosomal region of Streptococcus pneumoniae serotype 14 involved in capsule polysaccharide synthesis, two strategies were used: (i) Tn916 mutagenesis, followed by the characterization of four unencapsulated mutants, and (ii) cross-hybridization with a capsule polysaccharide synthesis gene (cps) probe from S. agalactiae, which has a structurally similar capsule. The two approaches detected the same chromosomal region consisting of two adjacent EcoRI fragments. One of these EcoRI fragments was cloned and hybridized with a cosmid library. This resulted in clone cMKO2. A similar cosmid clone was obtained from an unencapsulated Tn916 mutant, Spnl4.H. Sequence analysis of the two cosmid clones revealed that in the Tn916 mutant, a gene, cps14E, which is homologous to other bacterial genes encoding glycosyl transferases, had been inactivated. An open reading frame immediately downstream of cps14E, designated cps14F, shows no significant homology with any known genes or proteins. A functional assay showed that cps14E encodes a glycosyl transferase and that a gene-specific knockout mutant lacks this enzyme activity, whereas inactivation of cps14F does not have this effect.
Collapse
Affiliation(s)
- M A Kolkman
- Department of Bacteriology, Institute of Infectious Diseases and Immunology, School of Veterinary Medicine, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
25
|
Arrecubieta C, García E, López R. Demonstration of UDP-glucose dehydrogenase activity in cell extracts of Escherichia coli expressing the pneumococcal cap3A gene required for the synthesis of type 3 capsular polysaccharide. J Bacteriol 1996; 178:2971-4. [PMID: 8631689 PMCID: PMC178036 DOI: 10.1128/jb.178.10.2971-2974.1996] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The gene cluster of Streptococcus pneumoniae coding for the type 3 capsular polysaccharide contains four genes (cap3ABCD). A DNA fragment containing the cap3A gene was amplified by PCR and cloned under the control of a T7 RNA polymerase-dependent promoter. Overexpression of this gene in Escherichia coli resulted both in a 47-kDa protein in the cytoplasm of isopropyl-beta-D-thiogalactopyranoside-induced bacteria and in high levels of UDP-glucose dehydrogenase activity. These data demonstrate, in a direct experimental way, that cap3A encodes the UDP-glucose dehydrogenase of pneumococcus type 3.
Collapse
Affiliation(s)
- C Arrecubieta
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | |
Collapse
|
26
|
Arrecubieta C, García E, López R. Sequence and transcriptional analysis of a DNA region involved in the production of capsular polysaccharide in Streptococcus pneumoniae type 3. Gene 1995; 167:1-7. [PMID: 8566758 DOI: 10.1016/0378-1119(95)00657-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The nucleotide (nt) sequence of a 9704-bp EcoRI fragment of Streptococcus pneumoniae (Sp) type-3 DNA has been determined and found to contain one partial and five complete open reading frames (ORFs). One of these ORFs corresponds to the cap3 A gene coding for the UDP-glucose (UDPGlc) dehydrogenase which is directly responsible for the transformation of some unencapsulated serotype-3 Sp mutants to the encapsulated phenotype [Arrecubieta et al., J. Bacteriol. 176 (1994) 6375-6383]. The two ORFs downstream from this gene (cap3B and cap3C) encode proteins with molecular masses of 49 and 34 kDa. Analysis of the deduced amino acid (aa) sequences of Cap3B and Cap3C shows homology to polysaccharide synthases and UDPG1c pyrophosphorylases, respectively. Furthermore, genetic complementation analysis showed that cap3C restored the galU defect of an Escherichia coli mutant. Northern blots have shown that cap3A, cap3B and cap3C constitute a single transcriptional unit, and primer extension analysis has revealed that the transcription start point is preceded by a nt sequence identical to the sigma 70 consensus promoter sequence of E. coli. The sequence upstream from this cluster also has a high degree of similarity with genes postulated to be essential for capsular production in several Gram+ bacteria. However, Northern blot analysis and insertion-duplication mutagenesis indicated that genes located in this region are not necessary for type-3 capsule production in the Sp strain 406.
