1
|
Bujosa P, Reina O, Caballé A, Casas-Lamesa A, Torras-Llort M, Pérez-Roldán J, Nacht AS, Vicent GP, Bernués J, Azorín F. Linker histone H1 regulates homeostasis of heterochromatin-associated cRNAs. Cell Rep 2024; 43:114137. [PMID: 38662543 DOI: 10.1016/j.celrep.2024.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/23/2023] [Accepted: 04/08/2024] [Indexed: 06/01/2024] Open
Abstract
Chromatin-associated RNAs (cRNAs) are a poorly characterized fraction of cellular RNAs that co-purify with chromatin. Their full complexity and the mechanisms regulating their packaging and chromatin association remain poorly understood. Here, we address these questions in Drosophila. We find that cRNAs constitute a heterogeneous group of RNA species that is abundant in heterochromatic transcripts. We show that heterochromatic cRNAs interact with the heterogeneous nuclear ribonucleoproteins (hnRNP) hrp36/hrp48 and that depletion of linker histone dH1 impairs this interaction. dH1 depletion induces the accumulation of RNA::DNA hybrids (R-loops) in heterochromatin and, as a consequence, increases retention of heterochromatic cRNAs. These effects correlate with increased RNA polymerase II (RNAPII) occupancy at heterochromatin. Notably, impairing cRNA assembly by depletion of hrp36/hrp48 mimics heterochromatic R-loop accumulation induced by dH1 depletion. We also show that dH1 depletion alters nucleosome organization, increasing accessibility of heterochromatin. Altogether, these perturbations facilitate annealing of cRNAs to the DNA template, enhancing R-loop formation and cRNA retention at heterochromatin.
Collapse
Affiliation(s)
- Paula Bujosa
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Adrià Caballé
- Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Anna Casas-Lamesa
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Mònica Torras-Llort
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Juan Pérez-Roldán
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ana Silvina Nacht
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Guillermo P Vicent
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain; Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jordi Bernués
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.
| |
Collapse
|
2
|
Schmidt A, Zhang H, Schmitt S, Rausch C, Popp O, Chen J, Cmarko D, Butter F, Dittmar G, Lermyte F, Cardoso MC. The Proteomic Composition and Organization of Constitutive Heterochromatin in Mouse Tissues. Cells 2024; 13:139. [PMID: 38247831 PMCID: PMC10814525 DOI: 10.3390/cells13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Pericentric heterochromatin (PCH) forms spatio-temporarily distinct compartments and affects chromosome organization and stability. Albeit some of its components are known, an elucidation of its proteome and how it differs between tissues in vivo is lacking. Here, we find that PCH compartments are dynamically organized in a tissue-specific manner, possibly reflecting compositional differences. As the mouse brain and liver exhibit very different PCH architecture, we isolated native PCH fractions from these tissues, analyzed their protein compositions using quantitative mass spectrometry, and compared them to identify common and tissue-specific PCH proteins. In addition to heterochromatin-enriched proteins, the PCH proteome includes RNA/transcription and membrane-related proteins, which showed lower abundance than PCH-enriched proteins. Thus, we applied a cut-off of PCH-unspecific candidates based on their abundance and validated PCH-enriched proteins. Amongst the hits, MeCP2 was classified into brain PCH-enriched proteins, while linker histone H1 was not. We found that H1 and MeCP2 compete to bind to PCH and regulate PCH organization in opposite ways. Altogether, our workflow of unbiased PCH isolation, quantitative mass spectrometry, and validation-based analysis allowed the identification of proteins that are common and tissue-specifically enriched at PCH. Further investigation of selected hits revealed their opposing role in heterochromatin higher-order architecture in vivo.
Collapse
Affiliation(s)
- Annika Schmidt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Hui Zhang
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Stephanie Schmitt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Oliver Popp
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Jiaxuan Chen
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Dusan Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Gunnar Dittmar
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Frederik Lermyte
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| |
Collapse
|
3
|
Malla AB, Yu H, Farris D, Kadimi S, Lam TT, Cox AL, Smith ZD, Lesch BJ. DOT1L bridges transcription and heterochromatin formation at mammalian pericentromeres. EMBO Rep 2023; 24:e56492. [PMID: 37317657 PMCID: PMC10398668 DOI: 10.15252/embr.202256492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
Repetitive DNA elements are packaged in heterochromatin, but many require bursts of transcription to initiate and maintain long-term silencing. The mechanisms by which these heterochromatic genome features are transcribed remain largely unknown. Here, we show that DOT1L, a conserved histone methyltransferase that modifies lysine 79 of histone H3 (H3K79), has a specialized role in transcription of major satellite repeats to maintain pericentromeric heterochromatin and genome stability. We find that H3K79me3 is selectively enriched relative to H3K79me2 at repetitive elements in mouse embryonic stem cells (mESCs), that DOT1L loss compromises pericentromeric satellite transcription, and that this activity involves possible coordination between DOT1L and the chromatin remodeler SMARCA5. Stimulation of transcript production from pericentromeric repeats by DOT1L participates in stabilization of heterochromatin structures in mESCs and cleavage-stage embryos and is required for preimplantation viability. Our findings uncover an important role for DOT1L as a bridge between transcriptional activation of repeat elements and heterochromatin stability, advancing our understanding of how genome integrity is maintained and how chromatin state is set up during early development.
