1
|
Gijón VR, Martín CL, Encinas RMP, Navajas JM. Aetiological, histopathological, clinical, diagnostic and therapeutical features of idiopathic cervical resorption. ACTA ACUST UNITED AC 2016; 43:964-6, 968-70. [DOI: 10.12968/denu.2016.43.10.964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Virginia Robles Gijón
- Assistant Professor, Department of Conservative Dentistry, School of Dentistry, University of Granada, Spain
| | - Cristina Lucena Martín
- Associate Professor, Department of Conservative Dentistry, School of Dentistry, University of Granada, Spain
| | - Rosa M Pulgar Encinas
- Associate Professor, Department of Conservative Dentistry, School of Dentistry, University of Granada, Spain
| | - José Manuel Navajas
- Professor, Department of Conservative Dentistry, School of Dentistry, University of Granada, Spain
| |
Collapse
|
2
|
Takashi M, Motegi M, Takagi Y. Complete resorption of an impacted and inverted supernumerary tooth: Report of an unusual case. PEDIATRIC DENTAL JOURNAL 2014. [DOI: 10.1016/j.pdj.2014.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Nirmala SVSG, Sandeep C, Sivakumar N, Babu MS, Lalitha V. Agenesis of premolar associated with submerged primary molar and a supernumerary premolar: An unusual case report. Contemp Clin Dent 2012; 3:S99-S102. [PMID: 22629079 PMCID: PMC3354794 DOI: 10.4103/0976-237x.95116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The combination of submerged primary molar, agenesis of permanent successor with a supernumerary in the same place is very rare. The purpose of this article is to report a case of submerged mandibular left second primary molar with supernumerary tooth in the same region along with agenesis of second premolar in an 11-year-old girl, its possible etiological factors, and a brief discussion on treatment options.
Collapse
Affiliation(s)
- S V S G Nirmala
- Department of Pedodontics and Preventive Dentistry, Narayana Dental College, Nellore, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
4
|
Nascimento FD, Minciotti CL, Geraldeli S, Carrilho MR, Pashley DH, Tay FR, Nader HB, Salo T, Tjäderhane L, Tersariol ILS. Cysteine cathepsins in human carious dentin. J Dent Res 2011; 90:506-11. [PMID: 21248362 DOI: 10.1177/0022034510391906] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are important in dentinal caries, and analysis of recent data demonstrates the presence of other collagen-degrading enzymes, cysteine cathepsins, in human dentin. This study aimed to examine the presence, source, and activity of cysteine cathepsins in human caries. Cathepsin B was detected with immunostaining. Saliva and dentin cysteine cathepsin and MMP activities on caries lesions were analyzed spectrofluorometrically. Immunostaining demonstrated stronger cathepsins B in carious than in healthy dentin. In carious dentin, cysteine cathepsin activity increased with increasing depth and age in chronic lesions, but decreased with age in active lesions. MMP activity decreased with age in both active and chronic lesions. Salivary MMP activities were higher in patients with active than chronic lesions and with increasing lesion depth, while cysteine cathepsin activities showed no differences. The results indicate that, along with MMPs, cysteine cathepsins are important, especially in active and deep caries.
Collapse
Affiliation(s)
- F D Nascimento
- Grupo de Estudos em Odontologia, Universidade Bandeirante de São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Khedmat S, Hadjati J, Iravani A, Nourizadeh M. Effects of Enamel Matrix Derivative on the Viability, Cytokine Secretion, and Phagocytic Activity of Human Monocytes. J Endod 2010; 36:1000-3. [DOI: 10.1016/j.joen.2010.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/10/2010] [Accepted: 02/23/2010] [Indexed: 11/29/2022]
|
6
|
Chung CJ, Soma K, Rittling SR, Denhardt DT, Hayata T, Nakashima K, Ezura Y, Noda M. OPN deficiency suppresses appearance of odontoclastic cells and resorption of the tooth root induced by experimental force application. J Cell Physiol 2008; 214:614-20. [PMID: 17894420 DOI: 10.1002/jcp.21250] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Osteopontin (OPN) is a major non-collagenous bone matrix protein implicated in the regulation of cell function. Although OPN is rich in the cementum of the tooth, the significance of OPN in this tissue is not understood. Tooth root resorption is the most frequent complication of orthodontic tooth movement (TM). The objective of this study was to examine the pathophysiological role of OPN in cementum of the tooth root. For this purpose, the upper right first molar (M1) in OPN-deficient and wild-type (WT) mice was subjected to mechanical force via 10 gf NiTi coil spring while the left side molar was kept intact to serve as an internal control. Micro-CT section and the level of tartrate resistant acid phosphatase (TRAP)-positive cells on the tooth root surface defined as odontoclasts were quantified at the end of the force application. In WT mice, force application to the tooth caused appearance of odontoclasts around the mesial surface of the tooth root resulting in tooth root resorption. In contrast, OPN deficiency significantly suppressed the force-induced increase in the number of odontoclasts and suppressed root resorption. This force application also induced increase in the number of TRAP-positive cells in the alveolar bone on the pressure side defined as osteoclasts, while the levels of the increase in osteoclastic cell number in such alveolar bone were similar between the OPN-deficient and WT mice. These observations indicate that OPN deficiency suppresses specifically tooth root resorption in case of experimental force application.
Collapse
Affiliation(s)
- Chooryung J Chung
- Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Warhonowicz M, Staszyk C, Gasse H. Immunohistochemical detection of matrix metalloproteinase-1 in the periodontal ligament of equine cheek teeth. Tissue Cell 2007; 39:369-76. [PMID: 17915275 DOI: 10.1016/j.tice.2007.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/28/2007] [Accepted: 07/11/2007] [Indexed: 11/27/2022]
Abstract
The hypsodont equine cheek tooth erupts continuously throughout life. The collagen fibers of the periodontal ligament (PDL) have to remodel constantly to allow the tooth to move in an occlusal direction. Remodeling of the collagen fiber bundles needs to be well-coordinated in order to maintain functional tooth support. The aim of this study was to examine the role of matrix metalloproteinase-1 (MMP-1) in the collagen remodeling of the equine PDL under physiological conditions. Specimens containing the PDL interposed between the dental cementum and the alveolar bone were taken from nine Warmblood horses at three designated horizontal levels: subgingival, middle, and apical. The expression of MMP-1 was detected immunohistochemically. MMP-1 was found to be present in the specimens of all horses. Immunopositive fibroblasts/fibrocytes were accumulated within individual single collagen fascicles. Our results suggest that MMP-1 induced collagen degradation plays a central role in the physiological remodeling of the equine PDL. The distribution of MMP-1 positive fascicles indicates well-directed remodeling which occurs as an asynchronous process, so that only single collagen fascicles are remodeled at the same time. Due to this remodeling of one fascicle at a time, the overall anchorage of the tooth is preserved at all times.