Collapse
Affiliation(s)
- C Arrecubieta
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | |
Collapse
|
27
|
GarcÃa E, López R. Streptococcus pneumoniaetype 3 encodes a protein highly similar to the human glutamate decarboxylase (GAD 65). FEMS Microbiol Lett 1995. [DOI: 10.1111/j.1574-6968.1995.tb07870.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Watson DA, Kapur V, Musher DM, Jacobson JW, Musser JM. Identification, cloning, and sequencing of DNA essential for encapsulation of Streptococcus pneumoniae. Curr Microbiol 1995; 31:251-9. [PMID: 7549771 DOI: 10.1007/bf00298383] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This paper reports the cloning and sequencing of a region of DNA from Streptococcus pneumoniae serotype 3 surrounding transposon Tn916, insertion of which was previously shown to result in lack of expression of the extracellular capsule. Sequence analysis revealed that the transposon inserted into a consensus insertion site 71 bp from the 5' end of the cloned fragment. Within the clone, 3' downstream regions from two different pneumococcal lytA genes were identified, as well as a putative 194 AA open reading frame (ORF1). Moreover, two copies of the repeat element BOX, oriented in opposite directions, were located immediately 3' of orf1. Within the region bounded by the first pair of internal sequencing primers, analysis revealed that the fragment amplified by PCR was always of the same size. Moreover, Southern blotting showed that for all serotypes examined to date, homology exists with the cloned fragment. These results indicate that this region of the chromosome is highly conserved and, taken together with other independently derived data, suggest that interruptions or deletions within this DNA lead to unencapsulation.
Collapse
Affiliation(s)
- D A Watson
- Department of Biology, University of Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
29
|
Morona R, van den Bosch L, Manning PA. Molecular, genetic, and topological characterization of O-antigen chain length regulation in Shigella flexneri. J Bacteriol 1995; 177:1059-68. [PMID: 7532168 PMCID: PMC176702 DOI: 10.1128/jb.177.4.1059-1068.1995] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The rfb region of Shigella flexneri encodes the proteins required to synthesize the O-antigen component of its cell surface lipopolysaccharides (LPS). We have previously reported that a region adjacent to rfb was involved in regulating the length distribution of the O-antigen polysaccharide chains (D. F. Macpherson et al., Mol. Microbiol. 5:1491-1499, 1991). The gene responsible has been identified in Escherichia coli O75 (called rol [R. A. Batchelor et al., J. Bacteriol. 173:5699-5704, 1991]) and in E. coli O111 and Salmonella enterica serovar typhimurium strain LT2 (called cld [D. A. Bastin et al., Mol. Microbiol. 5:2223-2231, 1991]). Through a combination of subcloning, deletion, and transposon insertion analysis, we have identified a gene adjacent to the S. flexneri rfb region which encodes a protein of 36 kDa responsible for the length distribution of O-antigen chains in LPS as seen on silver-stained sodium dodecyl sulfate-polyacrylamide gels. DNA sequence analysis identified an open reading frame (ORF) corresponding to the rol gene. The corresponding protein was almost identical in sequence to the Rol protein of E. coli O75 and was highly homologous to the functionally identical Cld proteins of E. coli O111 and S. enterica serovar typhimurium LT2. These proteins, together with ORF o349 adjacent to rfe, had almost identical hydropathy plots which predict membrane-spanning segments at the amino- and carboxy-terminal ends and a hydrophilic central region. We isolated a number of TnphoA insertions which inactivated the rol gene, and the fusion end points were determined. The PhoA+ Rol::PhoA fusion proteins had PhoA fused within the large hydrophilic central domain of Rol. These proteins were located in the whole-membrane fraction, and extraction with Triton X-100 indicated a cytoplasmic membrane location. This finding was supported by sucrose density gradient fractionation of the whole-cell membranes and of E. coli maxicells expressing L-[35S]methionine-labelled Rol protein. Hence, we interpret these data to indicate that the Rol protein is anchored into the cytoplasmic membrane via its amino- and carboxy-terminal ends but that the majority of the protein is located in the periplasmic space. To confirm that rol is responsible for the effects on O-antigen chain length observed with the cloned rfb genes in E. coli K-12, it was mutated in S. flexneri by insertion of a kanamycin resistance cartridge. The resulting strains produced LPS with O antigens of nonmodal chain length, thereby confirming the function of the rol gene product. We propose a model for the function of Rol protein in which it acts as a type of molecular chaperone to facilitate the interaction of the O-antigen ligase (RfaL) with the O-antigen polymerase (Rfc) and polymerized, acyl carrier lipid-linked, O-antigen chains. Analysis of the DNA sequence of the region identified a number of ORFs corresponding to the well-known gnd and hisIE genes. The rol gene was located immediately downstream of two ORFs with sequence similarity to the gene encoding UDPglucose dehydrogenase (HasB) of Streptococcus pyogenes. The ORFs arise because of a deletion or frameshift mutation within the gene we have termed udg (for UDPglucose dehydrogenase).