Collapse
Affiliation(s)
- Aushaq B Malla
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | - Haoming Yu
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | - Delaney Farris
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | | | - TuKiet T Lam
- Keck MS & Proteomics ResourceYale School of MedicineNew HavenCTUSA
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
| | - Andy L Cox
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | - Zachary D Smith
- Department of GeneticsYale School of MedicineNew HavenCTUSA
- Yale Stem Cell CenterYale School of MedicineNew HavenCTUSA
| | - Bluma J Lesch
- Department of GeneticsYale School of MedicineNew HavenCTUSA
- Yale Cancer CenterYale School of MedicineNew HavenCTUSA
| |
Collapse
|
4
|
Müller M, Fäh T, Schaefer M, Hermes V, Luitz J, Stalder P, Arora R, Ngondo RP, Ciaudo C. AGO1 regulates pericentromeric regions in mouse embryonic stem cells. Life Sci Alliance 2022; 5:e202101277. [PMID: 35236760 PMCID: PMC8897595 DOI: 10.26508/lsa.202101277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/09/2023] Open
Abstract
Argonaute proteins (AGOs), which play an essential role in cytosolic post-transcriptional gene silencing, have been also reported to function in nuclear processes like transcriptional activation or repression, alternative splicing and, chromatin organization. As most of these studies have been conducted in human cancer cell lines, the relevance of AGOs nuclear functions in the context of mouse early embryonic development remains uninvestigated. Here, we examined a possible role of the AGO1 protein on the distribution of constitutive heterochromatin in mouse embryonic stem cells (mESCs). We observed a specific redistribution of the repressive histone mark H3K9me3 and the heterochromatin protein HP1α, away from pericentromeric regions upon Ago1 depletion. Furthermore, we demonstrated that major satellite transcripts are strongly up-regulated in Ago1_KO mESCs and that their levels are partially restored upon AGO1 rescue. We also observed a similar redistribution of H3K9me3 and HP1α in Drosha_KO mESCs, suggesting a role for microRNAs (miRNAs) in the regulation of heterochromatin distribution in mESCs. Finally, we showed that specific miRNAs with complementarity to major satellites can partially regulate the expression of these transcripts.
Collapse
Affiliation(s)
- Madlen Müller
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Tara Fäh
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Moritz Schaefer
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Victoria Hermes
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Janina Luitz
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Patrick Stalder
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Rajika Arora
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Richard Patryk Ngondo
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| |
Collapse
|
5
|
Moore EC, Thomas GWC, Mortimer S, Kopania EEK, Hunnicutt KE, Clare-Salzler ZJ, Larson EL, Good JM. The Evolution of Widespread Recombination Suppression on the Dwarf Hamster (Phodopus) X Chromosome. Genome Biol Evol 2022; 14:evac080. [PMID: 35642315 PMCID: PMC9185382 DOI: 10.1093/gbe/evac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
The X chromosome of therian mammals shows strong conservation among distantly related species, limiting insights into the distinct selective processes that have shaped sex chromosome evolution. We constructed a chromosome-scale de novo genome assembly for the Siberian dwarf hamster (Phodopus sungorus), a species reported to show extensive recombination suppression across an entire arm of the X chromosome. Combining a physical genome assembly based on shotgun and long-range proximity ligation sequencing with a dense genetic map, we detected widespread suppression of female recombination across ∼65% of the Phodopus X chromosome. This region of suppressed recombination likely corresponds to the Xp arm, which has previously been shown to be highly heterochromatic. Using additional sequencing data from two closely related species (P. campbelli and P. roborovskii), we show that recombination suppression on Xp appears to be independent of major structural rearrangements. The suppressed Xp arm was enriched for several transposable element families and de-enriched for genes primarily expressed in placenta, but otherwise showed similar gene densities, expression patterns, and rates of molecular evolution when compared to the recombinant Xq arm. Phodopus Xp gene content and order was also broadly conserved relative to the more distantly related rat X chromosome. These data suggest that widespread suppression of recombination has likely evolved through the transient induction of facultative heterochromatin on the Phodopus Xp arm without major changes in chromosome structure or genetic content. Thus, substantial changes in the recombination landscape have so far had relatively subtle influences on patterns of X-linked molecular evolution in these species.
Collapse
Affiliation(s)
- Emily C. Moore
- Division of Biological Sciences, The University of Montana, Missoula, Montana, 59812, USA
| | - Gregg W. C. Thomas
- Division of Biological Sciences, The University of Montana, Missoula, Montana, 59812, USA
| | - Sebastian Mortimer
- Division of Biological Sciences, The University of Montana, Missoula, Montana, 59812, USA
| | - Emily E. K. Kopania
- Division of Biological Sciences, The University of Montana, Missoula, Montana, 59812, USA
| | - Kelsie E. Hunnicutt
- Department of Biological Sciences, The University of Denver, Denver, Colorado, 80208, USA
| | | | - Erica L. Larson
- Department of Biological Sciences, The University of Denver, Denver, Colorado, 80208, USA
| | - Jeffrey M. Good
- Division of Biological Sciences, The University of Montana, Missoula, Montana, 59812, USA
| |
Collapse
|
6
|
Molecular Dynamics and Evolution of Centromeres in the Genus Equus. Int J Mol Sci 2022; 23:ijms23084183. [PMID: 35457002 PMCID: PMC9024551 DOI: 10.3390/ijms23084183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
The centromere is the chromosomal locus essential for proper chromosome segregation. While the centromeric function is well conserved and epigenetically specified, centromeric DNA sequences are typically composed of satellite DNA and represent the most rapidly evolving sequences in eukaryotic genomes. The presence of satellite sequences at centromeres hampered the comprehensive molecular analysis of these enigmatic loci. The discovery of functional centromeres completely devoid of satellite repetitions and fixed in some animal and plant species represented a turning point in centromere biology, definitively proving the epigenetic nature of the centromere. The first satellite-free centromere, fixed in a vertebrate species, was discovered in the horse. Later, an extraordinary number of satellite-free neocentromeres had been discovered in other species of the genus Equus, which remains the only mammalian genus with numerous satellite-free centromeres described thus far. These neocentromeres arose recently during evolution and are caught in a stage of incomplete maturation. Their presence made the equids a unique model for investigating, at molecular level, the minimal requirements for centromere seeding and evolution. This model system provided new insights on how centromeres are established and transmitted to the progeny and on the role of satellite DNA in different aspects of centromere biology.