Collapse
Affiliation(s)
- M Warhonowicz
- Institute of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | | | | |
Collapse
|
8
|
Harokopakis-Hajishengallis E. Physiologic root resorption in primary teeth: molecular and histological events. J Oral Sci 2007; 49:1-12. [PMID: 17429176 DOI: 10.2334/josnusd.49.1] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Root resorption is a physiologic event for the primary teeth. It is still unclear whether odontoclasts, the cells which resorb the dental hard tissue, are different from the osteoclasts, the cells that resorb bone. Root resorption seems to be initiated and regulated by the stellate reticulum and the dental follicle of the underlying permanent tooth via the secretion of stimulatory molecules, i.e. cytokines and transcription factors. The primary root resorption process is regulated in a manner similar to bone remodeling, involving the same receptor ligand system known as RANK/RANKL (receptor activator of nuclear factor-kappa B/ RANK Ligand). Primary teeth without a permanent successor eventually exfoliate as well, but our current understanding on the underlying mechanism is slim. The literature is also vague on how resorption of the pulp and periodontal ligament of the primary teeth occurs. Knowledge on the mechanisms involved in the physiologic root resorption process may enable us to delay or even inhibit exfoliation of primary teeth in those cases that the permanent successor teeth are not present and thus preservation of the primary teeth is desirable.
Collapse
|
9
|
Linsuwanont-Santiwong B, Takagi Y, Ohya K, Shimokawa H. Expression of MT1-MMP during deciduous tooth resorption in odontoclasts. J Bone Miner Metab 2006; 24:447-53. [PMID: 17072736 DOI: 10.1007/s00774-006-0714-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 06/30/2006] [Indexed: 10/25/2022]
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) is a membrane-bound matrix metalloproteinase capable of mediating pericellular proteolysis of extracellular matrix components. In osteoclasts, the localization of MT1-MMP has been reported at the tips of specialized membrane protrusions (podosomes and lamellipodia) so that osteoclasts might use MT1-MMP to perform focal proteolysis and move through the extracellular matrix to the bone surface. The objectives of this study were to investigate an association of MT1-MMP in physiological root resorption of the deciduous tooth by reverse transcriptase-polymerase chain reaction (RT-PCR) and Northern blot analysis, and to identify MT1-MMP-producing cell during deciduous tooth resorption by in situ hybridization and immunohistochemistry. RT-PCR and Northern blot analysis revealed the exclusively high expression of MT1-MMP mRNA in bovine root-resorbing tissue, which lies between the root of the deciduous tooth and its permanent successor. Expression of MT1-MMP mRNA was seen in odontoclasts aligning in the surface layer of the root-resorbing tissue at sites of root resorption. Furthermore, immmunohistochemistry also confirmed the localization of MT1-MMP protein to the odontoclasts. The present identification of MT1-MMP in odontoclasts during deciduous tooth resorption might be relevant to the migration activity that these cells have to gain access to the root surface.
Collapse
|
10
|
Boonen S, Body JJ, Boutsen Y, Devogelaer JP, Goemaere S, Kaufman JM, Rozenberg S, Reginster JY. Evidence-based guidelines for the treatment of postmenopausal osteoporosis: a consensus document of the Belgian Bone Club. Osteoporos Int 2005; 16:239-54. [PMID: 15726235 DOI: 10.1007/s00198-004-1812-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 10/28/2004] [Indexed: 12/14/2022]
Affiliation(s)
- Steven Boonen
- Center for Metabolic Bone Diseases, Katholieke University Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Andersen TL, del Carmen Ovejero M, Kirkegaard T, Lenhard T, Foged NT, Delaissé JM. A scrutiny of matrix metalloproteinases in osteoclasts: evidence for heterogeneity and for the presence of MMPs synthesized by other cells. Bone 2004; 35:1107-19. [PMID: 15542036 DOI: 10.1016/j.bone.2004.06.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2004] [Revised: 06/03/2004] [Accepted: 06/16/2004] [Indexed: 11/22/2022]
Abstract
Genetic diseases and knockout mice stress the importance of matrix metalloproteinases (MMPs) in skeletal turnover. Our study aims at clarifying which MMPs are expressed by osteoclasts. Previous analyses of this basic question led to conflicting reports in the literature. In the present study, we used a variety of approaches: PCR, Northern blots, Slot blots, in situ hybridization, and immunohistochemistry. We analyzed osteoclasts in culture as well as osteoclasts in native bone at different locations and compared mouse and rabbit osteoclasts. Osteoclasts express MMP-9 and -14 in all conditions, although to a variable extent, and they are able to synthesize MMP-3, -10, and -12, at least under some circumstances. The induction of a given MMP in osteoclasts is influenced by its environment (e.g., osteoclast culture vs. native bone, and various sites within the same bone) and depends on the species (e.g., mouse vs. rabbit). Osteoclasts show high amounts of MMP-2 and -13 protein presumably made to a large extent by other cells, thereby documenting how proteinases of nonosteoclastic origin may contribute to osteoclast activities and giving insight in why the resorptive activity of purified osteoclasts appears insensitive to MMP inhibitors. Our study shows that the confusion about osteoclastic MMPs in the literature reflects the remarkable ability of osteoclasts to adapt to their environment, as required by the structural or functional diversity of bone tissue. Our observations provide basic information needed for understanding the emerging role of MMPs in controlling cell signaling and bone resorption.
