1
|
Xu D, Pan J, Zhang Y, Fang Y, Zhao L, Su Y. RpS24 Is Required for Meiotic Divisions and Spermatid Differentiation During Drosophila Spermatogenesis. FASEB J 2025; 39:e70646. [PMID: 40421592 DOI: 10.1096/fj.202403223r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
In Drosophila, testes contain highly heterogeneous ribosome populations. Several ribosomal proteins (RPs) have been shown to play specific and distinct roles during different stages of spermatogenesis. However, the detailed functions and mechanisms of RPs in spermatogenesis remain unclear. Here, we analyzed the function of RpS24 during Drosophila spermatogenesis. RpS24 is required for sperm production and male fertility of adult flies. Loss of RpS24 causes defects in meiotic chromosome segregation and cytokinesis, failures of spermatid elongation with incomplete axoneme assembly, and twisted mitochondrial derivatives. To trace back the cause of these defects, we found that RpS24 inhibition resulted in the abnormal number and localization of centrosomes in spermatocytes that led to the formation of irregular spindles. During the subsequent elongation process, the centrosome-derived basal body was unable to couple with the nucleus and underwent degradation that impaired microtubule elongation in the RpS24-knockdown spermatid. Our findings indicated that RpS24 may play a necessary role in maintaining the structural stability of centrosomes, therefore affecting spindle assembly in spermatocytes and the subsequent basal body formation and function in spermatids, which are essential for meiotic chromosome segregation, cytokinesis, and flagellum elongation in Drosophila testes.
Collapse
Affiliation(s)
- Di Xu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jiahui Pan
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yue Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yang Fang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Long Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Ying Su
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Jana S, Glabman RA, Koehne AL. Bridging the gap between histopathology and genomics: Spotlighting spatial omics. Vet Pathol 2025:3009858251322729. [PMID: 40138497 DOI: 10.1177/03009858251322729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Spatial biology has emerged as a transformative field, offering insights into cellular interactions and organization within tissues. The field has evolved rapidly since the coining of the term "spatial omics." Now, the ability to spatially resolve proteins, RNA, chromatin, and lipids is becoming widespread, and the technologies are continually refined. Reagents to support the analysis of veterinary species are available and more are emerging. These new tools will allow pathologists and scientists to unravel the intricate interplay between tissue architecture and diverse cellular phenotypes. By integrating histological observations with spatially resolved genomic data, spatial biology holds immense potential for advancing diagnostic and therapeutic strategies in veterinary medicine. These tools will undoubtedly equip veterinary pathologists to better decipher complex disease processes and identify novel therapeutic targets.
Collapse
|
3
|
Monette A, Aguilar-Mahecha A, Altinmakas E, Angelos MG, Assad N, Batist G, Bommareddy PK, Bonilla DL, Borchers CH, Church SE, Ciliberto G, Cogdill AP, Fattore L, Hacohen N, Haris M, Lacasse V, Lie WR, Mehta A, Ruella M, Sater HA, Spatz A, Taouli B, Tarhoni I, Gonzalez-Kozlova E, Tirosh I, Wang X, Gnjatic S. The Society for Immunotherapy of Cancer Perspective on Tissue-Based Technologies for Immuno-Oncology Biomarker Discovery and Application. Clin Cancer Res 2025; 31:439-456. [PMID: 39625818 DOI: 10.1158/1078-0432.ccr-24-2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025]
Abstract
With immuno-oncology becoming the standard of care for a variety of cancers, identifying biomarkers that reliably classify patient response, resistance, or toxicity becomes the next critical barrier toward improving care. Multiparametric, multi-omics, and computational platforms generating an unprecedented depth of data are poised to usher in the discovery of increasingly robust biomarkers for enhanced patient selection and personalized treatment approaches. Deciding which developing technologies to implement in clinical settings ultimately, applied either alone or in combination, relies on weighing pros and cons, from minimizing patient sampling to maximizing data outputs, and assessing the reproducibility and representativeness of findings, while lessening data fragmentation toward harmonization. These factors are all assessed while taking into consideration the shortest turnaround time. The Society for Immunotherapy of Cancer Biomarkers Committee convened to identify important advances in biomarker technologies and to address advances in biomarker discovery using multiplexed IHC and immunofluorescence, their coupling to single-cell transcriptomics, along with mass spectrometry-based quantitative and spatially resolved proteomics imaging technologies. We summarize key metrics obtained, ease of interpretation, limitations and dependencies, technical improvements, and outward comparisons of these technologies. By highlighting the most interesting recent data contributed by these technologies and by providing ways to improve their outputs, we hope to guide correlative research directions and assist in their evolution toward becoming clinically useful in immuno-oncology.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Adriana Aguilar-Mahecha
- Lady Davis Institute for Medical Research, The Segal Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada
| | - Emre Altinmakas
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Radiology, Koç University School of Medicine, Istanbul, Turkey
| | - Mathew G Angelos
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nima Assad
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gerald Batist
- McGill Centre for Translational Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | - Christoph H Borchers
- Gerald Bronfman Department of Oncology, Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Mohammad Haris
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Vincent Lacasse
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Arnav Mehta
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Marco Ruella
- Division of Hematology-Oncology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Alan Spatz
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Imad Tarhoni
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | | | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
4
|
Lai CW, Lin GW, Lee WC, Chang CC. Enhancing protein signal detection in asexual and viviparous pea aphids: A guided protocol for tissue dissection and proteinase K treatment. MethodsX 2024; 13:102982. [PMID: 39430779 PMCID: PMC11489042 DOI: 10.1016/j.mex.2024.102982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Aphids, as hemipteran insects, reproduce via parthenogenesis and viviparity, resulting in rapid and exponential offspring production. To investigate the molecular mechanisms underlying parthenogenetic viviparity in asexual aphids, precise protein detection through immunostaining is essential. Our previous research demonstrated the need for proteinase K (PK) treatment to improve tissue permeability, enabling antibodies targeting the germ-cell marker Ap-Vas1 to access gastrulating and later-stage embryos. However, optimal PK digestion protocols have not been thoroughly explored. In this study, we propose strategies to optimize PK digestion conditions for early, middle, and late-stage pea aphid embryos, which have varying tissue thicknesses. Additionally, we extend the application of PK treatment to salivary glands, a representative somatic tissue, by optimizing conditions for antibody penetration against the salivary gland marker C002. To enhance spatial precision in signal detection, we provide a detailed protocol for tissue dissection specific to pea aphids, focusing on the preservation of tissue integrity. These comprehensive guidelines, covering tissue dissection and PK titration, are expected to improve the specificity and intensity of protein signals in pea aphids and other aphid species.•Provide aphid-specific dissection methods to obtain intact embryos and salivary glands.•Present strategies for optimizing PK treatment conditions across different tissue types.
Collapse
Affiliation(s)
- Chun-wei Lai
- Laboratory for Genomics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University (NTU), Taipei, Taiwan
- Genome and Systems Biology Degree Program, NTU, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, NTU, Taipei, Taiwan
- Taiwan Aphid Genomics Consortium, MK Innovation Hall, NTU, Taipei, Taiwan
| | - Gee-Way Lin
- Laboratory for Genomics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University (NTU), Taipei, Taiwan
- College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, NTU, Taipei, Taiwan
- Taiwan Aphid Genomics Consortium, MK Innovation Hall, NTU, Taipei, Taiwan
| | - Wen-Chih Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan Aphid Genomics Consortium, MK Innovation Hall, NTU, Taipei, Taiwan
| | - Chun-che Chang
- Laboratory for Genomics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University (NTU), Taipei, Taiwan
- Genome and Systems Biology Degree Program, NTU, Taipei, Taiwan
- Institute of Biotechnology, College of Bio-Resources and Agriculture, NTU, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, NTU, Taipei, Taiwan
- International Graduate Program of Molecular Science and Technology, NTU, Taipei, Taiwan
- Master Program for Plant Medicine, NTU, Taipei, Taiwan
- Taiwan Aphid Genomics Consortium, MK Innovation Hall, NTU, Taipei, Taiwan
| |
Collapse
|
5
|
Guerrero-Hernández C, Doddihal V, Mann FG, Sánchez Alvarado A. A powerful and versatile new fixation protocol for immunostaining and in situ hybridization that preserves delicate tissues. BMC Biol 2024; 22:252. [PMID: 39497153 PMCID: PMC11533299 DOI: 10.1186/s12915-024-02052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Understanding how genes function to heal wounds and restore lost tissue is essential for studying regeneration. Whole-mount in situ hybridization (WISH) is a powerful and widely used technique to visualize the expression patterns of genes in different biological systems. Yet, existing methods to permeabilize samples for WISH can damage or destroy fragile regenerating tissues, thereby preventing such experiments. RESULTS Here, we describe a new protocol for in situ hybridization (ISH) and immunostaining in the highly regenerative planarian Schmidtea mediterranea. This new Nitric Acid/Formic Acid (NAFA) protocol is compatible with both the assays and prevents degradation of the epidermis and regeneration blastema. The NAFA protocol achieves this without the use of proteinase K digestion which likely leads to better preservation of antigen epitopes. We show that the NAFA protocol successfully permits development of chromogenic and fluorescent signals in situ, while preserving the anatomy of the animal. Furthermore, the immunostaining of different proteins was compatible with the NAFA protocol following fluorescent in situ hybridization. Additionally, the tissue fixation protocol was easily adapted for regenerating killifish tail fin, which yielded better ISH signal with minimal background. CONCLUSIONS Thus, the NAFA protocol robustly preserves the delicate wounded tissues while also facilitating probe and antibody penetration into internal tissues. Furthermore, the fixation protocol is compatible for WISH on regenerating teleost fins suggesting that it will be a valuable technique for studying the processes of wounding response and regeneration in multiple species.