Collapse
|
7
|
Vourc’h C, Dufour S, Timcheva K, Seigneurin-Berny D, Verdel A. HSF1-Activated Non-Coding Stress Response: Satellite lncRNAs and Beyond, an Emerging Story with a Complex Scenario. Genes (Basel) 2022; 13:genes13040597. [PMID: 35456403 PMCID: PMC9032817 DOI: 10.3390/genes13040597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, the heat shock response is orchestrated by a transcription factor named Heat Shock Factor 1 (HSF1). HSF1 is mostly characterized for its role in activating the expression of a repertoire of protein-coding genes, including the heat shock protein (HSP) genes. Remarkably, a growing set of reports indicate that, upon heat shock, HSF1 also targets various non-coding regions of the genome. Focusing primarily on mammals, this review aims at reporting the identity of the non-coding genomic sites directly bound by HSF1, and at describing the molecular function of the long non-coding RNAs (lncRNAs) produced in response to HSF1 binding. The described non-coding genomic targets of HSF1 are pericentric Satellite DNA repeats, (sub)telomeric DNA repeats, Short Interspersed Nuclear Element (SINE) repeats, transcriptionally active enhancers and the NEAT1 gene. This diverse set of non-coding genomic sites, which already appears to be an integral part of the cellular response to stress, may only represent the first of many. Thus, the study of the evolutionary conserved heat stress response has the potential to emerge as a powerful cellular context to study lncRNAs, produced from repeated or unique DNA regions, with a regulatory function that is often well-documented but a mode of action that remains largely unknown.
Collapse
Affiliation(s)
- Claire Vourc’h
- Université de Grenoble Alpes (UGA), 38700 La Tronche, France
- Correspondence: (C.V.); (A.V.)
| | - Solenne Dufour
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - Kalina Timcheva
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - Daphné Seigneurin-Berny
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - André Verdel
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
- Correspondence: (C.V.); (A.V.)
| |
Collapse
|
8
|
Gil L, Niño SA, Guerrero C, Jiménez-Capdeville ME. Phospho-Tau and Chromatin Landscapes in Early and Late Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms221910283. [PMID: 34638632 PMCID: PMC8509045 DOI: 10.3390/ijms221910283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/25/2022] Open
Abstract
Cellular identity is determined through complex patterns of gene expression. Chromatin, the dynamic structure containing genetic information, is regulated through epigenetic modulators, mainly by the histone code. One of the main challenges for the cell is maintaining functionality and identity, despite the accumulation of DNA damage throughout the aging process. Replicative cells can remain in a senescent state or develop a malign cancer phenotype. In contrast, post-mitotic cells such as pyramidal neurons maintain extraordinary functionality despite advanced age, but they lose their identity. This review focuses on tau, a protein that protects DNA, organizes chromatin, and plays a crucial role in genomic stability. In contrast, tau cytosolic aggregates are considered hallmarks of Alzheimer´s disease (AD) and other neurodegenerative disorders called tauopathies. Here, we explain AD as a phenomenon of chromatin dysregulation directly involving the epigenetic histone code and a progressive destabilization of the tau–chromatin interaction, leading to the consequent dysregulation of gene expression. Although this destabilization could be lethal for post-mitotic neurons, tau protein mediates profound cellular transformations that allow for their temporal survival.
Collapse
Affiliation(s)
- Laura Gil
- Departamento de Genética, Escuela de Medicina, Universidad “Alfonso X el Sabio”, 28691 Madrid, Spain;
| | - Sandra A. Niño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma, de San Luis Potosí 78210, Mexico;
| | - Carmen Guerrero
- Banco de Cerebros (Biobanco), Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain;
| | - María E. Jiménez-Capdeville
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma, de San Luis Potosí 78210, Mexico;
- Correspondence: ; Tel.: +52-444-826-2366
| |
Collapse
|
9
|
Mihìc P, Hédouin S, Francastel C. Centromeres Transcription and Transcripts for Better and for Worse. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:169-201. [PMID: 34386876 DOI: 10.1007/978-3-030-74889-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are chromosomal regions that are essential for the faithful transmission of genetic material through each cell division. They represent the chromosomal platform on which assembles a protein complex, the kinetochore, which mediates attachment to the mitotic spindle. In most organisms, centromeres assemble on large arrays of tandem satellite repeats, although their DNA sequences and organization are highly divergent among species. It has become evident that centromeres are not defined by underlying DNA sequences, but are instead epigenetically defined by the deposition of the centromere-specific histone H3 variant, CENP-A. In addition, and although long regarded as silent chromosomal loci, centromeres are in fact transcriptionally competent in most species, yet at low levels in normal somatic cells, but where the resulting transcripts participate in centromere architecture, identity, and function. In this chapter, we discuss the various roles proposed for centromere transcription and their transcripts, and the potential molecular mechanisms involved. We also discuss pathological cases in which unscheduled transcription of centromeric repeats or aberrant accumulation of their transcripts are pathological signatures of chromosomal instability diseases. In sum, tight regulation of centromeric satellite repeats transcription is critical for healthy development and tissue homeostasis, and thus prevents the emergence of disease states.
Collapse
Affiliation(s)
- Pia Mihìc
- Université De Paris, Epigenetics and Cell Fate, CNRS UMR7216, Paris, France
| | - Sabrine Hédouin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claire Francastel
- Université De Paris, Epigenetics and Cell Fate, CNRS UMR7216, Paris, France.