Collapse
Affiliation(s)
- Thomas L Andersen
- Nordic Bioscience/Center for Clinical and Basic Research, Herlev/Ballerup, DK-2730 Herlev, Denmark.
| | | | | | | | | | | |
Collapse
|
12
|
Sahara N, Ozawa H. Cementum-like tissue deposition on the resorbed enamel surface of human deciduous teeth prior to shedding. ACTA ACUST UNITED AC 2004; 279:779-91. [PMID: 15278949 DOI: 10.1002/ar.a.20069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prior to the shedding of human deciduous teeth, odontoclastic resorption takes place at the pulpal surface of the coronal dentin, and this resorption occasionally extends coronally from the dentinoenamel junction into the enamel. After the end of resorption, however, the resorbed enamel surface is repaired by the deposition of a cementum-like tissue. Using this phenomenon as an observation model, in this study we examined the sequence of cellular and extracellular/matrix events involved in the enamel resorption repair by light and electron microscopy. As the odontoclast terminated its resorption activity, it detached from the resorbed enamel surface; thereafter, numerous mononuclear cells were observed along the resorbed enamel surface. Most of these mononuclear cells made close contact with the resorbed enamel surface, and coated pits or patches were observed on their plasma membrane facing this surface. Furthermore, they frequently contained thin needle- or plate-like enamel crystals in their cytoplasmic vacuoles as well as secondary lysozomes. Following the disappearance of these monononuclear cells, the resorbed enamel surface now displayed a thin coat of organic matrix. Ultrastructurally, this organic layer was composed of a reticular and/or granular organic matrix, but contained no collagen fibrils. Energy-dispersive X-ray microanalysis of this thin organic layer in undecalcified sections revealed small spectral peaks of Ca and P. Cementum-like tissue initially formed along this thin organic layer, increased in width, and appeared to undergo mineralization as time progressed. The results of our observations demonstrate that regardless of type of matrix of dental hard tissues, tooth repair may be coupled to tooth resorption, and suggest that mononuclear cells and an organic thin layer found on the previously resorbed enamel surface may play an important role in the repair process initiated after resorption of the enamel.
Collapse
Affiliation(s)
- Noriyuki Sahara
- Department of Oral Histology and Institute for Oral Science, Matsumoto Dental University, Nagano 399-0781, Japan.
| | | |
Collapse
|
13
|
Linsuwanont B, Takagi Y, Ohya K, Shimokawa H. Expression of matrix metalloproteinase-9 mRNA and protein during deciduous tooth resorption in bovine odontoclasts. Bone 2002; 31:472-8. [PMID: 12398942 DOI: 10.1016/s8756-3282(02)00856-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9, or gelatinase B) is an extracellular proteinase that is highly expressed in osteoclasts and has been postulated to play an important role in their resorptive activity. Although MMP-9 has been reported to play a role in bone resorption, the association of this enzyme during deciduous tooth resorption has not yet been clarified. The purpose of the present study was to increase our understanding of the role of MMP-9 during deciduous tooth resorption. Reverse transcription-polymerase chain reaction (RT-PCR) and northern blot analysis of total RNAs extracted from bovine root-resorbing tissues, which lie between the root of a deciduous tooth and its permanent successor, revealed the expression of mRNA for MMP-9 in the tissue. These results indicate that MMP-9 may be involved in the process of deciduous tooth resorption. In addition, in situ hybridization and immunohistochemistry were also performed to identify the cells that produced MMP-9 in bovine root-resorbing tissue. MMP-9 mRNA was highly expressed in odontoclasts that were aligned along the surface of the tissue. Immunohistochemistry confirmed the predominant localization of MMP-9 in odontoclasts. The present data demonstrate that odontoclasts in deciduous root resorption express MMP-9, which may participate in proteolysis during root resorption of deciduous tooth.
Collapse
Affiliation(s)
- B Linsuwanont
- Developmental Oral Health Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|
14
|
Sobue T, Hakeda Y, Kobayashi Y, Hayakawa H, Yamashita K, Aoki T, Kumegawa M, Noguchi T, Hayakawa T. Tissue inhibitor of metalloproteinases 1 and 2 directly stimulate the bone-resorbing activity of isolated mature osteoclasts. J Bone Miner Res 2001; 16:2205-14. [PMID: 11760833 DOI: 10.1359/jbmr.2001.16.12.2205] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tissue inhibitor metalloproteinases 1 (TIMP-1) and 2 have been reported to inhibit bone resorption. However, here, we report the direct action of both TIMP-1 and TIMP-2 on isolated rabbit mature osteoclasts to stimulate their bone-resorbing activity at significantly lower concentrations (approximately ng/ml) than those (approximately microg/ml) required for the inhibition of bone resorption. The cell population used in this study consisted of a mature osteoclast population with >95% purity. TIMP-1 (approximately 50 ng/ml) and TIMP-2 (approximately 8-10 ng/ml) increased the pit area excavated by the isolated mature osteoclasts. The stimulatory effects of TIMPs were abolished by simultaneous addition of anti-TIMP antibodies. At higher concentrations, the stimulation of bone resorption decreased reversely to the control level. The magnitude of the stimulatory effect of TIMP-2 was more than that of TIMP-1. Metalloproteinase inhibitors such as BE16627B and R94138 could not replace TIMPs with respect to the bone-resorbing activity, suggesting that the osteoclast-stimulating activity of TIMPs was independent of the inhibitory activity on matrix metalloproteinases (MMPs). TIMPs stimulated tyrosine phosphorylation of cellular proteins in the isolated mature osteoclasts. Both herbimycin A, an inhibitor of tyrosine kinases, and PD98059 and U0126, inhibitors of mitogen-activated protein kinase (MAPK), completely blocked the TIMP-induced stimulation of osteoclastic bone-resorbing activity. On the plasma membrane of osteoclasts, some TIMP-2-binding proteins were detected by a cross-linking experiment. These findings show that TIMPs directly stimulate the bone-resorbing activity of isolated mature osteoclasts at their physiological concentrations and that the stimulatory action of TIMPs is likely to be independent of their activities as inhibitors of MMPs.
Collapse
Affiliation(s)
- T Sobue
- Department of Periodontology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Davies KR, Schneider GB, Southard TE, Hillis SL, Wertz PW, Finkelstein M, Hogan MM. Deciduous canine and permanent lateral incisor differential root resorption. Am J Orthod Dentofacial Orthop 2001; 120:339-47. [PMID: 11606957 DOI: 10.1067/mod.2001.116067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When a permanent maxillary canine erupts apical to the permanent lateral incisor and the deciduous canine, resorption typically takes place only on the deciduous canine root. An understanding of this differential resorption could provide insight into the reasons for excessive iatrogenic root resorption during orthodontic tooth movement. The purpose of the present study was to examine the response of roots of permanent lateral incisors and deciduous canines to simulated resorption, and to acid and enzyme attack, reflecting the physiologic environment of an erupting permanent canine. Groups of maxillary permanent lateral incisor and deciduous canine roots were exposed to 5 combinations of Ten Cate demineralizing solution, Ten Cate demineralizing solution with EDTA, and a Type I collagenase solution. Sections of the roots were examined under a polarized light microscope. Analysis of variation of the resulting root lesions demonstrated that the lesion depths for deciduous canines were greater than those for permanent lateral incisors when averaged across 4 of the conditions (F(1,24) = 7.49, P =.0115). On average, deciduous canine roots demonstrated lesions 10% deeper than did permanent lateral incisor roots. We concluded that when deciduous canine and permanent lateral incisor roots are subjected to acid and enzyme attack, reflecting the physiologic environment of an erupting permanent canine, significantly deeper demineralized lesions are seen in the deciduous roots compared with the permanent roots. This finding may partially explain the differential root resorption during permanent tooth eruption.