Collapse
Affiliation(s)
| | - Viraj Doddihal
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Frederick G Mann
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Howard Hughes Medical Institute, Kansas City, MO, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Howard Hughes Medical Institute, Kansas City, MO, USA.
| |
Collapse
|
6
|
Du C, Fan W, Zhou Y. Integrated Biochemical and Computational Methods for Deciphering RNA-Processing Codes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1875. [PMID: 39523464 DOI: 10.1002/wrna.1875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
RNA processing involves steps such as capping, splicing, polyadenylation, modification, and nuclear export. These steps are essential for transforming genetic information in DNA into proteins and contribute to RNA diversity and complexity. Many biochemical methods have been developed to profile and quantify RNAs, as well as to identify the interactions between RNAs and RNA-binding proteins (RBPs), especially when coupled with high-throughput sequencing technologies. With the rapid accumulation of diverse data, it is crucial to develop computational methods to convert the big data into biological knowledge. In particular, machine learning and deep learning models are commonly utilized to learn the rules or codes governing the transformation from DNA sequences to intriguing RNAs based on manually designed or automatically extracted features. When precise enough, the RNA codes can be incredibly useful for predicting RNA products, decoding the molecular mechanisms, forecasting the impact of disease variants on RNA processing events, and identifying driver mutations. In this review, we systematically summarize the biochemical and computational methods for deciphering five important RNA codes related to alternative splicing, alternative polyadenylation, RNA localization, RNA modifications, and RBP binding. For each code, we review the main types of experimental methods used to generate training data, as well as the key features, strategic model structures, and advantages of representative tools. We also discuss the challenges encountered in developing predictive models using large language models and extensive domain knowledge. Additionally, we highlight useful resources and propose ways to improve computational tools for studying RNA codes.
Collapse
Affiliation(s)
- Chen Du
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Weiliang Fan
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Marhabaie M, Wharton TH, Kim SY, Wharton RP. Widespread regulation of the maternal transcriptome by Nanos in Drosophila. PLoS Biol 2024; 22:e3002840. [PMID: 39401257 PMCID: PMC11501031 DOI: 10.1371/journal.pbio.3002840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/24/2024] [Accepted: 09/14/2024] [Indexed: 10/23/2024] Open
Abstract
The translational repressor Nanos (Nos) regulates a single target, maternal hunchback (hb) mRNA, to govern abdominal segmentation in the early Drosophila embryo. Nos is recruited to sites in the 3' UTR of hb mRNA in collaboration with the sequence-specific RNA-binding protein Pumilio (Pum); on its own, Nos has no binding specificity. Nos is expressed at other stages of development, but very few mRNA targets that might mediate its action at these stages have been described. Nor has it been clear whether Nos is targeted to other mRNAs in concert with Pum or via other mechanisms. In this report, we identify mRNAs targeted by Nos via 2 approaches. First, we identify mRNAs depleted upon expression of a chimera bearing Nos fused to the nonsense mediated decay (NMD) factor Upf1. We find that, in addition to hb, Upf1-Nos depletes approximately 2,600 mRNAs from the maternal transcriptome in early embryos. Virtually all of these appear to be targeted in a canonical, hb-like manner in concert with Pum. In a second, more conventional approach, we identify mRNAs that are stabilized during the maternal zygotic transition (MZT) in embryos from nos- females. Most (86%) of the 1,185 mRNAs regulated by Nos are also targeted by Upf1-Nos, validating use of the chimera. Previous work has shown that 60% of the maternal transcriptome is degraded in early embryos. We find that maternal mRNAs targeted by Upf1-Nos are hypoadenylated and inefficiently translated at the ovary-embryo transition; they are subsequently degraded in the early embryo, accounting for 59% of all destabilized maternal mRNAs. We suggest that the late ovarian burst of Nos represses a large fraction of the maternal transcriptome, priming it for later degradation by other factors in the embryo.
Collapse
Affiliation(s)
- Mohammad Marhabaie
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Tammy H. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Sung Yun Kim
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Robin P. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
8
|
Gomez JM, Nolte H, Vogelsang E, Dey B, Takeda M, Giudice G, Faxel M, Haunold T, Cepraga A, Zinzen RP, Krüger M, Petsalaki E, Wang YC, Leptin M. Differential regulation of the proteome and phosphoproteome along the dorso-ventral axis of the early Drosophila embryo. eLife 2024; 13:e99263. [PMID: 39221782 PMCID: PMC11466282 DOI: 10.7554/elife.99263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
The initially homogeneous epithelium of the early Drosophila embryo differentiates into regional subpopulations with different behaviours and physical properties that are needed for morphogenesis. The factors at top of the genetic hierarchy that control these behaviours are known, but many of their targets are not. To understand how proteins work together to mediate differential cellular activities, we studied in an unbiased manner the proteomes and phosphoproteomes of the three main cell populations along the dorso-ventral axis during gastrulation using mutant embryos that represent the different populations. We detected 6111 protein groups and 6259 phosphosites of which 3398 and 3433 were differentially regulated, respectively. The changes in phosphosite abundance did not correlate with changes in host protein abundance, showing phosphorylation to be a regulatory step during gastrulation. Hierarchical clustering of protein groups and phosphosites identified clusters that contain known fate determinants such as Doc1, Sog, Snail, and Twist. The recovery of the appropriate known marker proteins in each of the different mutants we used validated the approach, but also revealed that two mutations that both interfere with the dorsal fate pathway, Toll10B and serpin27aex do this in very different manners. Diffused network analyses within each cluster point to microtubule components as one of the main groups of regulated proteins. Functional studies on the role of microtubules provide the proof of principle that microtubules have different functions in different domains along the DV axis of the embryo.
Collapse
Affiliation(s)
- Juan Manuel Gomez
- Directors's Research and Developmental Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Institute of Genetics, University of CologneCologneGermany
| | - Hendrik Nolte
- Institute of Genetics, CECAD Research CenterCologneGermany
| | - Elisabeth Vogelsang
- Institute of Genetics, University of CologneCologneGermany
- Molecular Cell Biology, Anatomy, University Hospital Cologne, University of CologneCologneGermany
| | - Bipasha Dey
- RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | | | - Girolamo Giudice
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome CampusHinxtonUnited Kingdom
| | - Miriam Faxel
- Max Delbrück Center for Molecular MedicineBerlinGermany
| | - Theresa Haunold
- Directors's Research and Developmental Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
| | - Alina Cepraga
- Directors's Research and Developmental Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
| | | | - Marcus Krüger
- Institute of Genetics, CECAD Research CenterCologneGermany
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome CampusHinxtonUnited Kingdom
| | - Yu-Chiun Wang
- RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Maria Leptin
- Directors's Research and Developmental Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Institute of Genetics, University of CologneCologneGermany
| |
Collapse
|
9
|
Makhijani K, Mar J, Gaziova I, Bhat KM. Posttranscriptional regulation of the T-box gene midline via the 3'UTR in Drosophila is complex and cell- and tissue-dependent. Genetics 2024; 227:iyae087. [PMID: 38805187 DOI: 10.1093/genetics/iyae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
The T-box (Tbx) proteins have a 180-230 amino acid DNA-binding domain, first reported in the Brachyury (T) protein. They are highly conserved among metazoans. They regulate a multitude of cellular functions in development and disease. Here, we report posttranscriptional and translational regulation of midline (mid), a Tbx member in Drosophila. We found that the 3'UTR of mid has mRNA degradation elements and AT-rich sequences. In Schneider S2 cells, mid-mRNA could be detected only when the transgene was without the 3'UTR. Similarly, the 3'UTR linked to the Renilla luciferase reporter significantly reduced the activity of the Luciferase, whereas deleting only the degradation elements from the 3'UTR resulted in reduced activity, but not as much. Overexpression of mid in MP2, an embryonic neuroblast, showed no significant difference in the levels of mid-mRNA between the 2 transgenes, with and without the 3'UTR, indicating the absence of posttranscriptional regulation of mid in MP2. Moreover, while elevated mid-RNA was detected in MP2 in nearly all hemisegments, only a fifth of those hemisegments had elevated levels of the protein. Overexpression of the 2 transgenes resulted in MP2-lineage defects at about the same frequency. These results indicate a translational/posttranslational regulation of mid in MP2. The regulation of ectopically expressed mid in the wing imaginal disc was complex. In the wing disc, where mid is not expressed, the ectopic expression of the transgene lacking the 3'UTR had a higher level of mid-RNA and the protein had a stronger phenotypic effect. These results indicate that the 3'UTR can subject mid-mRNA to degradation in a cell- and tissue-specific manner. We further report a balancer-mediated transgenerational modifier effect on the expression and gain of function effects of the 2 transgenes.
Collapse
Affiliation(s)
- Kalpana Makhijani
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33613, USA
| | - Jordan Mar
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33613, USA
| | - Ivana Gaziova
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
| | - Krishna Moorthi Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33613, USA
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
10
|
Gu L, Sauceda R, Brar J, Fessahaye F, Joo M, Lee J, Nguyen J, Teng M, Weng M. A novel protein Moat prevents ectopic epithelial folding by limiting Bazooka/Par3-dependent adherens junctions. Mol Biol Cell 2024; 35:ar110. [PMID: 38922850 PMCID: PMC11321041 DOI: 10.1091/mbc.e24-04-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Contractile myosin and cell adhesion work together to induce tissue shape changes, but how they are patterned to achieve diverse morphogenetic outcomes remains unclear. Epithelial folding occurs via apical constriction, mediated by apical contractile myosin engaged with adherens junctions, as in Drosophila ventral furrow formation. While it has been shown that a multicellular gradient of myosin contractility determines folding shape, the impact of multicellular patterning of adherens junction levels on tissue folding is unknown. We identified a novel Drosophila gene moat essential for differential apical constriction and folding behaviors across the ventral epithelium which contains both folding ventral furrow and nonfolding ectodermal anterior midgut (ectoAMG). We show that Moat functions to downregulate polarity-dependent adherens junctions through inhibiting cortical clustering of Bazooka/Par3 proteins. Such downregulation of polarity-dependent junctions is critical for establishing a myosin-dependent pattern of adherens junctions, which in turn mediates differential apical constriction in the ventral epithelium. In moat mutants, abnormally high levels of polarity-dependent junctions promote ectopic apical constriction in cells with low-level contractile myosin, resulting in expansion of infolding from ventral furrow to ectoAMG, and flattening of ventral furrow constriction gradient. Our results demonstrate that tissue-scale distribution of adhesion levels patterns apical constriction and establishes morphogenetic boundaries.
Collapse
Affiliation(s)
- Lingkun Gu
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Rolin Sauceda
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Jasneet Brar
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Ferdos Fessahaye
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Minsang Joo
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Joan Lee
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | | - Marissa Teng
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Mo Weng
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| |
Collapse
|
11
|
Garfinkel AM, Ilker E, Miyazawa H, Schmeisser K, Tennessen JM. Historic obstacles and emerging opportunities in the field of developmental metabolism - lessons from Heidelberg. Development 2024; 151:dev202937. [PMID: 38912552 PMCID: PMC11299503 DOI: 10.1242/dev.202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The field of developmental metabolism is experiencing a technological revolution that is opening entirely new fields of inquiry. Advances in metabolomics, small-molecule sensors, single-cell RNA sequencing and computational modeling present new opportunities for exploring cell-specific and tissue-specific metabolic networks, interorgan metabolic communication, and gene-by-metabolite interactions in time and space. Together, these advances not only present a means by which developmental biologists can tackle questions that have challenged the field for centuries, but also present young scientists with opportunities to define new areas of inquiry. These emerging frontiers of developmental metabolism were at the center of a highly interactive 2023 EMBO workshop 'Developmental metabolism: flows of energy, matter, and information'. Here, we summarize key discussions from this forum, emphasizing modern developmental biology's challenges and opportunities.