| |
Collapse
|
10
|
Feliciello I, Pezer Ž, Sermek A, Bruvo Mađarić B, Ljubić S, Ugarković Đ. Satellite DNA-Mediated Gene Expression Regulation: Physiological and Evolutionary Implication. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:145-167. [PMID: 34386875 DOI: 10.1007/978-3-030-74889-0_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite DNAs are tandemly repeated sequences organized in large clusters within (peri)centromeric and/or subtelomeric heterochromatin. However, in many species, satellite DNAs are not restricted to heterochromatin but are also dispersed as short arrays within euchromatin. Such genomic organization together with transcriptional activity seems to be a prerequisite for the gene-modulatory effect of satellite DNAs which was first demonstrated in the beetle Tribolium castaneum upon heat stress. Namely, enrichment of a silent histone mark at euchromatic repeats of a major beetle satellite DNA results in epigenetic silencing of neighboring genes. In addition, human satellite III transcripts induced by heat shock contribute to genome-wide gene silencing, providing protection against stress-induced cell death. Gene silencing mediated by satellite RNA was also shown to be fundamental for the early embryonic development of the mosquito Aedes aegypti. Apart from a physiological role during embryogenesis and heat stress response, activation of satellite DNAs in terms of transcription and proliferation can have an evolutionary impact. Spreading of satellite repeats throughout euchromatin promotes the variation of epigenetic landscapes and gene expression diversity, contributing to the evolution of gene regulatory networks and to genome adaptation in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.,Dipartimento di Medicina Clinica e Chirurgia, Universita' degli Studi di Napoli Federico II, Naples, Italy
| | - Željka Pezer
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Antonio Sermek
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Sven Ljubić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
11
|
Yadav RP, Mäkelä JA, Hyssälä H, Cisneros-Montalvo S, Kotaja N. DICER regulates the expression of major satellite repeat transcripts and meiotic chromosome segregation during spermatogenesis. Nucleic Acids Res 2020; 48:7135-7153. [PMID: 32484548 PMCID: PMC7367195 DOI: 10.1093/nar/gkaa460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/23/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
Constitutive heterochromatin at the pericentric regions of chromosomes undergoes dynamic changes in its epigenetic and spatial organization during spermatogenesis. Accurate control of pericentric heterochromatin is required for meiotic cell divisions and production of fertile and epigenetically intact spermatozoa. In this study, we demonstrate that pericentric heterochromatin is expressed during mouse spermatogenesis to produce major satellite repeat (MSR) transcripts. We show that the endonuclease DICER localizes to the pericentric heterochromatin in the testis. Furthermore, DICER forms complexes with MSR transcripts, and their processing into small RNAs is compromised in Dicer1 knockout mice leading to an elevated level of MSR transcripts in meiotic cells. We also show that defective MSR forward transcript processing in Dicer1 cKO germ cells is accompanied with reduced recruitment of SUV39H2 and H3K9me3 to the pericentric heterochromatin and meiotic chromosome missegregation. Altogether, our results indicate that the physiological role of DICER in maintenance of male fertility extends to the regulation of pericentric heterochromatin through direct targeting of MSR transcripts.
Collapse
Affiliation(s)
- Ram Prakash Yadav
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Finland
| | - Juho-Antti Mäkelä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Finland
| | - Hanna Hyssälä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Finland
| | - Sheyla Cisneros-Montalvo
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Finland
| | - Noora Kotaja
- To whom correspondence should be addressed. Tel: +358 44 2539225;
| |
Collapse
|
12
|
Hsieh CL, Xia J, Lin H. MIWI prevents aneuploidy during meiosis by cleaving excess satellite RNA. EMBO J 2020; 39:e103614. [PMID: 32677148 DOI: 10.15252/embj.2019103614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 01/01/2023] Open
Abstract
MIWI, a murine member of PIWI proteins mostly expressed during male meiosis, is crucial for piRNA biogenesis, post-transcriptional regulation, and spermiogenesis. However, its meiotic function remains unknown. Here, we report that MIWI deficiency alters meiotic kinetochore assembly, significantly increases chromosome misalignment at the meiosis metaphase I plate, and causes chromosome mis-segregation. Consequently, Miwi-deficient mice show elevated aneuploidy in metaphase II and spermatid death. Furthermore, in Miwi-null and Miwi slicer-deficient mutants, major and minor satellite RNAs from centromeric and pericentromeric satellite repeats accumulate in excess. Over-expression of satellite repeats in wild-type spermatocytes also causes elevated chromosome misalignment, whereas reduction of both strands of major or minor satellite RNAs results in lower frequencies of chromosome misalignment. We show that MIWI, guided by piRNA, cleaves major satellite RNAs, generating RNA fragments that may form substrates for subsequent Dicer cleavage. Furthermore, Dicer cleaves all satellite RNAs in conjunction with MIWI. These findings reveal a novel mechanism in which MIWI- and Dicer-mediated cleavage of the satellite RNAs prevents the over-expression of satellite RNAs, thus ensuring proper kinetochore assembly and faithful chromosome segregation during meiosis.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jing Xia
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Epigenetic Factors That Control Pericentric Heterochromatin Organization in Mammals. Genes (Basel) 2020; 11:genes11060595. [PMID: 32481609 PMCID: PMC7349813 DOI: 10.3390/genes11060595] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Pericentric heterochromatin (PCH) is a particular form of constitutive heterochromatin that is localized to both sides of centromeres and that forms silent compartments enriched in repressive marks. These genomic regions contain species-specific repetitive satellite DNA that differs in terms of nucleotide sequences and repeat lengths. In spite of this sequence diversity, PCH is involved in many biological phenomena that are conserved among species, including centromere function, the preservation of genome integrity, the suppression of spurious recombination during meiosis, and the organization of genomic silent compartments in the nucleus. PCH organization and maintenance of its repressive state is tightly regulated by a plethora of factors, including enzymes (e.g., DNA methyltransferases, histone deacetylases, and histone methyltransferases), DNA and histone methylation binding factors (e.g., MECP2 and HP1), chromatin remodeling proteins (e.g., ATRX and DAXX), and non-coding RNAs. This evidence helps us to understand how PCH organization is crucial for genome integrity. It then follows that alterations to the molecular signature of PCH might contribute to the onset of many genetic pathologies and to cancer progression. Here, we describe the most recent updates on the molecular mechanisms known to underlie PCH organization and function.
Collapse
|
14
|
Khosraviani N, Ostrowski LA, Mekhail K. Roles for Non-coding RNAs in Spatial Genome Organization. Front Cell Dev Biol 2019; 7:336. [PMID: 31921848 PMCID: PMC6930868 DOI: 10.3389/fcell.2019.00336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic loci are non-randomly arranged in the nucleus of the cell. This order, which is important to overall genome expression and stability, is maintained by a growing number of factors including the nuclear envelope, various genetic elements and dedicated protein complexes. Here, we review evidence supporting roles for non-coding RNAs (ncRNAs) in the regulation of spatial genome organization and its impact on gene expression and cell survival. Specifically, we discuss how ncRNAs from single-copy and repetitive DNA loci contribute to spatial genome organization by impacting perinuclear chromosome tethering, major nuclear compartments, chromatin looping, and various chromosomal structures. Overall, our analysis of the literature highlights central functions for ncRNAs and their transcription in the modulation of spatial genome organization with connections to human health and disease.