Collapse
Affiliation(s)
- K R Davies
- The University of Iowa, Iowa City 52242, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Sadowski T, Steinmeyer J. Effects of non-steroidal antiinflammatory drugs and dexamethasone on the activity and expression of matrix metalloproteinase-1, matrix metalloproteinase-3 and tissue inhibitor of metalloproteinases-1 by bovine articular chondrocytes. Osteoarthritis Cartilage 2001; 9:407-15. [PMID: 11467888 DOI: 10.1053/joca.2000.0406] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the in-vitro effects of several non-steroidal antiinflammatory drugs and the glucocorticoid dexamethasone on the IL-1 altered expression and activity of MMP-1, MMP-3 and TIMP-1 by bovine articular chondrocytes. DESIGN Bovine chondrocytes were cultured in alginate gel beads. Cells were treated with IL-1alpha in the presence of vehicle or drugs at various concentrations. After 48 h mRNA expression of MMP-1, MMP-3, and of the tissue inhibitor of metalloproteinases (TIMP-1) was analysed by RT-PCR-ELISA. The protein synthesis of TIMP-1 and MMP-3 was determined by immunoprecipitation. The activity of enzymes and inhibitors was measured by functional assays. RESULTS IL-1 increased the expression and activity of MMPs. In contrast, TIMP activity remained unchanged although TIMP-1 expression was down-regulated. All tested NSAIDs and dexamethasone inhibited collagenase activity induced by IL-1. Transcript levels of MMP-1, however, were only reduced by indomethacin, meloxicam, naproxen and dexamethasone. Proteoglycanase activity was only reduced by indomethacin, meloxicam and dexamethasone. These effects were pre-translational as confirmed by immunoprecipitation. The IL-1 decreased expression of TIMP-1 was further reduced by dexamethasone, which resulted in a significant loss of TIMP activity. No effects on TIMP activity or TIMP-1 biosynthesis were observed after treatment of chondrocytes with NSAIDs. CONCLUSION Our studies clearly demonstrate that marked differences exist between individual NSAIDs with respect to their ability to modulate the imbalance between proteases and inhibitors during OA and RA, suggesting that the respective modes of action are independent of the inhibition of cyclooxygenases. Due to their co-regulation of MMPs and TIMP(s) glucocorticoids should be carefully studied for their overall effect on ECM proteolysis.
Collapse
Affiliation(s)
- T Sadowski
- Institute of Pharmacology and Toxicology, University of Bonn, Germany.
| | | |
Collapse
|
17
|
Domon S, Shimokawa H, Matsumoto Y, Yamaguchi S, Soma K. In situ hybridization for matrix metalloproteinase-1 and cathepsin K in rat root-resorbing tissue induced by tooth movement. Arch Oral Biol 1999; 44:907-15. [PMID: 10580538 DOI: 10.1016/s0003-9969(99)00091-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The movement of teeth during orthodontic treatment occasionally induces undesirable root resorption. Although high collagenolytic activity has been detected in resorbing tissue of deciduous teeth, the cellular origin of collagenolytic enzymes in root-resorbing tissue caused by tooth movement has not been identified. Here, rats were subject to 7 days of experimental tooth movement to induce root resorption. In situ hybridization with digoxigenin-labelled RNA probes was performed on sections of the maxillary bone to detect the mRNAs that encode matrix metalloproteinase-1 (MMP-1) and cathepsin K in root-resorbing tissue. MMP-1 mRNA was detected in fibroblastic cells, cementoblasts and osteoblasts, but not in odontoclasts nor osteoclasts. Moreover, MMP-1 mRNA was highly expressed in some cementocytes located near odontoclasts and in many osteocytes. In contrast, cathepsin K mRNA was expressed only in odontoclasts and osteoclasts. These results suggest that MMP-1 and cathepsin K are important in root resorption during tooth movement in a mode similar to bone resorption.
Collapse
Affiliation(s)
- S Domon
- First Department of Orthodontics, Faculty of Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
18
|
Tani-Ishii N, Tsunoda A, Teranaka T, Umemoto T. Autocrine regulation of osteoclast formation and bone resorption by IL-1 alpha and TNF alpha. J Dent Res 1999; 78:1617-23. [PMID: 10520966 DOI: 10.1177/00220345990780100601] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bone resorption is regulated by the cytokines within marrow cells that mediate osteoclast formation and activation. IL-1 and TNF induce bone resorption by stimulating the production of osteoclast-like multinucleated cells and by increasing the bone-resorbing activity of formed osteoclasts. This study was designed to detect IL-1 and TNF in osteoclasts in vitro and to determine whether these cytokines up-regulate osteoclast differentiation and bone resorption. The production of IL-1 alpha, -beta, and TNF alpha, beta in osteoclasts was examined immunohistochemically and by in situ hybridization. In the co-culture of C57BL/6N mouse bone marrow and MC3T3-G2/PA6 cells, a colony of osteoclasts formed, and IL-1 alpha and TNF alpha were detected. However, IL-1 beta and TNF beta were not detected. To investigate the role of IL-1 alpha and TNF alpha from osteoclasts, we enumerated TRAP-positive cells and measured the resorption pit areas in the presence of antibodies against IL-1 alpha and TNF alpha. The addition of antibodies against IL-1 alpha and TNF alpha to the co-culture system decreased the number of TRAP-positive colonies at seven days after incubation (anti-IL-1 alpha, 25.0 +/- 2.3%; anti-TNF alpha, 41.7 +/- 3.7%; anti-IL-1 alpha + anti-TNF alpha, 40.5 +/- 1.3%; and control, 100%), and the ratio of mononuclear to multinuclear cells had changed (anti-IL-1 alpha, 90:10; anti-TNF alpha, 75:25; anti-IL-1 alpha+ anti-TNF alpha, 88:12; and control, 60:40). The total pit areas per dentin slice also decreased with the addition of antibodies (anti-IL-1 alpha, 28,828; anti-TNF alpha, 49,249; anti-IL-1 alpha + anti-TNF alpha, 30,685; and control, 303,139 mm2). These results suggest that local production of IL-1 alpha and TNF alpha by osteoclasts is an important mechanism for regulating the osteoclast differentiation and bone resorptive process.