Collapse
Affiliation(s)
- Alexandra M. Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Efe Ilker
- Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany
| | - Hidenobu Miyazawa
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | | |
Collapse
|
12
|
Zhang L, Xiong Z, Xiao M. A Review of the Application of Spatial Transcriptomics in Neuroscience. Interdiscip Sci 2024; 16:243-260. [PMID: 38374297 DOI: 10.1007/s12539-024-00603-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024]
Abstract
Since spatial transcriptomics can locate and distinguish the gene expression of functional genes in special regions and tissue, it is important for us to investigate the brain development, the development mechanism of brain diseases, and the relationship between brain structure and function in Neuroscience (or Brain science). While previous studies have introduced the crucial spatial transcriptomic techniques and data analysis methods, there are few studies to comprehensively overview the key methods, data resources, and technological applications of spatial transcriptomics in Neuroscience. For these reasons, we first investigate several common spatial transcriptomic data analysis approaches and data resources. Second, we introduce the applications of the spatial transcriptomic data analysis approaches in Neuroscience. Third, we summarize the integrating spatial transcriptomics with other technologies in Neuroscience. Finally, we discuss the challenges and future research directions of spatial transcriptomics in Neuroscience.
Collapse
Affiliation(s)
- Le Zhang
- College of Computer Science, Sichuan University, Chengdu, 610065, China
| | - Zhenqi Xiong
- College of Computer Science, Sichuan University, Chengdu, 610065, China
| | - Ming Xiao
- College of Computer Science, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
13
|
Schulte S, Shin B, Rothenberg EV, Pierce NA. Multiplex, Quantitative, High-Resolution Imaging of Protein:Protein Complexes via Hybridization Chain Reaction. ACS Chem Biol 2024; 19:280-288. [PMID: 38232374 PMCID: PMC10877569 DOI: 10.1021/acschembio.3c00431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Signal amplification based on the mechanism of hybridization chain reaction (HCR) facilitates spatial exploration of gene regulatory networks by enabling multiplex, quantitative, high-resolution imaging of RNA and protein targets. Here, we extend these capabilities to the imaging of protein:protein complexes, using proximity-dependent cooperative probes to conditionally generate a single amplified signal if and only if two target proteins are colocalized within the sample. HCR probes and amplifiers combine to provide automatic background suppression throughout the protocol, ensuring that even if reagents bind nonspecifically in the sample, they will not generate amplified background. We demonstrate protein:protein imaging with a high signal-to-background ratio in human cells, mouse proT cells, and highly autofluorescent formalin-fixed paraffin-embedded (FFPE) human breast tissue sections. Further, we demonstrate multiplex imaging of three different protein:protein complexes simultaneously and validate that HCR enables accurate and precise relative quantitation of protein:protein complexes with subcellular resolution in an anatomical context. Moreover, we establish a unified framework for simultaneous multiplex, quantitative, high-resolution imaging of RNA, protein, and protein:protein targets, with one-step, isothermal, enzyme-free HCR signal amplification performed for all target classes simultaneously.
Collapse
Affiliation(s)
- Samuel
J. Schulte
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Boyoung Shin
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Ellen V. Rothenberg
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Niles A. Pierce
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Division
of Engineering and Applied Science, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
14
|
Schulte SJ, Fornace ME, Hall JK, Shin GJ, Pierce NA. HCR spectral imaging: 10-plex, quantitative, high-resolution RNA and protein imaging in highly autofluorescent samples. Development 2024; 151:dev202307. [PMID: 38415752 PMCID: PMC10941662 DOI: 10.1242/dev.202307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/21/2023] [Indexed: 02/29/2024]
Abstract
Signal amplification based on the mechanism of hybridization chain reaction (HCR) provides a unified framework for multiplex, quantitative, high-resolution imaging of RNA and protein targets in highly autofluorescent samples. With conventional bandpass imaging, multiplexing is typically limited to four or five targets owing to the difficulty in separating signals generated by fluorophores with overlapping spectra. Spectral imaging has offered the conceptual promise of higher levels of multiplexing, but it has been challenging to realize this potential in highly autofluorescent samples, including whole-mount vertebrate embryos. Here, we demonstrate robust HCR spectral imaging with linear unmixing, enabling simultaneous imaging of ten RNA and/or protein targets in whole-mount zebrafish embryos and mouse brain sections. Further, we demonstrate that the amplified and unmixed signal in each of the ten channels is quantitative, enabling accurate and precise relative quantitation of RNA and/or protein targets with subcellular resolution, and RNA absolute quantitation with single-molecule resolution, in the anatomical context of highly autofluorescent samples.
Collapse
Affiliation(s)
- Samuel J. Schulte
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark E. Fornace
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John K. Hall
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grace J. Shin
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Niles A. Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Cai P, Zhang W, Jiang S, Xiong Y, Qiao H, Yuan H, Gao Z, Zhou Y, Jin S, Fu H. Role of Mn-LIPA in Sex Hormone Regulation and Gonadal Development in the Oriental River Prawn, Macrobrachium nipponense. Int J Mol Sci 2024; 25:1399. [PMID: 38338678 PMCID: PMC10855233 DOI: 10.3390/ijms25031399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
This study investigates the role of lysosomal acid lipase (LIPA) in sex hormone regulation and gonadal development in Macrobrachium nipponense. The full-length Mn-LIPA cDNA was cloned, and its expression patterns were analyzed using quantitative real-time PCR (qPCR) in various tissues and developmental stages. Higher expression levels were observed in the hepatopancreas, cerebral ganglion, and testes, indicating the potential involvement of Mn-LIPA in sex differentiation and gonadal development. In situ hybridization experiments revealed strong Mn-LIPA signaling in the spermatheca and hepatopancreas, suggesting their potential role in steroid synthesis (such as cholesterol, fatty acids, cholesteryl ester, and triglycerides) and sperm maturation. Increased expression levels of male-specific genes, such as insulin-like androgenic gland hormone (IAG), sperm gelatinase (SG), and mab-3-related transcription factor (Dmrt11E), were observed after dsMn-LIPA (double-stranded LIPA) injection, and significant inhibition of sperm development and maturation was observed histologically. Additionally, the relationship between Mn-LIPA and sex-related genes (IAG, SG, and Dmrt11E) and hormones (17β-estradiol and 17α-methyltestosterone) was explored by administering sex hormones to male prawns, indicating that Mn-LIPA does not directly control the production of sex hormones but rather utilizes the property of hydrolyzing triglycerides and cholesterol to provide energy while influencing the synthesis and secretion of self-sex hormones. These findings provide valuable insights into the function of Mn-LIPA in M. nipponense and its potential implications for understanding sex differentiation and gonadal development in crustaceans. It provides an important theoretical basis for the realization of a monosex culture of M. nipponense.
Collapse
Affiliation(s)
- Pengfei Cai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (Y.Z.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (H.Q.)
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (H.Q.)
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (H.Q.)
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (H.Q.)
| | - Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (Y.Z.)
| | - Zijian Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (Y.Z.)
| | - Yongkang Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (Y.Z.)
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (Y.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (H.Q.)
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (Y.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (H.Q.)
| |
Collapse
|
16
|
Hunt G, Vaid R, Pirogov S, Pfab A, Ziegenhain C, Sandberg R, Reimegård J, Mannervik M. Tissue-specific RNA Polymerase II promoter-proximal pause release and burst kinetics in a Drosophila embryonic patterning network. Genome Biol 2024; 25:2. [PMID: 38166964 PMCID: PMC10763363 DOI: 10.1186/s13059-023-03135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Formation of tissue-specific transcriptional programs underlies multicellular development, including dorsoventral (DV) patterning of the Drosophila embryo. This involves interactions between transcriptional enhancers and promoters in a chromatin context, but how the chromatin landscape influences transcription is not fully understood. RESULTS Here we comprehensively resolve differential transcriptional and chromatin states during Drosophila DV patterning. We find that RNA Polymerase II pausing is established at DV promoters prior to zygotic genome activation (ZGA), that pausing persists irrespective of cell fate, but that release into productive elongation is tightly regulated and accompanied by tissue-specific P-TEFb recruitment. DV enhancers acquire distinct tissue-specific chromatin states through CBP-mediated histone acetylation that predict the transcriptional output of target genes, whereas promoter states are more tissue-invariant. Transcriptome-wide inference of burst kinetics in different cell types revealed that while DV genes are generally characterized by a high burst size, either burst size or frequency can differ between tissues. CONCLUSIONS The data suggest that pausing is established by pioneer transcription factors prior to ZGA and that release from pausing is imparted by enhancer chromatin state to regulate bursting in a tissue-specific manner in the early embryo. Our results uncover how developmental patterning is orchestrated by tissue-specific bursts of transcription from Pol II primed promoters in response to enhancer regulatory cues.
Collapse
Affiliation(s)
- George Hunt
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Roshan Vaid
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sergei Pirogov
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexander Pfab
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Rickard Sandberg
- Department Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Reimegård
- Department Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mattias Mannervik
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
17
|
Cheng S, Jacobs CGC, Mogollón Pérez EA, Chen D, van de Sanden JT, Bretscher KM, Verweij F, Bosman JS, Hackmann A, Merks RMH, van den Heuvel J, van der Zee M. A life-history allele of large effect shortens developmental time in a wild insect population. Nat Ecol Evol 2024; 8:70-82. [PMID: 37957313 DOI: 10.1038/s41559-023-02246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Developmental time is a key life-history trait with large effects on Darwinian fitness. In many insects, developmental time is currently under strong selection to minimize ecological mismatches in seasonal timing induced by climate change. The genetic basis of responses to such selection, however, is poorly understood. To address this problem, we set up a long-term evolve-and-resequence experiment in the beetle Tribolium castaneum and selected replicate, outbred populations for fast or slow embryonic development. The response to this selection was substantial and embryonic developmental timing of the selection lines started to diverge during dorsal closure. Pooled whole-genome resequencing, gene expression analysis and an RNAi screen pinpoint a 222 bp deletion containing binding sites for Broad and Tramtrack upstream of the ecdysone degrading enzyme Cyp18a1 as a main target of selection. Using CRISPR/Cas9 to reconstruct this allele in the homogenous genetic background of a laboratory strain, we unravel how this single deletion advances the embryonic ecdysone peak inducing dorsal closure and show that this allele accelerates larval development but causes a trade-off with fecundity. Our study uncovers a life-history allele of large effect and reveals the evolvability of developmental time in a natural insect population.