Collapse
Affiliation(s)
- Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lauren A. Ostrowski
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Canada Research Chairs Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Ling YH, Lin Z, Yuen KWY. Genetic and epigenetic effects on centromere establishment. Chromosoma 2019; 129:1-24. [PMID: 31781852 DOI: 10.1007/s00412-019-00727-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 01/19/2023]
Abstract
Endogenous chromosomes contain centromeres to direct equal chromosomal segregation in mitosis and meiosis. The location and function of existing centromeres is usually maintained through cell cycles and generations. Recent studies have investigated how the centromere-specific histone H3 variant CENP-A is assembled and replenished after DNA replication to epigenetically propagate the centromere identity. However, existing centromeres occasionally become inactivated, with or without change in underlying DNA sequences, or lost after chromosomal rearrangements, resulting in acentric chromosomes. New centromeres, known as neocentromeres, may form on ectopic, non-centromeric chromosomal regions to rescue acentric chromosomes from being lost, or form dicentric chromosomes if the original centromere is still active. In addition, de novo centromeres can form after chromatinization of purified DNA that is exogenously introduced into cells. Here, we review the phenomena of naturally occurring and experimentally induced new centromeres and summarize the genetic (DNA sequence) and epigenetic features of these new centromeres. We compare the characteristics of new and native centromeres to understand whether there are different requirements for centromere establishment and propagation. Based on our understanding of the mechanisms of new centromere formation, we discuss the perspectives of developing more stably segregating human artificial chromosomes to facilitate gene delivery in therapeutics and research.
Collapse
Affiliation(s)
- Yick Hin Ling
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Zhongyang Lin
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong.
| |
Collapse
|
16
|
Smurova K, De Wulf P. Centromere and Pericentromere Transcription: Roles and Regulation … in Sickness and in Health. Front Genet 2018; 9:674. [PMID: 30627137 PMCID: PMC6309819 DOI: 10.3389/fgene.2018.00674] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
The chromosomal loci known as centromeres (CEN) mediate the equal distribution of the duplicated genome between both daughter cells. Specifically, centromeres recruit a protein complex named the kinetochore, that bi-orients the replicated chromosome pairs to the mitotic or meiotic spindle structure. The paired chromosomes are then separated, and the individual chromosomes segregate in opposite direction along the regressing spindle into each daughter cell. Erroneous kinetochore assembly or activity produces aneuploid cells that contain an abnormal number of chromosomes. Aneuploidy may incite cell death, developmental defects (including genetic syndromes), and cancer (>90% of all cancer cells are aneuploid). While kinetochores and their activities have been preserved through evolution, the CEN DNA sequences have not. Hence, to be recognized as sites for kinetochore assembly, CEN display conserved structural themes. In addition, CEN nucleosomes enclose a CEN-exclusive variant of histone H3, named CENP-A, and carry distinct epigenetic labels on CENP-A and the other CEN histone proteins. Through the cell cycle, CEN are transcribed into non-coding RNAs. After subsequent processing, they become key components of the CEN chromatin by marking the CEN locus and by stably anchoring the CEN-binding kinetochore proteins. CEN transcription is tightly regulated, of low intensity, and essential for differentiation and development. Under- or overexpression of CEN transcripts, as documented for myriad cancers, provoke chromosome missegregation and aneuploidy. CEN are genetically stable and fully competent only when they are insulated from the surrounding, pericentromeric chromatin, which must be silenced. We will review CEN transcription and its contribution to faithful kinetochore function. We will further discuss how pericentromeric chromatin is silenced by RNA processing and transcriptionally repressive chromatin marks. We will report on the transcriptional misregulation of (peri)centromeres during stress, natural aging, and disease and reflect on whether their transcripts can serve as future diagnostic tools and anti-cancer targets in the clinic.
Collapse
Affiliation(s)
- Ksenia Smurova
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Peter De Wulf
- Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
17
|
Podgornaya OI, Ostromyshenskii DI, Enukashvily NI. Who Needs This Junk, or Genomic Dark Matter. BIOCHEMISTRY (MOSCOW) 2018; 83:450-466. [PMID: 29626931 DOI: 10.1134/s0006297918040156] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Centromeres (CEN), pericentromeric regions (periCEN), and subtelomeric regions (subTel) comprise the areas of constitutive heterochromatin (HChr). Tandem repeats (TRs or satellite DNA) are the main components of HChr forming no less than 10% of the mouse and human genome. HChr is assembled within distinct structures in the interphase nuclei of many species - chromocenters. In this review, the main classes of HChr repeat sequences are considered in the order of their number increase in the sequencing reads of the mouse chromocenters (ChrmC). TRs comprise ~70% of ChrmC occupying the first place. Non-LTR (-long terminal repeat) retroposons (mainly LINE, long interspersed nuclear element) are the next (~11%), and endogenous retroviruses (ERV; LTR-containing) are in the third position (~9%). HChr is not enriched with ERV in comparison with the whole genome, but there are differences in distribution of certain elements: while MaLR-like elements (ERV3) are dominant in the whole genome, intracisternal A-particles and corresponding LTR (ERV2) are prevalent in HChr. Most of LINE in ChrmC is represented by the 2-kb fragment at the end of the 2nd open reading frame and its flanking regions. Almost all tandem repeats classified as CEN or periCEN are contained in ChrmC. Our previous classification revealed 60 new mouse TR families with 29 of them being absent in ChrmC, which indicates their location on chromosome arms. TR transcription is necessary for maintenance of heterochromatic status of the HChr genome part. A burst of TR transcription is especially important in embryogenesis and other cases of radical changes in the cell program, including carcinogenesis. The recently discovered mechanism of epigenetic regulation with noncoding sequences transcripts, long noncoding RNA, and its role in embryogenesis and pluripotency maintenance is discussed.