Collapse
Affiliation(s)
- N Tani-Ishii
- Department of Operative Dentistry and Endodontics, Kanagawa Dental College, Yokosuka, Japan
| | | | | | | |
Collapse
|
19
|
Wu YM, Richards DW, Rowe DJ. Production of matrix-degrading enzymes and inhibition of osteoclast-like cell differentiation by fibroblast-like cells from the periodontal ligament of human primary teeth. J Dent Res 1999; 78:681-9. [PMID: 10029467 DOI: 10.1177/00220345990780020801] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Clinically, the most apparent difference between the primary and permanent dentitions is the physiologic loss of the primary tooth by root resorption. Root resorption is associated with loss of integrity of the periodontal ligament (PDL), followed by recruitment of resorptive cells that remove root structure. We therefore cultured primary dentition PDL fibroblasts (PPDL cells) to investigate in vitro their production of matrix metalloproteinases (MMPs) and tissue inhibitors of MMP (TIMPs), and the effects of soluble factors produced by these cells on osteoclast-like cell differentiation. These studies demonstrate that PPDL cells in vitro have a heterogeneous morphology, and they constitutively synthesize 92-kDa gelatinase, 72-kDa gelatinase, and 53/57-kDa procollagenase as well as TIMP-1, -2, and a third inhibitor of matrix metalloproteinase, as determined by substrate gel zymography and immunoblot analysis. Compared with PDL cells from the permanent dentition, PPDL cells generally produced a greater amount of collagenase but similar amounts of the gelatinases and inhibitors. PPDL cells were treated with pro-inflammatory cytokines to determine their effect on the expression of matrix-degrading enzymes and inhibitors. Interleukin-1alpha and tumor necrosis factor-alpha enhanced the constitutive expression of proteinases but not that of inhibitors in PPDL cells. Conditioned media from PPDL cell lines inhibited the differentiation of osteoclast-like cells in mouse bone marrow cultures. These findings indicate that PPDL cells may modulate the cascade of root resorption both by their regulated production of proteinases and inhibitors and by synthesis of unknown soluble factor(s) that may regulate osteoclast development.
Collapse
Affiliation(s)
- Y M Wu
- Department of Growth and Development, School of Dentistry, University of California-San Francisco, 94143-0754, USA
| | | | | |
Collapse
|
20
|
Kuo ML, Lamster IB, Hasselgren G. Host mediators in endodontic exudates. I. Indicators of inflammation and humoral immunity. J Endod 1998; 24:598-603. [PMID: 9922748 DOI: 10.1016/s0099-2399(98)80118-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Exudate is often found in the root canal when entering the chamber and canal of teeth with periapical lesions. The aim of this study was to determine possible relationships between clinical or radiographic findings and the concentrations of different host mediators in endodontic exudates. Thirty-two nonvital teeth with periapical symptoms were included in the study. A Clinical Periapical Index was developed to quantify clinical findings. Endodontic exudates were collected with methylcellulose filter paper strips every 3 min, after opening of the pulp chamber. The concentrations of the lysosomal acid glycohydrolase beta-glucuronidase, IgG, IgA, IgM, and interleukin-1 beta in the endodontic exudates were analyzed. The results demonstrated that exudates collected from teeth with suppuration (cloudy exudates), and teeth with higher periapical index scores (Orstavik et al., 1986) contained higher concentrations of beta-glucuronidase and interleukin-1 beta. Furthermore, when the periapical index indicated severe involvement, higher IgG was observed in the first samples. The exudates from patients who presented with a sinus tract or swelling contained higher concentrations of IgM, compared with the patients with only periapical sensitivity. Data showed that endodontic exudates from patient with endodontic lesions can be analyzed for host mediators, and differences in the mediators were seen with different clinical and radiographic symptoms.
Collapse
Affiliation(s)
- M L Kuo
- Division of Endodontics, School of Dental and Oral Surgery, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
21
|
Everts V, Delaissé JM, Korper W, Beertsen W. Cysteine proteinases and matrix metalloproteinases play distinct roles in the subosteoclastic resorption zone. J Bone Miner Res 1998; 13:1420-30. [PMID: 9738514 DOI: 10.1359/jbmr.1998.13.9.1420] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Digestion of calvarial bone by osteoclasts depends on the activity of cysteine proteinases and matrix metalloproteinases (MMPs). It is unknown, however, whether these enzymes act simultaneously or in a certain (time) sequence. In the present study, this was investigated by culturing mouse calvarial bone explants for various time intervals in the presence or absence of selective low molecular weight inhibitors of cysteine proteinases (E-64, Z-Phe-Tyr(O-t-Bu)CHN2 or CA074[Me]) and MMPs (CI-1, CT1166, or RP59794). The explants were morphometrically analyzed at the electron microscopic level. All proteinase inhibitors induced large areas of nondigested demineralized bone matrix adjacent to the ruffled border of actively resorbing osteoclasts. The appearance of these areas proved to be time dependent. In the presence of the cysteine proteinase inhibitors, a maximal surface area of demineralized bone was seen between 4 and 8 h of culturing, whereas the metalloproteinase inhibitors had their maximal effect at a later time interval (between 16 and 24 h). Because different inhibitors of each of the two classes of proteolytic enzymes had the same effects, our data strongly suggest that cysteine proteinases attack the bone matrix prior to digestion by MMPs. In line with the view that a sequence may exist were differences in the amount of proteoglycans (shown with the selective dye cuprolinic blue) in the subosteoclastic demineralized areas induced by the inhibitors. In the presence of the cysteine proteinase inhibitor, relatively high levels of cuprolinic blue precipitates were found, whereas this was less following inhibition of metalloproteinases. These data suggested that cysteine proteinases are important for digestion of noncollagenous proteins. We propose the following sequence in the digestion of calvarial bone by osteoclasts: after attachment of the cell to the mineralized surface an area with a low pH is created which results in dissolution of the mineral, then cysteine proteinases, active at such a low pH, digest part of the bone matrix, and finally, when the pH has increased somewhat, MMPs exert their activity.