Collapse
Affiliation(s)
- Shixiong Cheng
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Elisa A Mogollón Pérez
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Daipeng Chen
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Joep T van de Sanden
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | | | - Femke Verweij
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Jelle S Bosman
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Amke Hackmann
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Roeland M H Merks
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | | |
Collapse
|
18
|
Bishop TR, Onal P, Xu Z, Zheng M, Gunasinghe H, Nien CY, Small S, Datta RR. Multi-level regulation of even-skipped stripes by the ubiquitous factor Zelda. Development 2023; 150:dev201860. [PMID: 37934130 PMCID: PMC10730019 DOI: 10.1242/dev.201860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
The zinc-finger protein Zelda (Zld) is a key activator of zygotic transcription in early Drosophila embryos. Here, we study Zld-dependent regulation of the seven-striped pattern of the pair-rule gene even-skipped (eve). Individual stripes are regulated by discrete enhancers that respond to broadly distributed activators; stripe boundaries are formed by localized repressors encoded by the gap genes. The strongest effects of Zld are on stripes 2, 3 and 7, which are regulated by two enhancers in a 3.8 kb genomic fragment that includes the eve basal promoter. We show that Zld facilitates binding of the activator Bicoid and the gap repressors to this fragment, consistent with its proposed role as a pioneer protein. To test whether the effects of Zld are direct, we mutated all canonical Zld sites in the 3.8 kb fragment, which reduced expression but failed to phenocopy the abolishment of stripes caused by removing Zld in trans. We show that Zld also indirectly regulates the eve stripes by establishing specific gap gene expression boundaries, which provides the embryonic spacing required for proper stripe activation.
Collapse
Affiliation(s)
- Timothy R. Bishop
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Pinar Onal
- Department of Molecular Biology and Genetics, Ihsan Dogramaci Bilkent University, Universiteler Mahallesi, 06800 Ankara, Turkey
| | - Zhe Xu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Michael Zheng
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Himari Gunasinghe
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Chung-Yi Nien
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Stephen Small
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Rhea R. Datta
- Department of Biology, Hamilton College, 198 College Hill Rd., Clinton, NY 13323, USA
| |
Collapse
|
19
|
Marhabaie M, Wharton TH, Kim SY, Wharton RP. Widespread regulation of the maternal transcriptome by Nanos in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555109. [PMID: 37693559 PMCID: PMC10491125 DOI: 10.1101/2023.08.28.555109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The translational repressor Nanos (Nos) regulates a single target, maternal hunchback (hb) mRNA, to govern abdominal segmentation in the early Drosophila embryo. Nos is recruited specifically to sites in the 3'-UTR of hb mRNA in collaboration with the sequence-specific RNA-binding protein Pumilio (Pum); on its own, Nos has no binding specificity. Nos is expressed at other stages of development, but very few mRNA targets that might mediate its action at these stages have been described. Nor has it been clear whether Nos is targeted to other mRNAs in concert with Pum or via other mechanisms. In this report, we identify mRNAs targeted by Nos via two approaches. In the first method, we identify mRNAs depleted upon expression of a chimera bearing Nos fused to the nonsense mediated decay (NMD) factor Upf1. We find that, in addition to hb, Upf1-Nos depletes ~2600 mRNAs from the maternal transcriptome in early embryos. Virtually all of these appear to be targeted in a canonical, hb-like manner in concert with Pum. In a second, more conventional approach, we identify mRNAs that are stabilized during the maternal zygotic transition (MZT) in embryos from nos- females. Most (86%) of the 1185 mRNAs regulated by Nos are also targeted by Upf1-Nos, validating use of the chimera. Approximately 60% of mRNAs targeted by Upf1-Nos are not stabilized in the absence of Nos. However, Upf1-Nos mRNA targets are hypo-adenylated and inefficiently translated at the ovary-embryo transition, whether or not they suffer Nos-dependent degradation in the embryo. We suggest that the late ovarian burst of Nos represses a large fraction of the maternal transcriptome, priming it for later degradation by other factors during the MZT in the embryo.
Collapse
|
20
|
Wang J, Horlacher M, Cheng L, Winther O. RNA trafficking and subcellular localization-a review of mechanisms, experimental and predictive methodologies. Brief Bioinform 2023; 24:bbad249. [PMID: 37466130 PMCID: PMC10516376 DOI: 10.1093/bib/bbad249] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
RNA localization is essential for regulating spatial translation, where RNAs are trafficked to their target locations via various biological mechanisms. In this review, we discuss RNA localization in the context of molecular mechanisms, experimental techniques and machine learning-based prediction tools. Three main types of molecular mechanisms that control the localization of RNA to distinct cellular compartments are reviewed, including directed transport, protection from mRNA degradation, as well as diffusion and local entrapment. Advances in experimental methods, both image and sequence based, provide substantial data resources, which allow for the design of powerful machine learning models to predict RNA localizations. We review the publicly available predictive tools to serve as a guide for users and inspire developers to build more effective prediction models. Finally, we provide an overview of multimodal learning, which may provide a new avenue for the prediction of RNA localization.
Collapse
Affiliation(s)
- Jun Wang
- Bioinformatics Centre, Department of Biology, University of Copenhagen, København Ø 2100, Denmark
| | - Marc Horlacher
- Computational Health Center, Helmholtz Center, Munich, Germany
| | - Lixin Cheng
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| | - Ole Winther
- Bioinformatics Centre, Department of Biology, University of Copenhagen, København Ø 2100, Denmark
- Center for Genomic Medicine, Rigshospitalet (Copenhagen University Hospital), Copenhagen 2100, Denmark
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
21
|
Cheng M, Jiang Y, Xu J, Mentis AFA, Wang S, Zheng H, Sahu SK, Liu L, Xu X. Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges. J Genet Genomics 2023; 50:625-640. [PMID: 36990426 DOI: 10.1016/j.jgg.2023.03.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
The ability to explore life kingdoms is largely driven by innovations and breakthroughs in technology, from the invention of the microscope 350 years ago to the recent emergence of single-cell sequencing, by which the scientific community has been able to visualize life at an unprecedented resolution. Most recently, the Spatially Resolved Transcriptomics (SRT) technologies have filled the gap in probing the spatial or even three-dimensional organization of the molecular foundation behind the molecular mysteries of life, including the origin of different cellular populations developed from totipotent cells and human diseases. In this review, we introduce recent progresses and challenges on SRT from the perspectives of technologies and bioinformatic tools, as well as the representative SRT applications. With the currently fast-moving progress of the SRT technologies and promising results from early adopted research projects, we can foresee the bright future of such new tools in understanding life at the most profound analytical level.
Collapse
Affiliation(s)
| | - Yujia Jiang
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
| | | | | | - Shuai Wang
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Longqi Liu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xun Xu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China; BGI-Shenzhen, Shenzhen, Guangdong 518103, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, Guangdong 518120, China.
| |
Collapse
|
22
|
Schulte SJ, Fornace ME, Hall JK, Pierce NA. HCR spectral imaging: 10-plex, quantitative, high-resolution RNA and protein imaging in highly autofluorescent samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555626. [PMID: 37693627 PMCID: PMC10491186 DOI: 10.1101/2023.08.30.555626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Signal amplification based on the mechanism of hybridization chain reaction (HCR) provides a unified framework for multiplex, quantitative, high-resolution imaging of RNA and protein targets in highly autofluorescent samples. With conventional bandpass imaging, multiplexing is typically limited to four or five targets due to the difficulty in separating signals generated by fluorophores with overlapping spectra. Spectral imaging has offered the conceptual promise of higher levels of multiplexing, but it has been challenging to realize this potential in highly autofluorescent samples including whole-mount vertebrate embryos. Here, we demonstrate robust HCR spectral imaging with linear unmixing, enabling simultaneous imaging of 10 RNA and/or protein targets in whole-mount zebrafish embryos and mouse brain sections. Further, we demonstrate that the amplified and unmixed signal in each of 10 channels is quantitative, enabling accurate and precise relative quantitation of RNA and/or protein targets with subcellular resolution, and RNA absolute quantitation with single-molecule resolution, in the anatomical context of highly autofluorescent samples. SUMMARY Spectral imaging with signal amplification based on the mechanism of hybridization chain reaction enables robust 10-plex, quantitative, high-resolution imaging of RNA and protein targets in whole-mount vertebrate embryos and brain sections.
Collapse
|
23
|
Chen T, Yuan H, Qiao H, Jiang S, Zhang W, Xiong Y, Fu H, Jin S. Mn-XRN1 Has an Inhibitory Effect on Ovarian Reproduction in Macrobrachium nipponense. Genes (Basel) 2023; 14:1454. [PMID: 37510358 PMCID: PMC10380074 DOI: 10.3390/genes14071454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
XRN1 is an exoribonuclease that degrades mRNA in the cytoplasm along the 5'-3' direction. A previous study indicated that it may be involved in the reproduction of Macrobrachium nipponense. Quantitative real-time PCR was used to detect the spatiotemporal expression pattern of Mn-XRN1. At the tissue level, Mn-XRN1 was significantly expressed in the ovary. During development, Mn-XRN1 was significantly expressed at the CS stage of the embryo, on the 10th day post-larval and in the O2 stage of ovarian reproduction. The in situ hybridization results showed the location of Mn-XRN1 in the ovary. The expression of Mn-VASA was significantly increased after in vivo injection of Mn-XRN1 dsRNA. This suggests that Mn-XRN1 negatively regulates the expression of Mn-VASA. Furthermore, we counted the number of M. nipponense at various stages of ovarian reproduction on different days after RNAi. The results showed that ovarian development was significantly accelerated. In general, the results of the present study indicate that Mn-XRN1 has an inhibitory effect on the ovarian maturation of M. nipponense. The inhibitory effect might be through negative regulation of Mn-VASA.