Collapse
Affiliation(s)
- R Morona
- Department of Microbiology and Immunology, University of Adelaide, Australia
| | | | | |
Collapse
|
30
|
Guidolin A, Morona JK, Morona R, Hansman D, Paton JC. Nucleotide sequence analysis of genes essential for capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 19F. Infect Immun 1994; 62:5384-96. [PMID: 7960118 PMCID: PMC303279 DOI: 10.1128/iai.62.12.5384-5396.1994] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previous studies have shown that the capsular polysaccharide synthesis (cps) locus of the type 19F Streptococcus pneumoniae strain SSZ was closely linked to a copy of the insertion sequence IS1202 (J.K. Morona, A. Guidolin, R. Morona, D. Hansman, and J.C. Paton, J. Bacteriol. 176:4437-4443, 1994). In the present study, we used plasmid insertion and rescue and inverse PCR to clone 6,322 bp of flanking DNA upstream of IS1202. Sequence analysis indicated that this region contains six complete open reading frames (ORFs) and one partial ORF that are arranged as a single transcriptional unit. Chromosomal disruption of any of these ORFs in a smooth-type 19F strain leads to a rough (unencapsulated) phenotype, indicating that this operon is essential for capsule production. The ORFs have therefore been designated cps19fA to cps19fG, where cps19fA is the first gene of the type 19F cps locus. Furthermore, many of the gene products from this incomplete operon exhibit strong similarities to proteins known to be involved in the production of capsular polysaccharide, exopolysaccharide, teichoic acid, enterobacterial common antigen, and lipopolysaccharide from numerous other bacterial species. This has allowed us to propose functions for many of the type 19F cps gene products. Southern hybridization studies reveal that cps19fA and cps19fB are conserved among all 12 pneumococcal serotypes tested, whereas genes downstream of cps19fB are conserved among some, but not all, of the serotypes tested.
Collapse
Affiliation(s)
- A Guidolin
- Department of Microbiology, Women's and Children's Hospital, North Adelaide, Australia
| | | | | | | | | |
Collapse
|
31
|
Arrecubieta C, López R, García E. Molecular characterization of cap3A, a gene from the operon required for the synthesis of the capsule of Streptococcus pneumoniae type 3: sequencing of mutations responsible for the unencapsulated phenotype and localization of the capsular cluster on the pneumococcal chromosome. J Bacteriol 1994; 176:6375-83. [PMID: 7929009 PMCID: PMC196979 DOI: 10.1128/jb.176.20.6375-6383.1994] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The complete nucleotide sequence of the cap3A gene of Streptococcus pneumoniae, which is directly responsible for the transformation of some unencapsulated, serotype 3 mutants to the encapsulated phenotype, has been determined. This gene encodes a protein of 394 amino acids with a predicted M(r) of 44,646. Twelve independent cap3A mutations have been mapped by genetic transformation, and three of them have been sequenced. Sequence comparisons revealed that cap3A was very similar (74.4%) to the hasB gene of Streptococcus pyogenes, which encodes a UDP-glucose dehydrogenase (UDP-GlcDH) that catalyzes the conversion of UDP-glucose to UDP-glucuronic acid, the donor substances in the pneumococcal type 3 capsular polysaccharide. Furthermore, a PCR-generated cap3A+ gene restored encapsulation in our cap3A mutants as well as in a mutant previously characterized as deficient in UDP-GlcDH (R. Austrian, H. P. Bernheimer, E.E.B. Smith, and G.T. Mills, J. Exp. Med. 110:585-602, 1959). These results support the conclusion that cap3A codes for UDP-GlcDH. We have also identified a region upstream of cap3A that should contain common genes necessary for the production of capsule of any type. Pulsed-field gel electrophoresis and Southern blotting showed that the capsular genes specific for serotype 3 are located near the genes encoding PBP 2X and PBP 1A in the S. pneumoniae chromosome, whereas copies of the common genes (or part of them) appear to be present in different locations in the genome.
Collapse
Affiliation(s)
- C Arrecubieta
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
32
|
Dillard JP, Yother J. Genetic and molecular characterization of capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 3. Mol Microbiol 1994; 12:959-72. [PMID: 7934903 DOI: 10.1111/j.1365-2958.1994.tb01084.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To achieve a better understanding of the genetics of capsular polysaccharide synthesis in Streptococcus pneumoniae, we have identified and characterized mutants deficient in type 3 capsule production. We identified a clone that restored encapsulation in one of our mutants and in a mutant deficient in UDP-glucose dehydrogenase. By hybridization, we developed a chromosomal map of the type 3-specific region and identified a flanking region containing DNA common to all capsule types examined. Insertion mutations were used to identify chromosomal loci required for capsule synthesis, and to map transcription within the region. Using non-destructive insertions linked to type-specific genes of type 2, 3, or 5, we were able to select for the transformation of all necessary genes specific for capsule type. Our data provide molecular evidence to show that all the type-specific genes are linked in a cassette and can be transferred as a unit during transformation.
Collapse
Affiliation(s)
- J P Dillard
- Department of Microbiology, University of Alabama at Birmingham 35294
| | | |
Collapse
|