Collapse
Affiliation(s)
- V Everts
- Department of Cell Biology and Histology, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
22
|
Collagenase and Other Osteoblast Enzymes. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1569-2590(08)60133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
The Osteoclast Molecular Phenotype. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1569-2590(08)60128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Role of Proteases in Osteoclastic Resorption. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1569-2590(08)60126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Abstract
Studies in some animal species have demonstrated the production of metalloproteinases by bone cells, suggesting that they may play a role in bone modeling and remodeling. The aim of the present study was to investigate the expression of collagenase in human bone in situ, using heterotopic and osteophytic bone. Immunohistochemistry was performed on chilled sections of bone, using well characterized polyclonal antibodies to human collagenase. The heterotopic and osteophytic bone exhibited high turnover and both bone modeling and remodeling were evident. Collagenase expression by osteoblasts was demonstrated in cells synthesising matrix and in lining cells; the strongest signal was seen in areas of de novo matrix formation, where bridges of woven bone were being formed between areas of mineralized bone. Collagenase was also present in some osteoclasts associated with eroded bone surfaces and in some mononuclear cells that were present in resorption cavities and in the bone marrow. Our results provide the first demonstration, in situ, of collagenase in human bone and suggest that it may play a role in human bone modeling and remodeling. Production of collagenase by active osteoblasts and lining cells suggest that it may be involved both in matrix formation and activation of bone remodeling. The presence of collagenase in osteoclasts provides further evidence that metalloproteinases may play a role in bone resorption.
Collapse
Affiliation(s)
- S Bord
- Department of Medicine, University of Cambridge, School of Clinical Medicine, Addenbrooke's Hospital, UK
| | | | | | | | | |
Collapse
|
26
|
Klapisz-Wolikow M, Saffar JL. Minocycline impairment of both osteoid tissue removal and osteoclastic resorption in a synchronized model of remodeling in the rat. J Cell Physiol 1996; 167:359-68. [PMID: 8613479 DOI: 10.1002/(sici)1097-4652(199605)167:2<359::aid-jcp22>3.0.co;2-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In addition to their antibacterial effects, tetracyclines may inhibit interstitial collagenase activity and bone resorption. These properties were assessed morphometrically using minocycline (25 and 50 mg/kg/day given by the IM route) in a rat model of synchronized remodeling in which osteoclastic resorption peaks 4 days after the activating event (the extractions of the upper molars) along the antagonist mandibular cortex, a zone undergoing physiologically active formation. During the first 2 days of activation, minocycline at the two doses impaired very significantly the disorganization of both the osteoid seam and the layer of osteoblasts, a prerequisite to give osteoclasts access to the mineralized bone surface. The number of readily identifiable osteoblasts decreased slightly during this period, suggesting that minocycline prevented their transformation into lining cells. Their synthetic activity, as estimated by the size of the cells and their nucleus, appeared relatively preserved too, mostly with the higher dose. AT the peak of osteoclasia, the bone surfaces undergoing remodeling were significantly decreased in the minocycline-treated groups. The resorption surface was reduced (P < 0.0003) as well as the number of osteoclasts (P < 0.0007), which were also significantly smaller. Their resorbing activity was dramatically affected as well: they excavated lacunae whose area was significantly reduced by over 70%. In addition, formation was still a prominent activity in the treated animals. These data are compatible with the inhibition at the early stages of activation of an osteoblast-secreted collagenase whose action may be the elimination of the osteoid seam. The inhibition of an osteoclast collagenase and/or of a bone matrix bound-collagenase may be responsible for the reduction in lacunar size. A direct effect of minocycline on osteoclast resorptive activity may also participate in the low resorption profile, as tetracyclines are known to interfere with the intracellular [Ca2+].
Collapse
Affiliation(s)
- M Klapisz-Wolikow
- Laboratoire de Biologie et Biomatériaux du Milieu Buccal et Osseux, Faculté de Chirurgie Dentaire, Université René Descartes (Paris V), Montrouge, France
| | | |
Collapse
|
27
|
Abstract
Microscopic studies have assisted in revealing some of the components of the resorptive apparatus of osteoclasts, specifically carbonic anhydrase and the proton-translocating ATPase. Further, microscopy has helped substantiate the types of proteolytic enzymes secreted into the resorption lacuna. Regulatory agents affecting the resorptive process in vitro include parathyroid hormone, 17 beta-estradiol, calcitonin, and 1,25-dihydroxyvitamin D3. Studies showing the specific binding of parathyroid hormone, estradiol, and calcitonin to osteoclast plasma membrane are discussed. While specific binding suggests that direct effects may occur, further investigation is needed to substantiate this possibility.
Collapse
Affiliation(s)
- C V Gay
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
28
|
Witty JP, Foster SA, Stricklin GP, Matrisian LM, Stern PH. Parathyroid hormone-induced resorption in fetal rat limb bones is associated with production of the metalloproteinases collagenase and gelatinase B. J Bone Miner Res 1996; 11:72-8. [PMID: 8770699 DOI: 10.1002/jbmr.5650110111] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of matrix metalloproteinases in parathyroid hormone (PTH)-induced bone resorption was assayed using a fetal rat limb bone culture system. Cotreatment of bones with PTH and recombinant inhibitor of metalloproteinases, TIMP-1, in vitro, inhibited the PTH-stimulated 45Ca release from the limb bones without affecting beta-glucuronidase release. TIMP-1 was fully effective when added during only the final 24 h of a 72 h culture with PTH but was ineffective when added for only the first 24 h of the 72 h culture. In contrast, calcitonin (CT) was effective when added for either the first 24 or the final 24 h of the culture. Using in situ hybridization, the mRNA for collagenase was detected in mononuclear cells of cultured bone. Treatment of the bones with PTH resulted in an increase in the number of cells producing collagenase mRNA, some of which had osteoclastic morphology, PTH also caused a dramatic induction of the mRNA for the 92-kD gelatinase B metalloproteinase in both mononuclear and osteoclastic cells. There was no detectable mRNA for the metalloproteinases stromelysin-1, stromelysin-2, or matrilysin in PTH-treated or control cultures. These results suggest that PTH-induced bone resorption is mediated, at least in part, by the induction of collagenase and gelatinase B mRNA in bone cells.