Collapse
Affiliation(s)
- Tianyong Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
24
|
Pham K, Ho L, D'Incal CP, De Cock A, Berghe WV, Goethals P. Epigenetic analytical approaches in ecotoxicological aquatic research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121737. [PMID: 37121302 DOI: 10.1016/j.envpol.2023.121737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental epigenetics has become a key research focus in global climate change studies and environmental pollutant investigations impacting aquatic ecosystems. Specifically, triggered by environmental stress conditions, intergenerational DNA methylation changes contribute to biological adaptive responses and survival of organisms to increase their tolerance towards these conditions. To critically review epigenetic analytical approaches in ecotoxicological aquatic research, we evaluated 78 publications reported over the past five years (2016-2021) that applied these methods to investigate the responses of aquatic organisms to environmental changes and pollution. The results show that DNA methylation appears to be the most robust epigenetic regulatory mark studied in aquatic animals. As such, multiple DNA methylation analysis methods have been developed in aquatic organisms, including enzyme restriction digestion-based and methyl-specific immunoprecipitation methods, and bisulfite (in)dependent sequencing strategies. In contrast, only a handful of aquatic studies, i.e. about 15%, have been focusing on histone variants and post-translational modifications due to the lack of species-specific affinity based immunological reagents, such as specific antibodies for chromatin immunoprecipitation applications. Similarly, ncRNA regulation remains as the least popular method used in the field of environmental epigenetics. Insights into the opportunities and challenges of the DNA methylation and histone variant analysis methods as well as decreasing costs of next generation sequencing approaches suggest that large-scale epigenetic environmental studies in model and non-model organisms will soon become available in the near future. Moreover, antibody-dependent and independent methods, such as mass spectrometry-based methods, can be used as an alternative epigenetic approach to characterize global changes of chromatin histone modifications in future aquatic research. Finally, a systematic guide for DNA methylation and histone variant methods is offered for ecotoxicological aquatic researchers to select the most relevant epigenetic analytical approach in their research.
Collapse
Affiliation(s)
- Kim Pham
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Long Ho
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Claudio Peter D'Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Andrée De Cock
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
25
|
Cheatle Jarvela AM, Trelstad CS, Pick L. Anterior-posterior patterning of segments in Anopheles stephensi offers insights into the transition from sequential to simultaneous segmentation in holometabolous insects. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:116-130. [PMID: 34734470 PMCID: PMC9061899 DOI: 10.1002/jez.b.23102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022]
Abstract
The gene regulatory network for segmentation in arthropods offers valuable insights into how networks evolve owing to the breadth of species examined and the extremely detailed knowledge gained in the model organism Drosophila melanogaster. These studies have shown that Drosophila's network represents a derived state that acquired changes to accelerate segment patterning, whereas most insects specify segments gradually as the embryo elongates. Such heterochronic shifts in segmentation have potentially emerged multiple times within holometabolous insects, resulting in many mechanistic variants and difficulties in isolating underlying commonalities that permit such shifts. Recent studies identified regulatory genes that work as timing factors, coordinating gene expression transitions during segmentation. These studies predict that changes in timing factor deployment explain shifts in segment patterning relative to other developmental events. Here, we test this hypothesis by characterizing the temporal and spatial expression of the pair-rule patterning genes in the malaria vector mosquito, Anopheles stephensi. This insect is a Dipteran (fly), like Drosophila, but represents an ancient divergence within this clade, offering a useful counterpart for evo-devo studies. In mosquito embryos, we observe anterior to posterior sequential addition of stripes for many pair-rule genes and a wave of broad timer gene expression across this axis. Segment polarity gene stripes are added sequentially in the wake of the timer gene wave and the full pattern is not complete until the embryo is fully elongated. This "progressive segmentation" mode in Anopheles displays commonalities with both Drosophila's rapid segmentation mechanism and sequential modes used by more distantly related insects.
Collapse
Affiliation(s)
- Alys M. Cheatle Jarvela
- Department of Entomology, University of Maryland, College Park, 4291 Fieldhouse Drive, College Park, MD 20742, U.S.A
| | - Catherine S. Trelstad
- Department of Entomology, University of Maryland, College Park, 4291 Fieldhouse Drive, College Park, MD 20742, U.S.A
| | - Leslie Pick
- Department of Entomology, University of Maryland, College Park, 4291 Fieldhouse Drive, College Park, MD 20742, U.S.A
| |
Collapse
|
26
|
Stracke K, Hejnol A. Marine animal evolutionary developmental biology-Advances through technology development. Evol Appl 2023; 16:580-588. [PMID: 36793684 PMCID: PMC9923486 DOI: 10.1111/eva.13456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/01/2022] Open
Abstract
Evolutionary developmental biology, the interdisciplinary effort of illuminating the conserved similarities and differences during animal development across all phylogenetic clades, has gained renewed interest in the past decades. As technology (immunohistochemistry, next-generation sequencing, advanced imaging, and computational resources) has advanced, so has our ability of resolving fundamental hypotheses and overcoming the genotype-phenotype gap. This rapid progress, however, has also exposed gaps in the collective knowledge around the choice and representation of model organisms. It has become clear that evo-devo requires a comparative, large-scale approach including marine invertebrates to resolve some of the most urgent questions about the phylogenetic positioning and character traits of the last common ancestors. Many invertebrates at the base of the tree of life inhabit marine environments and have been used for some years due to their accessibility, husbandry, and morphology. Here, we briefly review the major concepts of evolutionary developmental biology and discuss the suitability of established model organisms to address current research questions, before focussing on the importance, application, and state-of-the-art of marine evo-devo. We highlight novel technical advances that progress evo-devo as a whole.
Collapse
Affiliation(s)
- Katharina Stracke
- Department of Biological Sciences, Faculty of Mathematics and Natural SciencesUniversity of BergenBergenNorway
| | - Andreas Hejnol
- Department of Biological Sciences, Faculty of Mathematics and Natural SciencesUniversity of BergenBergenNorway
- Institute of Systematic Zoology and Evolutionary BiologyFriedrich‐Schiller‐University JenaJenaGermany
| |
Collapse
|
27
|
Fraguas S, Molina MD, Cebrià F. Colorimetric Whole-Mount In Situ Hybridization in Planarians. Methods Mol Biol 2023; 2680:81-91. [PMID: 37428372 DOI: 10.1007/978-1-0716-3275-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Whole-mount in situ hybridization (WISH) is an extremely useful technique for visualizing specific mRNA targets and solving many biological questions. In planarians, this method is really valuable, for example, for determining gene expression profiles during whole-body regeneration and analyzing the effects of silencing any gene to determine their functions. In this chapter, we present in detail the WISH protocol routinely used in our lab, using a digoxigenin-labelled RNA probe and developing with NBT-BCIP. This protocol is basically that already described in Currie et al. (EvoDevo 7:7, 2016), which put together several modifications developed from several laboratories in recent years that improved the original protocol developed in the laboratory of Kiyokazu Agata in 1997. Although this protocol, or slight modifications of it, is the most common protocol in the planarian field for NBT-BCIP WISH, our results show that key steps such as the use and time of NAC treatment to remove the mucus need to be taken into account depending on the nature of the gene analyzed, especially for the epidermal markers.
Collapse
Affiliation(s)
- Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Catalunya, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Catalunya, Spain
| | - Mª Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Catalunya, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Catalunya, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Catalunya, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), Catalunya, Spain.
| |
Collapse
|
28
|
Lovely AM, Duerr TJ, Stein DF, Mun ET, Monaghan JR. Hybridization Chain Reaction Fluorescence In Situ Hybridization (HCR-FISH) in Ambystoma mexicanum Tissue. Methods Mol Biol 2023; 2562:109-122. [PMID: 36272070 PMCID: PMC10949069 DOI: 10.1007/978-1-0716-2659-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In situ hybridization is a standard procedure for visualizing mRNA transcripts in tissues. The recent adoption of fluorescent probes and new signal amplification methods have facilitated multiplexed RNA imaging in tissue sections and whole tissues. Here we present protocols for multiplexed hybridization chain reaction fluorescence in situ hybridization (HCR-FISH) staining, imaging, cell segmentation, and mRNA quantification in regenerating axolotl tissue sections. We also present a protocol for whole-mount staining and imaging of developing axolotl limbs.
Collapse
Affiliation(s)
- Alex M Lovely
- Department of Biology, Northeastern University, Boston, MA, USA
- Northeastern University, Institute for Chemical Imaging of Living Systems, Boston, MA, USA
| | - Timothy J Duerr
- Department of Biology, Northeastern University, Boston, MA, USA
| | - David F Stein
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Evan T Mun
- Department of Biology, Northeastern University, Boston, MA, USA
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, MA, USA.
- Northeastern University, Institute for Chemical Imaging of Living Systems, Boston, MA, USA.
| |
Collapse
|
29
|
Datta RR, Onal P. In Situ Hybridization as a Method to Examine Gene Regulatory Activity In Vivo. Methods Mol Biol 2023; 2599:241-254. [PMID: 36427154 DOI: 10.1007/978-1-0716-2847-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transcription factor-enhancer binding events are among the most well-studied protein-DNA interactions, allowing researchers to determine mechanisms of transcriptional activation or repression during development. While large-scale ChIP-sequence datasets, together with computational predictions and chromatin accessibility data, yield information on potential transcription factor binding activities, reporter gene assays provide measurable information on whether these binding activities are functional in particular cell types during development. Here, we present a detailed protocol to examine enhancer activity in Drosophila embryos using cloning, transgenesis, and in situ hybridization.
Collapse
Affiliation(s)
- Rhea R Datta
- Department of Biology, Hamilton College, Clinton, NY, USA.
| | - Pinar Onal
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- Department of Molecular Biology and Genetics, Ihsan Dogramaci Bilkent University, Ankara, Turkey.
| |
Collapse
|
30
|
Purushothaman S, Seifert AW. Whole-Mount In Situ Hybridization (WISH) for Salamander Embryos and Larvae. Methods Mol Biol 2023; 2562:95-107. [PMID: 36272069 DOI: 10.1007/978-1-0716-2659-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Whole-mount in situ hybridization (WISH) is widely used to visualize transcribed gene sequences (mRNA) in developing embryos, larvae, and other nucleotide probe permeable tissue samples. This methodology involves the hybridization of an antisense nucleotide probe to the target mRNA, followed by chromogen or fluorescence-based detection. Here we describe a protocol for the spatiotemporal analysis of mRNA transcripts in axolotl embryos/larvae using digoxigenin-labeled riboprobes, anti-digoxigenin alkaline phosphatase, Fab fragments antibody, and NBT/BCIP chromogen detection.