Collapse
Affiliation(s)
- O I Podgornaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | | | | |
Collapse
|
18
|
Cooperative Control of Ecdysone Biosynthesis in Drosophila by Transcription Factors Séance, Ouija Board, and Molting Defective. Genetics 2017; 208:605-622. [PMID: 29187506 PMCID: PMC5788525 DOI: 10.1534/genetics.117.300268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ecdysteroids are steroid hormones that control many aspects of development and physiology. During larval development, ecdysone is synthesized in an endocrine organ called the prothoracic gland through a series of ecdysteroidogenic enzymes encoded by the Halloween genes. The expression of the Halloween genes is highly restricted and dynamic, indicating that their spatiotemporal regulation is mediated by their tight transcriptional control. In this study, we report that three zinc finger-associated domain (ZAD)-C2H2 zinc finger transcription factors—Séance (Séan), Ouija board (Ouib), and Molting defective (Mld)—cooperatively control ecdysone biosynthesis in the fruit fly Drosophila melanogaster. Séan and Ouib act in cooperation with Mld to positively regulate the transcription of neverland and spookier, respectively, two Halloween genes. Remarkably, loss-of-function mutations in séan, ouib, or mld can be rescued by the expression of neverland, spookier, or both, respectively. These results suggest that the three transcription factors have distinct roles in coordinating the expression of just two genes in Drosophila. Given that neverland and spookier are located in constitutive heterochromatin, Séan, Ouib, and Mld represent the first example of a transcription factor subset that regulates genes located in constitutive heterochromatin.
Collapse
|
19
|
Acharya S, Hartmann M, Erhardt S. Chromatin-associated noncoding RNAs in development and inheritance. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28840663 DOI: 10.1002/wrna.1435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs (ncRNAs) have emerged as crucial players in chromatin regulation. Their diversity allows them to partake in the regulation of numerous cellular processes across species. During development, long and short ncRNAs act in conjunction with each other where long ncRNAs (lncRNAs) are best understood in establishing appropriate gene expression patterns, while short ncRNAs (sRNAs) are known to establish constitutive heterochromatin and suppress mobile elements. Additionally, increasing evidence demonstrates roles of sRNAs in several typically lncRNA-mediated processes such as dosage compensation, indicating a complex regulatory network of noncoding RNAs. Together, various ncRNAs establish many mitotically heritable epigenetic marks during development. Additionally, they participate in mechanisms that regulate maintenance of these epigenetic marks during the lifespan of the organism. Interestingly, some epigenetic traits are transmitted to the next generation(s) via paramutations or transgenerational inheritance mediated by sRNAs. In this review, we give an overview of the various functions and regulations of ncRNAs and the mechanisms they employ in the establishment and maintenance of epigenetic marks and multi-generational transmission of epigenetic traits. WIREs RNA 2017, 8:e1435. doi: 10.1002/wrna.1435 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Sreemukta Acharya
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, and CellNetworks, Im Neuenheimer Feld 282, Heidelberg, Germany
| | - Mark Hartmann
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sylvia Erhardt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, and CellNetworks, Im Neuenheimer Feld 282, Heidelberg, Germany
| |
Collapse
|
20
|
Wang J, Liu Y, Su H, Guo X, Han F. Centromere structure and function analysis in wheat-rye translocation lines. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:199-207. [PMID: 28370580 DOI: 10.1111/tpj.13554] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 05/12/2023]
Abstract
1RS.1BL translocations are centric translocations formed by misdivision and have been used extensively in wheat breeding. However, the role that the centromere plays in the formation of 1RS.1BL translocations is still unclear. Fluorescence in situ hybridization (FISH) was applied to detect the fine structures of the centromeres in 130 1RS.1BL translocation cultivars. Immuno-FISH, chromatin immunoprecipitation (ChIP)-qPCR and RT-PCR were used to investigate the functions of the hybrid centromeres in 1RS.1BL translocations. New 1R translocations with different centromere structures were created by misdivision and pollen irradiation to elucidate the role that the centromere plays in the formation of 1RS.1BL translocations. We found that all of the 1RS.1BL translocations detected contained hybrid centromeres and that wheat-derived CENH3 bound to both the wheat and rye centromeres in the 1RS.1BL translocation chromosomes. Moreover, a rye centromere-specific retrotransposon was actively transcribed in 1RS.1BL translocations. The frequencies of new 1RS hybrid centromere translocations and group-1 chromosome translocations were higher during 1R misdivision. Our study demonstrates the hybrid nature of the centromere in 1RS.1BL translocations. New 1R translocations with different centromere structures were created to help understand the fusion centromere used for wheat breeding and for use as breeding material for the improvement of wheat.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
21
|
Magaraki A, van der Heijden G, Sleddens-Linkels E, Magarakis L, van Cappellen WA, Peters AHFM, Gribnau J, Baarends WM, Eijpe M. Silencing markers are retained on pericentric heterochromatin during murine primordial germ cell development. Epigenetics Chromatin 2017; 10:11. [PMID: 28293300 PMCID: PMC5346203 DOI: 10.1186/s13072-017-0119-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Background In the nuclei of most mammalian cells, pericentric heterochromatin is characterized by DNA methylation, histone modifications such as H3K9me3 and H4K20me3, and specific binding proteins like heterochromatin-binding protein 1 isoforms (HP1 isoforms). Maintenance of this specialized chromatin structure is of great importance for genome integrity and for the controlled repression of the repetitive elements within the pericentric DNA sequence. Here we have studied histone modifications at pericentric heterochromatin during primordial germ cell (PGC) development using different fixation conditions and fluorescent immunohistochemical and immunocytochemical protocols. Results We observed that pericentric heterochromatin marks, such as H3K9me3, H4K20me3, and HP1 isoforms, were retained on pericentric heterochromatin throughout PGC development. However, the observed immunostaining patterns varied, depending on the fixation method, explaining previous findings of a general loss of pericentric heterochromatic features in PGCs. Also, in contrast to the general clustering of multiple pericentric regions and associated centromeres in DAPI-dense regions in somatic cells, the pericentric regions of PGCs were more frequently organized as individual entities. We also observed a transient enrichment of the chromatin remodeler ATRX in pericentric regions in embryonic day 11.5 (E11.5) PGCs. At this stage, a similar and low level of major satellite repeat RNA transcription was detected in both PGCs and somatic cells. Conclusions These results indicate that in pericentric heterochromatin of mouse PGCs, only minor reductions in levels of some chromatin-associated proteins occur, in association with a transient increase in ATRX, between E11.5 and E13.5. These pericentric heterochromatin regions more frequently contain only a single centromere in PGCs compared to the surrounding soma, indicating a difference in overall organization, but there is no de-repression of major satellite transcription. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0119-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aristea Magaraki
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Godfried van der Heijden
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, The Netherlands
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Leonidas Magarakis
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Central Hospital of Karlstad, Karlstad, Värmland Sweden
| | | | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maureen Eijpe
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
22
|
|
23
|
Turinetto V, Giachino C. Histone variants as emerging regulators of embryonic stem cell identity. Epigenetics 2016; 10:563-73. [PMID: 26114724 DOI: 10.1080/15592294.2015.1053682] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dynamic regulation of chromatin structure is an important mechanism for balancing the pluripotency and cell fate decision in embryonic stem cells (ESCs). Indeed ESCs are characterized by unusual chromatin packaging, and a wide variety of chromatin regulators have been implicated in control of pluripotency and differentiation. Genome-wide maps of epigenetic factors have revealed a unique epigenetic signature in pluripotent ESCs and have contributed models to explain their plasticity. In addition to the well known epigenetic regulation through DNA methylation, histone posttranslational modifications, chromatin remodeling, and non-coding RNA, histone variants are emerging as important regulators of ESC identity. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone variants in ESC pluripotency and ESC fate, focusing, in particular, on H1 variants, H2A variants H2A.X, H2A.Z and macroH2A and H3 variant H3.3.