Collapse
Affiliation(s)
- J P Witty
- Department of Cell Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
29
|
Sahara N, Toyoki A, Ashizawa Y, Deguchi T, Suzuki K. Cytodifferentiation of the odontoclast prior to the shedding of human deciduous teeth: an ultrastructural and cytochemical study. Anat Rec (Hoboken) 1996; 244:33-49. [PMID: 8838422 DOI: 10.1002/(sici)1097-0185(199601)244:1<33::aid-ar4>3.0.co;2-g] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND In human deciduous teeth, odontoclastic resorption takes place at the pulpal surface of the coronal dentine prior to shedding, and this resorption shows clear time-related histological changes (Sahara et al., 1992). METHODS Using this phenomenon as an observation system, we examined the cytodifferentiation of human odontoclasts by light and electron microscopy. For a histochemical marker of odontoclast differentiation and function, tartrate-resistant acid phosphatase (TRAP) activity was determined by light and electron microscopic enzyme histochemistry. RESULTS As root resorption neared completion, TRAP-positive mononuclear cells were initially detected in the pulp chamber. They had abundant mitochondria, small lysosomes, and moderately developed rough endoplasmic reticulum throughout their cytoplasm. In these mononuclear cells, TRAP activity was localized in compartments of the biosynthetic pathway, i.e., in cisternae of the endoplasmic reticulum and Golgi lamellae, as well as small lysosomes. The TRAP-positive mononuclear cells first made contact with the predentine surface by their elongated cellular processes. After attachment, they spread out along the predentine surface and developed specialized membrane structures, clear zones, and ruffled borders. Next, they fused with each other on the predentine surface and formed typical multinucleate odontoclasts. After termination of their resorption function, the odontoclasts lost their ruffled borders and became detached from the resorbed surface. Most of the detached odontoclasts had numerous large pale vacuoles and secondary lysosomes and appeared to be in the process of degeneration. CONCLUSIONS The present study demonstrates that: (1) odontoclasts differentiated from TRAP-positive mononuclear cells, which presumably originate from circulating progenitor cells, (2) membrane specialization of odontoclasts, i.e., development of a clear zone and ruffled border, is induced following their contact with the resorption surface, (3) multinucleation of odontoclasts takes place only after their attachment to the resorption surface, (4) mature multinucleate odontoclasts can resorb predentine as well as dentine in the same way as osteoclasts resorb bone, and (5) at the end of the resorption, odontoclasts gradually lose their ruffled borders and become detached from the resorbed surface.
Collapse
Affiliation(s)
- N Sahara
- Department of Oral Histology, Matsumoto Dental College, Shiojiri, Japan
| | | | | | | | | |
Collapse
|
30
|
Blavier L, Delaissé JM. Matrix metalloproteinases are obligatory for the migration of preosteoclasts to the developing marrow cavity of primitive long bones. J Cell Sci 1995; 108 ( Pt 12):3649-59. [PMID: 8719871 DOI: 10.1242/jcs.108.12.3649] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A key event in bone resorption is the recruitment of osteoclasts to future resorption sites. We follow here the migration of preosteoclasts from the periosteum to the developing marrow cavity of fetal mouse metatarsals in culture, and investigate the role of proteinases and demineralization in this migration. Our approach consisted in testing inhibitors of proteinases and demineralization on the migration kinetics. Migration was monitored by histomorphometry and the (pre)osteoclasts were identified by their tartrate resistant acid phosphatase (TRAP) activity. At the time of explantation, TRAP+ cells (all mononucleated) are detected only in the periosteum, and the core of the diaphysis (future marrow cavity) consist of calcified cartilage. Upon culture, TRAP+ cells (differentiating progressively into multinucleated osteoclasts) migrate through a seam of osteoid and a very thin and discontinuous layer of mineral, invade the calcified cartilage and transform it into a “marrow' cavity; despite the passage of maturing osteoclasts, the osteoid develops into a bone collar. The migration of TRAP+ cells is completely prevented by matrix metalloproteinase (MMP) inhibitors, but not by a cysteine proteinase inhibitor, an inhibitor of carbonic anhydrase, or a bisphosphonate. The latter three drugs inhibit, however, the resorptive activity of mature osteoclasts at least as efficiently as do the MMP inhibitors, as assessed in cultures of calvariae and radii. Furthermore, in situ hybridizations reveal the expression of 2 MMPs, gelatinase B (MMP-9 or 92 kDa type IV collagenase) in (pre)osteoclasts, and interstitial collagenase (MMP-13) in hypertrophic chondrocytes. It is concluded that only MMPs appear obligatory for the migration of (pre)osteoclasts, and that this role is distinct from the one MMPs may play in the subosteoclastic resorption compartment. We propose that this new role of MMPs is a major component of the mechanism that determines where and when the osteoclasts will attack the bone.
Collapse
Affiliation(s)
- L Blavier
- Laboratoire de Chimie Physiologique (Connective Tissue Group), Université de Louvain, Bruxelles, Belgium
| | | |
Collapse
|
31
|
Tani-Ishii N, Wang CY, Stashenko P. Immunolocalization of bone-resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure. ORAL MICROBIOLOGY AND IMMUNOLOGY 1995; 10:213-219. [PMID: 8602333 DOI: 10.1111/j.1399-302x.1995.tb00145.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The bone-resorptive cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) have been implicated in the pathogenesis of many chronic inflammatory diseases, including pulpitis and apical periodontitis.To further elucidate their role in these disorders, we have identified cells that express IL-1 alpha and TNF alpha in infected pulps and in developing rat periapical lesions after surgical pulp exposure. As detected by immunohistochemistry, IL-1 alpha- and TNF alpha-positive cells were present as early as 2 days after pulp exposure in both the pulp and periapical region. The numbers of cytokine-expressing cells increased up to day 4 in the pulp and up to day 30 in the periapex. In contrast, cells expressing IL-1 beta and TNF beta, the homologous forms of these mediators, were not found in pulp or periapical lesions during this period. Cells expressing IL-1 alpha and TNF alpha were identified primarily as macrophages and fibroblasts, with occasional staining of polymorphonuclear leukocytes. Osteoblasts and osteoclasts were also positive, whereas lymphocytes were negative. In general, cytokine-expressing cells were located proximal to abscesses and the root apex. These findings demonstrate that cells that express bone-resorptive cytokines IL-1 alpha and TNF alpha are present immediately after pulp exposure in this model, which supports the hypothesis that these mediators play a key role in pulpal and periapical pathogenesis, including the concomitant bone destruction. They also indicate that both resident connective tissue cells as well as infiltrating cells express bone-resorptive cytokines in response to infection in these lesions.