Collapse
Affiliation(s)
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
31
|
Hu B, Sajid M, Lv R, Liu L, Sun C. A review of spatial profiling technologies for characterizing the tumor microenvironment in immuno-oncology. Front Immunol 2022; 13:996721. [PMID: 36389765 PMCID: PMC9659855 DOI: 10.3389/fimmu.2022.996721] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
Interpreting the mechanisms and principles that govern gene activity and how these genes work according to -their cellular distribution in organisms has profound implications for cancer research. The latest technological advancements, such as imaging-based approaches and next-generation single-cell sequencing technologies, have established a platform for spatial transcriptomics to systematically quantify the expression of all or most genes in the entire tumor microenvironment and explore an array of disease milieus, particularly in tumors. Spatial profiling technologies permit the study of transcriptional activity at the spatial or single-cell level. This multidimensional classification of the transcriptomic and proteomic signatures of tumors, especially the associated immune and stromal cells, facilitates evaluation of tumor heterogeneity, details of the evolutionary trajectory of each tumor, and multifaceted interactions between each tumor cell and its microenvironment. Therefore, spatial profiling technologies may provide abundant and high-resolution information required for the description of clinical-related features in immuno-oncology. From this perspective, the present review will highlight the importance of spatial transcriptomic and spatial proteomics analysis along with the joint use of other sequencing technologies and their implications in cancers and immune-oncology. In the near future, advances in spatial profiling technologies will undoubtedly expand our understanding of tumor biology and highlight possible precision therapeutic targets for cancer patients.
Collapse
Affiliation(s)
- Bian Hu
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Muhammad Sajid
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rong Lv
- Blood Transfusion Laboratory, Anhui Blood Center, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cheng Sun
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
32
|
Hegde S, Sreejan A, Gadgil CJ, Ratnaparkhi GS. SUMOylation of Dorsal attenuates Toll/NF-κB signaling. Genetics 2022; 221:iyac081. [PMID: 35567478 PMCID: PMC9252280 DOI: 10.1093/genetics/iyac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
In Drosophila, Toll/NF-κB signaling plays key roles in both animal development and in host defense. The activation, intensity, and kinetics of Toll signaling are regulated by posttranslational modifications such as phosphorylation, SUMOylation, or ubiquitination that target multiple proteins in the Toll/NF-κB cascade. Here, we have generated a CRISPR-Cas9 edited Dorsal (DL) variant that is SUMO conjugation resistant. Intriguingly, embryos laid by dlSCR mothers overcome dl haploinsufficiency and complete the developmental program. This ability appears to be a result of higher transcriptional activation by DLSCR. In contrast, SUMOylation dampens DL transcriptional activation, ultimately conferring robustness to the dorso-ventral program. In the larval immune response, dlSCR animals show an increase in crystal cell numbers, stronger activation of humoral defense genes, and high cactus levels. A mathematical model that evaluates the contribution of the small fraction of SUMOylated DL (1-5%) suggests that it acts to block transcriptional activation, which is driven primarily by DL that is not SUMO conjugated. Our findings define SUMO conjugation as an important regulator of the Toll signaling cascade, in both development and host defense. Our results broadly suggest that SUMO attenuates DL at the level of transcriptional activation. Furthermore, we hypothesize that SUMO conjugation of DL may be part of a Ubc9-dependent mechanism that restrains Toll/NF-κB signaling.
Collapse
Affiliation(s)
- Sushmitha Hegde
- Biology, Indian Institute of Science Education & Research, Pune 411008, India
| | - Ashley Sreejan
- Chemical Engineering and Process Development Division, CSIR—National Chemical Laboratory, Pune 411008, India
| | - Chetan J Gadgil
- Chemical Engineering and Process Development Division, CSIR—National Chemical Laboratory, Pune 411008, India
- CSIR—Institute of Genomics and Integrative Biology, New Delhi 110020, India
| | | |
Collapse
|
33
|
Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A. An introduction to spatial transcriptomics for biomedical research. Genome Med 2022; 14:68. [PMID: 35761361 PMCID: PMC9238181 DOI: 10.1186/s13073-022-01075-1] [Citation(s) in RCA: 358] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/19/2022] [Indexed: 01/04/2023] Open
Abstract
Single-cell transcriptomics (scRNA-seq) has become essential for biomedical research over the past decade, particularly in developmental biology, cancer, immunology, and neuroscience. Most commercially available scRNA-seq protocols require cells to be recovered intact and viable from tissue. This has precluded many cell types from study and largely destroys the spatial context that could otherwise inform analyses of cell identity and function. An increasing number of commercially available platforms now facilitate spatially resolved, high-dimensional assessment of gene transcription, known as 'spatial transcriptomics'. Here, we introduce different classes of method, which either record the locations of hybridized mRNA molecules in tissue, image the positions of cells themselves prior to assessment, or employ spatial arrays of mRNA probes of pre-determined location. We review sizes of tissue area that can be assessed, their spatial resolution, and the number and types of genes that can be profiled. We discuss if tissue preservation influences choice of platform, and provide guidance on whether specific platforms may be better suited to discovery screens or hypothesis testing. Finally, we introduce bioinformatic methods for analysing spatial transcriptomic data, including pre-processing, integration with existing scRNA-seq data, and inference of cell-cell interactions. Spatial -omics methods are already improving our understanding of human tissues in research, diagnostic, and therapeutic settings. To build upon these recent advancements, we provide entry-level guidance for those seeking to employ spatial transcriptomics in their own biomedical research.
Collapse
Affiliation(s)
- Cameron G Williams
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3000, Australia
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3000, Australia
| | - Takahiro Asatsuma
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3000, Australia
| | - Roser Vento-Tormo
- Cellular Genetics Group, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3000, Australia.
| |
Collapse
|
34
|
Abstract
The function of many biological systems, such as embryos, liver lobules, intestinal villi, and tumors, depends on the spatial organization of their cells. In the past decade, high-throughput technologies have been developed to quantify gene expression in space, and computational methods have been developed that leverage spatial gene expression data to identify genes with spatial patterns and to delineate neighborhoods within tissues. To comprehensively document spatial gene expression technologies and data-analysis methods, we present a curated review of literature on spatial transcriptomics dating back to 1987, along with a thorough analysis of trends in the field, such as usage of experimental techniques, species, tissues studied, and computational approaches used. Our Review places current methods in a historical context, and we derive insights about the field that can guide current research strategies. A companion supplement offers a more detailed look at the technologies and methods analyzed: https://pachterlab.github.io/LP_2021/ .
Collapse
|
35
|
The great small organisms of developmental genetics: Caenorhabditis elegans and Drosophila melanogaster. Dev Biol 2022; 485:93-122. [PMID: 35247454 PMCID: PMC9092520 DOI: 10.1016/j.ydbio.2022.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/30/2022]
Abstract
Experimental embryologists working at the turn of the 19th century suggested fundamental mechanisms of development, such as localized cytoplasmic determinants and tissue induction. However, the molecular basis underlying these processes proved intractable for a long time, despite concerted efforts in many developmental systems to isolate factors with a biological role. That road block was overcome by combining developmental biology with genetics. This powerful approach used unbiased genome-wide screens to isolate mutants with developmental defects and to thereby identify genes encoding key determinants and regulatory pathways that govern development. Two small invertebrates were the pioneers: the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Their modes of development differ in many ways, but the two together led the way to unraveling the molecular mechanisms of many fundamental developmental processes. The discovery of the grand homologies between key players in development throughout the animal kingdom underscored the usefulness of studying these small invertebrate models for animal development and even human disease. We describe developmental genetics in Drosophila and C. elegans up to the rise of genomics at the beginning of the 21st Century. Finally, we discuss themes that emerge from the histories of such distinct organisms and prospects of this approach for the future.
Collapse
|
36
|
Liaw GJ. Polycomb repressive complex 1 initiates and maintains tailless repression in Drosophila embryo. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194786. [PMID: 35032681 DOI: 10.1016/j.bbagrm.2022.194786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Maternally-deposited morphogens specify the fates of embryonic cells via hierarchically regulating the expression of zygotic genes that encode various classes of developmental regulators. Once the cell fates are determined, Polycomb-group proteins frequently maintain the repressed state of the genes. This study investigates how Polycomb-group proteins repress the expression of tailless, which encodes a developmental regulator in Drosophila embryo. Previous studies have shown that maternal Tramtrack69 facilitates maternal GAGA-binding factor and Heat shock factor binding to the torso response element (tor-RE) to initiate tailless repression in the stage-4 embryo. Chromatin-immunoprecipitation and genetic-interaction studies exhibit that maternally-deposited Polycomb repressive complex 1 (PRC1) recruited by the tor-RE-associated Tramtrack69 represses tailless expression in the stage-4 embryo. A noncanonical Polycomb-group response element (PRE) is mapped to the tailless proximal region. High levels of Bric-a-brac, Tramtrack, and Broad (BTB)-domain proteins are fundamental for maintaining tailless repression in the stage-8 to -10 embryos. Trmtrack69 sporadically distributes in the linear BTB-domain oligomer, which recruits and retains a high level of PRC1 near the GCCAT cluster for repressing tll expression in the stage-14 embryos. Disrupting the retention of PRC1 decreases the levels of PRC1 and Pleiohomeotic protein substantially on the PRE and causes tailless derepression in the stage-14 embryo. Furthermore, the retained PRC1 potentially serves as a second foundation for assembling the well-characterized polymer of the Sterile alpha motif domain in Polyhomeotic protein, which compacts chromatin to maintain the repressed state of tailless in the embryos after stage 14.
Collapse
Affiliation(s)
- Gwo-Jen Liaw
- Department of Life Sciences and Institute of Genomic Sciences, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong St., Taipei 112, Taiwan.
| |
Collapse
|
37
|
Heinen T, Xie C, Keshavarz M, Stappert D, Künzel S, Tautz D. Evolution of a New Testis-Specific Functional Promoter Within the Highly Conserved Map2k7 Gene of the Mouse. Front Genet 2022; 12:812139. [PMID: 35069705 PMCID: PMC8766832 DOI: 10.3389/fgene.2021.812139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
Map2k7 (synonym Mkk7) is a conserved regulatory kinase gene and a central component of the JNK signaling cascade with key functions during cellular differentiation. It shows complex transcription patterns, and different transcript isoforms are known in the mouse (Mus musculus). We have previously identified a newly evolved testis-specific transcript for the Map2k7 gene in the subspecies M. m. domesticus. Here, we identify the new promoter that drives this transcript and find that it codes for an open reading frame (ORF) of 50 amino acids. The new promoter was gained in the stem lineage of closely related mouse species but was secondarily lost in the subspecies M. m. musculus and M. m. castaneus. A single mutation can be correlated with its transcriptional activity in M. m. domesticus, and cell culture assays demonstrate the capability of this mutation to drive expression. A mouse knockout line in which the promoter region of the new transcript is deleted reveals a functional contribution of the newly evolved promoter to sperm motility and the spermatid transcriptome. Our data show that a new functional transcript (and possibly protein) can evolve within an otherwise highly conserved gene, supporting the notion of regulatory changes contributing to the emergence of evolutionary novelties.