Collapse
Affiliation(s)
- Valentina Turinetto
- a Department of Clinical and Biological Sciences; University of Turin ; Orbassano , Turin , Italy
| | | |
Collapse
|
24
|
Trofimova I, Chervyakova D, Krasikova A. Transcription of subtelomere tandemly repetitive DNA in chicken embryogenesis. Chromosome Res 2015; 23:495-503. [DOI: 10.1007/s10577-015-9487-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Saksouk N, Simboeck E, Déjardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 2015; 8:3. [PMID: 25788984 PMCID: PMC4363358 DOI: 10.1186/1756-8935-8-3] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/16/2014] [Indexed: 12/17/2022] Open
Abstract
Constitutive heterochromatin, mainly formed at the gene-poor regions of pericentromeres, is believed to ensure a condensed and transcriptionally inert chromatin conformation. Pericentromeres consist of repetitive tandem satellite repeats and are crucial chromosomal elements that are responsible for accurate chromosome segregation in mitosis. The repeat sequences are not conserved and can greatly vary between different organisms, suggesting that pericentromeric functions might be controlled epigenetically. In this review, we will discuss how constitutive heterochromatin is formed and maintained at pericentromeres in order to ensure their integrity. We will describe the biogenesis and the function of main epigenetic pathways that are involved and how they are interconnected. Interestingly, recent findings suggest that alternative pathways could substitute for well-established pathways when disrupted, suggesting that constitutive heterochromatin harbors much more plasticity than previously assumed. In addition, despite of the heterochromatic nature of pericentromeres, there is increasing evidence for active and regulated transcription at these loci, in a multitude of organisms and under various biological contexts. Thus, in the second part of this review, we will address this relatively new aspect and discuss putative functions of pericentromeric expression.
Collapse
Affiliation(s)
- Nehmé Saksouk
- INSERM AVENIR Team, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Elisabeth Simboeck
- INSERM AVENIR Team, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Jérôme Déjardin
- INSERM AVENIR Team, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| |
Collapse
|
26
|
Donà F, Houseley J. Unexpected DNA loss mediated by the DNA binding activity of ribonuclease A. PLoS One 2014; 9:e115008. [PMID: 25502562 PMCID: PMC4263722 DOI: 10.1371/journal.pone.0115008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023] Open
Abstract
Ribonuclease A (RNase A) is widely used in molecular biology research both for analytical assays and for nucleic acid preparation. The catalytic mechanism of RNase A is well understood and absolutely precludes activity on DNA; however anecdotal reports of DNA degradation by RNase A are not uncommon. Here we describe a mechanism by which RNase A treatment can lead to apparent DNA degradation. This results from the surprising finding that RNase A remains functional in a phenol:chloroform mixture, to our knowledge the only enzyme that survives this highly denaturing solvent environment. Although RNase A does not cleave the DNA backbone it is capable of binding to DNA, forming stable RNase A-DNA complexes that partition to the interphase or organic phase during phenol:chloroform purification. The unexpected survival of the RNase A DNA-binding activity in phenol means that these complexes are not dissolved and a substantial amount of RNase A-bound DNA is permanently removed from the aqueous phase and lost on phase separation. This effect will impact DNA recovery from multiple procedures and is likely to represent a source of sequence bias in genome-wide studies. Our results also indicate that the results of analytical studies performed using RNase A must be considered with care.
Collapse
Affiliation(s)
- Federico Donà
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Cebrià-Costa JP, Millanes-Romero A, de Herreros AG, Peiró S. The Epithelial-to-Mesenchymal Transition (EMT), a Particular Case. Mol Cell Oncol 2014; 1:e960770. [PMID: 27308335 PMCID: PMC4905179 DOI: 10.4161/23723548.2014.960770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/25/2014] [Accepted: 08/01/2014] [Indexed: 01/05/2023]
Abstract
Constitutive heterochromatin, an essential structure that has been conserved throughout evolution, is required to maintain genome stability. Although heterochromatin is enriched for repressive traits, it can be actively transcribed to generate thousands of noncoding RNAs that are required for correct chromatin assembly. Despite the importance of this structure, how and why heterochromatin transcription is regulated, and the proteins responsible for this regulation, remain poorly understood. Here, we summarize recent findings in heterochromatin transcription regulation during different cellular processes with a focus on the epithelial–mesenchymal transition (EMT), which elicits important changes in cell behavior, has a key role in early development, and is involved in cancer progression.