Collapse
Affiliation(s)
- N Tani-Ishii
- Department of Cytokine Biology, Forsyth Dental Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
32
|
Fuller K, Chambers TJ. Localisation of mRNA for collagenase in osteocytic, bone surface and chondrocytic cells but not osteoclasts. J Cell Sci 1995; 108 ( Pt 6):2221-30. [PMID: 7673342 DOI: 10.1242/jcs.108.6.2221] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Osteoclasts resorb the extracellular matrix of bone by secreting protons and enzymes into a circumpherentially sealed compartment between the osteoclast and the bone surface. Although the lysosomal cysteine proteinases play a major role in matrix degradation by osteoclasts, collagenase (matrix metalloproteinase-1, EC 3.4.24.7) is also required for osteoclastic bone resorption, and may be directly involved in collagen degradation in the hemivacuole. We assessed the effects of inhibitors of cysteine proteinases and collagenase on bone resorption by osteoclasts isolated from rodent bone. We found that while inhibition of cysteine proteinases strongly suppressed osteoclastic resorption, inhibitors of collagenase were without effect on the number, size, or demineralised fringe of excavations. We could find no evidence of expression of mRNA for collagenase in rat osteoclasts by in situ hybridisation, but found that it was expressed by chondrocytes, bone surface cells and osteocytes adjacent to osteoclasts. The distribution of these cells, and the correlation between increased collagenase production and increased stimulation of osteoclastic resorption in vitro by bone cells, suggests that these cells might be involved in the regulation of bone resorption in situ, and that collagenase production might play a role in this process.
Collapse
Affiliation(s)
- K Fuller
- Department of Histopathology, St George's Hospital Medical School, London, UK
| | | |
Collapse
|
33
|
Affiliation(s)
- B R Rifkin
- New York University College of Dentistry, Division of Basic Sciences, New York 10010
| | | | | | | |
Collapse
|
34
|
Tezuka K, Nemoto K, Tezuka Y, Sato T, Ikeda Y, Kobori M, Kawashima H, Eguchi H, Hakeda Y, Kumegawa M. Identification of matrix metalloproteinase 9 in rabbit osteoclasts. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36566-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Delaissé JM, Eeckhout Y, Neff L, François-Gillet C, Henriet P, Su Y, Vaes G, Baron R. (Pro)collagenase (matrix metalloproteinase-1) is present in rodent osteoclasts and in the underlying bone-resorbing compartment. J Cell Sci 1993; 106 ( Pt 4):1071-82. [PMID: 8126092 DOI: 10.1242/jcs.106.4.1071] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Osteoclasts resorb the extracellular matrix of bone by secreting enzymes and acid into a sealed-off compartment that they form upon attachment to the bone surface. Although the lysosomal cysteine proteinases can degrade collagen after the demineralization of bone at low pH, several lines of evidence suggest that collagenase (matrix metalloproteinase-1, EC 3.4.24.7) may also be involved in this process. The question of whether collagenase is present in the osteoclast and/or in the bone-resorbing compartment has however not been resolved. We have prepared an anti-mouse collagenase antiserum and affinity-purified an IgG fraction that specifically immunoblots and immunoprecipitates (pro)collagenase. Using these antibodies, we demonstrate by immunolocalization the presence of (pro)collagenase both in the osteoclasts and in the extracellular subosteoclastic bone-resorbing compartment. These specific localizations were observed not only in mice but also in rat and rabbit osteoclasts and using not only the antibody we have prepared but also antibodies raised in other laboratories against rat (Jeffrey et al., J. Cell. Physiol. 143, 396–403, 1990) and rabbit (Brinckerhoff et al., J. Biol. Chem. 265, 22262–22269, 1990) collagenase. Intracellular collagenase was observed in the osteoclasts whether the cells were plated on bone or cultured on glass coverslips. It is proposed that osteoclastic collagenase is secreted in the resorbing compartment where it may cooperate with the lysosomal cysteine proteinases in the degradation of the collagen component of the matrix during the resorption of bone.
Collapse
Affiliation(s)
- J M Delaissé
- Laboratoire de Chimie Physiologique (Connective Tissue Group), Université de Louvain, Bruxelles, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ. Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med 1993; 178:1733-44. [PMID: 8228819 PMCID: PMC2191238 DOI: 10.1084/jem.178.5.1733] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Macrophage colony-stimulating factor (M-CSF) is known to play an important role in osteoclast formation. However, its actions on mature cells have not been fully characterized. We now report that M-CSF dramatically stimulates osteoclastic motility and spreading; osteoclasts responded to a gradient of M-CSF with orientation, and random cell polarization occurred after isotropic exposure. M-CSF also supported the survival of osteoclasts by preventing apoptosis. Paradoxically, M-CSF inhibits bone resorption by isolated osteoclasts. We found that this was effected predominantly by reduction in the number of excavations. Thus, M-CSF showed a propensity to suppress resorption through a reduction in the proportion of cells that were resorbing bone. Our data suggest that apart from the established role of M-CSF in the provision of precursors for osteoclastic induction, a major role for M-CSF in bone resorption is to enhance osteoclastic survival, migration, and chemotaxis. It seems appropriate that during these processes resorptive functions should be suppressed. We suggest that M-CSF continues to modulate osteoclastic activity once osteoclasts are on resorptive sites, through regulation of the balance between resorption and migration, such that not only the quantity, but the spatial pattern of resorption can be controlled by adjacent M-CSF-secreting cells of osteoblastic lineage.
Collapse
Affiliation(s)
- K Fuller
- Department of Histopathology, St. George's Hospital Medical School, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Kaplan FS, Horowitz SM, Quinn PD. Dental complications of Paget's disease: the need for hard facts about hard tissues. Calcif Tissue Int 1993; 53:223-4. [PMID: 8275347 DOI: 10.1007/bf01320904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
38
|
Chowdhury MH, Moak SA, Rifkin BR, Greenwald RA. Effect of tetracyclines which have metalloproteinase inhibitory capacity on basal and heparin-stimulated bone resorption by chick osteoclasts. AGENTS AND ACTIONS 1993; 40:124-8. [PMID: 8147268 DOI: 10.1007/bf01976761] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several tetracyclines (TETs) are potent inhibitors of collagenase (CGase) and can inhibit connective tissue degradation in a variety of inflammatory and degenerative disorders. The role of CGase in bone resorption by osteoclasts (OC) remains unclear. Disaggregated OCs from chick embryos were cultured for 24 h on devitalized bovine cortical bone +/- heparin in the presence of various TETs. Doxycycline (Dox) inhibited pit formation in a dose-dependent manner. CMT, a TET derivative which inhibits matrix metalloproteinases (MMPs) but is not antimicrobial, also inhibited chick OC bone resorption. Heparin markedly stimulated bone resorption at 5 micrograms/ml, which was reversed by Dox, 5 micrograms/ml. TETs can reversibly inhibit both basal and heparin-stimulated bone resorption by chick OCs. These findings suggest that MMPs may play a role in osteoclastic bone resorption, and that safe and effective inhibitors of MMPs, including certain TETs, might have a potential therapeutic role.
Collapse
Affiliation(s)
- M H Chowdhury
- Division of Rheumatology, Long Island Jewish Medical Center, New Hyde Park, NY 11042
| | | | | | | |
Collapse
|