Collapse
Affiliation(s)
| | - Chen Xie
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| | - Maryam Keshavarz
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Bonn, Germany
| | - Dominik Stappert
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Bonn, Germany
| | - Sven Künzel
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
38
|
Traylor-Knowles N, Emery M. Analysis of Spatial Gene Expression at the Cellular Level in Stony Corals. Methods Mol Biol 2022; 2450:359-371. [PMID: 35359318 PMCID: PMC9761507 DOI: 10.1007/978-1-0716-2172-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scleractinians, or stony corals, are colonial animals that possess a high regenerative capacity and a highly diverse innate immune system. As such they present the opportunity to investigate the interconnection between regeneration and immunity in a colonial animal. Understanding the relationship between regeneration and immunity in stony corals is of further interest as it has major implications for coral reef health. One method for understanding the role of innate immunity in scleractinian regeneration is in situ hybridization using RNA probes. Here we describe a protocol for in situ hybridization in adult stony corals using a digoxigenin (DIG)-labeled RNA antisense probe which can be utilized to investigate the spatial expression of immune factors during regeneration.
Collapse
Affiliation(s)
- Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - Madison Emery
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
39
|
Abstract
In molecular cloning, digoxigenin is used as a ligand that can be incorporated into DNA and RNA probes and detected after hybridization with an anti-digoxigenin-antibody enzyme conjugate. Methods to label nucleic acids with digoxigenin and to detect digoxigenin-labeled probes are introduced here.
Collapse
|
40
|
Savulescu AF, Bouilhol E, Beaume N, Nikolski M. Prediction of RNA subcellular localization: Learning from heterogeneous data sources. iScience 2021; 24:103298. [PMID: 34765919 PMCID: PMC8571491 DOI: 10.1016/j.isci.2021.103298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RNA subcellular localization has recently emerged as a widespread phenomenon, which may apply to the majority of RNAs. The two main sources of data for characterization of RNA localization are sequence features and microscopy images, such as obtained from single-molecule fluorescent in situ hybridization-based techniques. Although such imaging data are ideal for characterization of RNA distribution, these techniques remain costly, time-consuming, and technically challenging. Given these limitations, imaging data exist only for a limited number of RNAs. We argue that the field of RNA localization would greatly benefit from complementary techniques able to characterize location of RNA. Here we discuss the importance of RNA localization and the current methodology in the field, followed by an introduction on prediction of location of molecules. We then suggest a machine learning approach based on the integration between imaging localization data and sequence-based data to assist in characterization of RNA localization on a transcriptome level.
Collapse
Affiliation(s)
- Anca Flavia Savulescu
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
| | - Emmanuel Bouilhol
- Université de Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, France
- Université de Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | - Nicolas Beaume
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town,7925 Cape Town, South Africa
| | - Macha Nikolski
- Université de Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, France
- Université de Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| |
Collapse
|
41
|
Schwarzkopf M, Liu MC, Schulte SJ, Ives R, Husain N, Choi HMT, Pierce NA. Hybridization chain reaction enables a unified approach to multiplexed, quantitative, high-resolution immunohistochemistry and in situ hybridization. Development 2021; 148:dev199847. [PMID: 35020875 PMCID: PMC8645210 DOI: 10.1242/dev.199847] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
RNA in situ hybridization based on the mechanism of the hybridization chain reaction (HCR) enables multiplexed, quantitative, high-resolution RNA imaging in highly autofluorescent samples, including whole-mount vertebrate embryos, thick brain slices and formalin-fixed paraffin-embedded tissue sections. Here, we extend the benefits of one-step, multiplexed, quantitative, isothermal, enzyme-free HCR signal amplification to immunohistochemistry, enabling accurate and precise protein relative quantitation with subcellular resolution in an anatomical context. Moreover, we provide a unified framework for simultaneous quantitative protein and RNA imaging with one-step HCR signal amplification performed for all target proteins and RNAs simultaneously.
Collapse
Affiliation(s)
- Maayan Schwarzkopf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mike C. Liu
- Molecular Instruments, Los Angeles, CA 90041, USA
| | - Samuel J. Schulte
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rachel Ives
- Molecular Instruments, Los Angeles, CA 90041, USA
| | - Naeem Husain
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Niles A. Pierce
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
42
|
Yamasaki Y, Lim YM, Minami R, Tsuda L. A splicing variant of Charlatan, a Drosophila REST-like molecule, preferentially localizes to axons. Biochem Biophys Res Commun 2021; 578:35-41. [PMID: 34536827 DOI: 10.1016/j.bbrc.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Neuron-restrictive silencing factor (NRSF), also known as RE-1 silencing transcription factor (REST), has pivotal functions in many neuron-specific genes. Previous studies revealed that neuron-specific alternative splicing (AS) of REST produces divergent forms of REST variants and provides regulatory complexity in the nervous system. However, the biological significance of these variants in the regulation of neuronal activities remains to be clarified. Here, we revealed that Charlatan (Chn), a Drosophila REST-like molecule, is also regulated by neuron-specific AS. Neuron-specific AS produced six divergent variants of Chn proteins, one of which preferentially localized to axons. A small sequence of this variant was especially important for the axonal localization. Our data suggest that some variants have roles beyond the transcriptional regulation of neuronal activities.
Collapse
Affiliation(s)
- Yasutoyo Yamasaki
- National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Young-Mi Lim
- National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Ryunosuke Minami
- Department of Advanced Medical Science, Asahikawa Medical University, Japan
| | - Leo Tsuda
- National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan.
| |
Collapse
|
43
|
Nagel AC, Müller D, Zimmermann M, Preiss A. The Membrane-Bound Notch Regulator Mnr Supports Notch Cleavage and Signaling Activity in Drosophila melanogaster. Biomolecules 2021; 11:1672. [PMID: 34827670 PMCID: PMC8615698 DOI: 10.3390/biom11111672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
The Notch signaling pathway is pivotal to cellular differentiation. Activation of this pathway involves proteolysis of the Notch receptor and the release of the biologically active Notch intracellular domain, acting as a transcriptional co-activator of Notch target genes. While the regulation of Notch signaling dynamics at the level of ligand-receptor interaction, endocytosis, and transcriptional regulation has been well studied, little is known about factors influencing Notch cleavage. We identified EP555 as a suppressor of the Notch antagonist Hairless (H). EP555 drives expression of CG32521 encoding membrane-bound proteins, which we accordingly rename membrane-bound Notch regulator (mnr). Within the signal-receiving cell, upregulation of Mnr stimulates Notch receptor activation, whereas a knockdown reduces it, without apparent influence on ligand-receptor interaction. We provide evidence that Mnr plays a role in γ-secretase-mediated intramembrane cleavage of the Notch receptor. As revealed by a fly-eye-based reporter system, γ-secretase activity is stimulated by the overexpression of Mnr, and is inhibited by its knockdown. We conclude that Mnr proteins support Notch signaling activity by fostering the cleavage of the Notch receptor. With Mnr, we identified a membrane-bound factor directly augmenting Notch intra-membrane processing, thereby acting as a positive regulator of Notch signaling activity.
Collapse
Affiliation(s)
- Anja C. Nagel
- Department of General Genetics 190g, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (D.M.); (M.Z.); (A.P.)
| | | | | | | |
Collapse
|
44
|
Luo JW, An EX, Lu YR, Yang L, Gai TT, He SZ, Wu SY, Hu H, Li CL, Lu C, Tong XL, Dai FY. Molecular basis of the silkworm mutant re l causing red egg color and embryonic death. INSECT SCIENCE 2021; 28:1290-1299. [PMID: 32918398 DOI: 10.1111/1744-7917.12871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The coloration and hatchability of insect eggs can affect individual and population survival. However, few genetic loci have been documented to affect both traits, and the genes involved in regulating these two traits are unclear. The silkworm recessive mutant rel shows both red egg color and embryo mortality. We studied the molecular basis of the rel phenotype formation. Through genetic analysis, gene screening and sequencing, we found that two closely linked genes, BGIBMGA003497 (Bm-re) and BGIBMGA003697 (BmSema1a), control egg color and embryo mortality, respectively. Six base pairs of the Bm-re gene are deleted in its open reading frame, and BmSema1a is expressed at abnormally low levels in mutant rel . BmSema1a gene function verification was performed using RNA interference and clustered randomly interspersed palindromic repeats (CRISPR)/CRISPR-associate protein 9. Deficiency of the BmSema1a gene can cause the death of silkworm embryos. This study revealed the molecular basis of silkworm rel mutant formation and indicated that the Sema1a gene is essential for insect embryo development.
Collapse
Affiliation(s)
- Jiang-Wen Luo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Er-Xia An
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ya-Ru Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ling Yang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ting-Ting Gai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Song-Zhen He
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Song-Yuan Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Chun-Lin Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xiao-Ling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Fang-Yin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
45
|
Savulescu AF, Brackin R, Bouilhol E, Dartigues B, Warrell JH, Pimentel MR, Beaume N, Fortunato IC, Dallongeville S, Boulle M, Soueidan H, Agou F, Schmoranzer J, Olivo-Marin JC, Franco CA, Gomes ER, Nikolski M, Mhlanga MM. Interrogating RNA and protein spatial subcellular distribution in smFISH data with DypFISH. CELL REPORTS METHODS 2021; 1:100068. [PMID: 35474672 PMCID: PMC9017151 DOI: 10.1016/j.crmeth.2021.100068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/15/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Advances in single-cell RNA sequencing have allowed for the identification of cellular subtypes on the basis of quantification of the number of transcripts in each cell. However, cells might also differ in the spatial distribution of molecules, including RNAs. Here, we present DypFISH, an approach to quantitatively investigate the subcellular localization of RNA and protein. We introduce a range of analytical techniques to interrogate single-molecule RNA fluorescence in situ hybridization (smFISH) data in combination with protein immunolabeling. DypFISH is suited to study patterns of clustering of molecules, the association of mRNA-protein subcellular localization with microtubule organizing center orientation, and interdependence of mRNA-protein spatial distributions. We showcase how our analytical tools can achieve biological insights by utilizing cell micropatterning to constrain cellular architecture, which leads to reduction in subcellular mRNA distribution variation, allowing for the characterization of their localization patterns. Furthermore, we show that our method can be applied to physiological systems such as skeletal muscle fibers.
Collapse
Affiliation(s)
- Anca F. Savulescu
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7295 Cape Town, South Africa
| | - Robyn Brackin
- Advanced Medical Bioimaging, Charité – Universitätsmedizin, 10-117 Berlin, Germany
| | - Emmanuel Bouilhol
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
- Université de Bordeaux, CNRS, IBGC, UMR 5095, 33077 Bordeaux, France
| | - Benjamin Dartigues
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
| | - Jonathan H. Warrell
- Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mafalda R. Pimentel
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Nicolas Beaume
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7295 Cape Town, South Africa
| | - Isabela C. Fortunato
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | | | - Mikaël Boulle
- Chemogenomic and Biological Screening Core Facility, C2RT, Department of Structural Biology and Chemistry, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Hayssam Soueidan
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
| | - Fabrice Agou
- Chemogenomic and Biological Screening Core Facility, C2RT, Department of Structural Biology and Chemistry, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
- Department of Structural Biology and Chemistry, URA 2185, Pasteur Institute, Paris, France
| | - Jan Schmoranzer
- Advanced Medical Bioimaging, Charité – Universitätsmedizin, 10-117 Berlin, Germany
| | | | - Claudio A. Franco
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Edgar R. Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Macha Nikolski
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
- Université de Bordeaux, CNRS, IBGC, UMR 5095, 33077 Bordeaux, France
| | - Musa M. Mhlanga
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, FNWI, Radboud University, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
46
|
Vinter DJ, Hoppe C, Minchington TG, Sutcliffe C, Ashe HL. Dynamics of hunchback translation in real-time and at single-mRNA resolution in the Drosophila embryo. Development 2021; 148:dev196121. [PMID: 33722899 PMCID: PMC8077512 DOI: 10.1242/dev.196121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
The Hunchback (Hb) transcription factor is crucial for anterior-posterior patterning of the Drosophila embryo. The maternal hb mRNA acts as a paradigm for translational regulation due to its repression in the posterior of the embryo. However, little is known about the translatability of zygotically transcribed hb mRNAs. Here, we adapt the SunTag system, developed for imaging translation at single-mRNA resolution in tissue culture cells, to the Drosophila embryo to study the translation dynamics of zygotic hb mRNAs. Using single-molecule imaging in fixed and live embryos, we provide evidence for translational repression of zygotic SunTag-hb mRNAs. Whereas the proportion of SunTag-hb mRNAs translated is initially uniform, translation declines from the anterior over time until it becomes restricted to a posterior band in the expression domain. We discuss how regulated hb mRNA translation may help establish the sharp Hb expression boundary, which is a model for precision and noise during developmental patterning. Overall, our data show how use of the SunTag method on fixed and live embryos is a powerful combination for elucidating spatiotemporal regulation of mRNA translation in Drosophila.
Collapse
Affiliation(s)
| | | | | | | | - Hilary L. Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
47
|
Schember I, Halfon MS. Identification of new Anopheles gambiae transcriptional enhancers using a cross-species prediction approach. INSECT MOLECULAR BIOLOGY 2021; 30:410-419. [PMID: 33866636 PMCID: PMC8266755 DOI: 10.1111/imb.12705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The success of transgenic mosquito vector control approaches relies on well-targeted gene expression, requiring the identification and characterization of a diverse set of mosquito promoters and transcriptional enhancers. However, few enhancers have been characterized in Anopheles gambiae to date. Here, we employ the SCRMshaw method we previously developed to predict enhancers in the A. gambiae genome, preferentially targeting vector-relevant tissues such as the salivary glands, midgut and nervous system. We demonstrate a high overall success rate, with at least 8 of 11 (73%) tested sequences validating as enhancers in an in vivo xenotransgenic assay. Four tested sequences drive expression in either the salivary gland or the midgut, making them directly useful for probing the biology of these infection-relevant tissues. The success of our study suggests that computational enhancer prediction should serve as an effective means for identifying A. gambiae enhancers with activity in tissues involved in malaria propagation and transmission.
Collapse
Affiliation(s)
- Isabella Schember
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203
| | - Marc S. Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203
- Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY 14203
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14203
- NY State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY 14203
- Department of Molecular and Cellular Biology and Program in Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| |
Collapse
|
48
|
Macošek J, Simon B, Linse JB, Jagtap PKA, Winter SL, Foot J, Lapouge K, Perez K, Rettel M, Ivanović MT, Masiewicz P, Murciano B, Savitski MM, Loedige I, Hub JS, Gabel F, Hennig J. Structure and dynamics of the quaternary hunchback mRNA translation repression complex. Nucleic Acids Res 2021; 49:8866-8885. [PMID: 34329466 PMCID: PMC8421216 DOI: 10.1093/nar/gkab635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Accepted: 07/27/2021] [Indexed: 01/02/2023] Open
Abstract
A key regulatory process during Drosophila development is the localized suppression of the hunchback mRNA translation at the posterior, which gives rise to a hunchback gradient governing the formation of the anterior-posterior body axis. This suppression is achieved by a concerted action of Brain Tumour (Brat), Pumilio (Pum) and Nanos. Each protein is necessary for proper Drosophila development. The RNA contacts have been elucidated for the proteins individually in several atomic-resolution structures. However, the interplay of all three proteins during RNA suppression remains a long-standing open question. Here, we characterize the quaternary complex of the RNA-binding domains of Brat, Pum and Nanos with hunchback mRNA by combining NMR spectroscopy, SANS/SAXS, XL/MS with MD simulations and ITC assays. The quaternary hunchback mRNA suppression complex comprising the RNA binding domains is flexible with unoccupied nucleotides functioning as a flexible linker between the Brat and Pum-Nanos moieties of the complex. Moreover, the presence of the Pum-HD/Nanos-ZnF complex has no effect on the equilibrium RNA binding affinity of the Brat RNA binding domain. This is in accordance with previous studies, which showed that Brat can suppress mRNA independently and is distributed uniformly throughout the embryo.
Collapse
Affiliation(s)
- Jakub Macošek
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Johanna-Barbara Linse
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | - Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Sophie L Winter
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Jaelle Foot
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Kathryn Perez
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Mandy Rettel
- Proteomics Core Facility, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Miloš T Ivanović
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | - Pawel Masiewicz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Brice Murciano
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Mikhail M Savitski
- Proteomics Core Facility, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Inga Loedige
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | - Frank Gabel
- Institut Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany.,Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
49
|
Heredia F, Volonté Y, Pereirinha J, Fernandez-Acosta M, Casimiro AP, Belém CG, Viegas F, Tanaka K, Menezes J, Arana M, Cardoso GA, Macedo A, Kotowicz M, Prado Spalm FH, Dibo MJ, Monfardini RD, Torres TT, Mendes CS, Garelli A, Gontijo AM. The steroid-hormone ecdysone coordinates parallel pupariation neuromotor and morphogenetic subprograms via epidermis-to-neuron Dilp8-Lgr3 signal induction. Nat Commun 2021; 12:3328. [PMID: 34099654 PMCID: PMC8184853 DOI: 10.1038/s41467-021-23218-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Innate behaviors consist of a succession of genetically-hardwired motor and physiological subprograms that can be coupled to drastic morphogenetic changes. How these integrative responses are orchestrated is not completely understood. Here, we provide insight into these mechanisms by studying pupariation, a multi-step innate behavior of Drosophila larvae that is critical for survival during metamorphosis. We find that the steroid-hormone ecdysone triggers parallel pupariation neuromotor and morphogenetic subprograms, which include the induction of the relaxin-peptide hormone, Dilp8, in the epidermis. Dilp8 acts on six Lgr3-positive thoracic interneurons to couple both subprograms in time and to instruct neuromotor subprogram switching during behavior. Our work reveals that interorgan feedback gates progression between subunits of an innate behavior and points to an ancestral neuromodulatory function of relaxin signaling.
Collapse
Affiliation(s)
- Fabiana Heredia
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Yanel Volonté
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - Joana Pereirinha
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Institute of Molecular Biology, Mainz, Germany
| | - Magdalena Fernandez-Acosta
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Andreia P Casimiro
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cláudia G Belém
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- The Francis Crick Institute, London, UK
| | - Filipe Viegas
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Kohtaro Tanaka
- Instituto Gulbenkian de Ciências, Oeiras, Portugal
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Juliane Menezes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maite Arana
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - Gisele A Cardoso
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Laboratório de Genômica e Evolução de Artrópodes, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
- CBMEG, Universidade Estadual de Campinas, Campinas, Brazil
| | - André Macedo
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Malwina Kotowicz
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- DZNE, Helmholtz Association, Bonn, Germany
| | - Facundo H Prado Spalm
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - Marcos J Dibo
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - Raquel D Monfardini
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Laboratório de Genômica e Evolução de Artrópodes, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - Tatiana T Torres
- Laboratório de Genômica e Evolução de Artrópodes, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - César S Mendes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Andres Garelli
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina.
| | - Alisson M Gontijo
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Rua do Instituto Bacteriológico 5, 1150-190, Lisbon, Portugal.
| |
Collapse
|
50
|
Fukaya T. Dynamic regulation of anterior-posterior patterning genes in living Drosophila embryos. Curr Biol 2021; 31:2227-2236.e6. [PMID: 33761316 DOI: 10.1016/j.cub.2021.02.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 10/21/2022]
Abstract
Expression of the gap and pair-rule genes plays an essential role in body segmentation during Drosophila embryogenesis.1-5 However, it remains unclear how precise expression patterns of these key developmental genes arise from stochastic transcriptional activation at the single-cell level. Here, I employed genome-editing and live-imaging approaches to comprehensively visualize regulation of the gap and pair-rule genes at the endogenous loci. Quantitative image analysis revealed that the total duration of active transcription (transcription period) is a major determinant of spatial patterning of gene expression in early embryos. The length of the transcription period is determined by the continuity of bursting activities in individual nuclei, with the core expression domain producing more bursts than boundary regions. Each gene exhibits a distinct rate of nascent RNA production during transcriptional bursting, which contributes to gene-to-gene variability in the total output. I also provide evidence for "enhancer interference," wherein a distal weak enhancer interferes with transcriptional activation by a strong proximal enhancer to downregulate the length of the transcription period without changing the transcription rate. Analysis of the endogenous hunchback (hb) locus revealed that the removal of the distal shadow enhancer induces strong ectopic transcriptional activation, which suppresses refinement of the initial broad expression domain into narrower stripe patterns at the anterior part of embryos. This study provides key insights into the link between transcriptional bursting, enhancer-promoter interaction, and spatiotemporal patterning of gene expression during animal development.
Collapse
Affiliation(s)
- Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|