Collapse
Affiliation(s)
- Joan Pau Cebrià-Costa
- Programa de Recerca en Càncer; IMIM (Institut Hospital del Mar d'Investigacions Mèdiques) ; Barcelona, Spain
| | | | - Antonio García de Herreros
- Programa de Recerca en Càncer; IMIM (Institut Hospital del Mar d'Investigacions Mèdiques); Barcelona, Spain; Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Barcelona, Spain
| | - Sandra Peiró
- Programa de Recerca en Càncer; IMIM (Institut Hospital del Mar d'Investigacions Mèdiques) ; Barcelona, Spain
| |
Collapse
|
28
|
Paço A, Adega F, Meštrović N, Plohl M, Chaves R. Evolutionary story of a satellite DNA from Phodopus sungorus (Rodentia, Cricetidae). Genome Biol Evol 2014; 6:2944-55. [PMID: 25336681 PMCID: PMC4224359 DOI: 10.1093/gbe/evu233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 12/23/2022] Open
Abstract
With the goal to contribute for the understanding of satellite DNA evolution and its genomic involvement, in this work it was isolated and characterized the first satellite DNA (PSUcentSat) from Phodopus sungorus (Cricetidae). Physical mapping of this sequence in P. sungorus showed large PSUcentSat arrays located at the heterochromatic (peri)centromeric region of five autosomal pairs and Y-chromosome. The presence of orthologous PSUcentSat sequences in the genomes of other Cricetidae and Muridae rodents was also verified, presenting however, an interspersed chromosomal distribution. This distribution pattern suggests a PSUcentSat-scattered location in an ancestor of Muridae/Cricetidae families, that assumed afterwards, in the descendant genome of P. sungorus a restricted localization to few chromosomes in the (peri)centromeric region. We believe that after the divergence of the studied species, PSUcentSat was most probably highly amplified in the (peri)centromeric region of some chromosome pairs of this hamster by recombinational mechanisms. The bouquet chromosome configuration (prophase I) possibly displays an important role in this selective amplification, providing physical proximity of centromeric regions between chromosomes with similar size and/or morphology. This seems particularly evident for the acrocentric chromosomes of P. sungorus (including the Y-chromosome), all presenting large PSUcentSat arrays at the (peri)centromeric region. The conservation of this sequence in the studied genomes and its (peri)centromeric amplification in P. sungorus strongly suggests functional significance, possibly displaying this satellite family different functions in the different genomes. The verification of PSUcentSat transcriptional activity in normal proliferative cells suggests that its transcription is not stage-limited, as described for some other satellites.
Collapse
Affiliation(s)
- Ana Paço
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro (IBB/CGBUTAD), Vila Real, Portugal
| | - Filomena Adega
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro (IBB/CGBUTAD), Vila Real, Portugal Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Nevenka Meštrović
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Miroslav Plohl
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Raquel Chaves
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro (IBB/CGBUTAD), Vila Real, Portugal Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
29
|
Dnmt3b Prefers Germ Line Genes and Centromeric Regions: Lessons from the ICF Syndrome and Cancer and Implications for Diseases. BIOLOGY 2014; 3:578-605. [PMID: 25198254 PMCID: PMC4192629 DOI: 10.3390/biology3030578] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/18/2014] [Accepted: 08/21/2014] [Indexed: 01/06/2023]
Abstract
The correct establishment and maintenance of DNA methylation patterns are critical for mammalian development and the control of normal cell growth and differentiation. DNA methylation has profound effects on the mammalian genome, including transcriptional repression, modulation of chromatin structure, X chromosome inactivation, genomic imprinting, and the suppression of the detrimental effects of repetitive and parasitic DNA sequences on genome integrity. Consistent with its essential role in normal cells and predominance at repetitive genomic regions, aberrant changes of DNA methylation patterns are a common feature of diseases with chromosomal and genomic instabilities. In this context, the functions of DNA methyltransferases (DNMTs) can be affected by mutations or alterations of their expression. DNMT3B, which is involved in de novo methylation, is of particular interest not only because of its important role in development, but also because of its dysfunction in human diseases. Expression of catalytically inactive isoforms has been associated with cancer risk and germ line hypomorphic mutations with the ICF syndrome (Immunodeficiency Centromeric instability Facial anomalies). In these diseases, global genomic hypomethylation affects repeated sequences around centromeric regions, which make up large blocks of heterochromatin, and is associated with chromosome instability, impaired chromosome segregation and perturbed nuclear architecture. The review will focus on recent data about the function of DNMT3B, and the consequences of its deregulated activity on pathological DNA hypomethylation, including the illicit activation of germ line-specific genes and accumulation of transcripts originating from repeated satellite sequences, which may represent novel physiopathological biomarkers for human diseases. Notably, we focus on cancer and the ICF syndrome, pathological contexts in which hypomethylation has been extensively characterized. We also discuss the potential contribution of these deregulated protein-coding and non-coding transcription programs to the perturbation of cellular phenotypes.
Collapse
|
30
|
Bierhoff H, Postepska-Igielska A, Grummt I. Noisy silence: non-coding RNA and heterochromatin formation at repetitive elements. Epigenetics 2013; 9:53-61. [PMID: 24121539 DOI: 10.4161/epi.26485] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A significant fraction of eukaryotic genomes comprises repetitive sequences, including rRNA genes, centromeres, telomeres, and retrotransposons. Repetitive elements are hotspots for recombination and represent a serious challenge for genome integrity. Maintaining these repeated elements in a compact heterochromatic structure suppresses recombination and unwanted mutagenic transposition, and is therefore indispensable for genomic stability. Paradoxically, repetitive elements are not transcriptionally inert, but produce RNA that has important functions in regulating and reinforcing the heterochromatic state. Here, we review the role of non-coding RNA (ncRNA) in recruiting chromatin-modifying enzymes to repetitive genomic loci to establish a repressive chromatin structure that safeguards chromosome integrity and genome stability.
Collapse
Affiliation(s)
- Holger Bierhoff
- Division of Molecular Biology of the Cell II; German Cancer Research Center; DKFZ-ZMBH Alliance; Heidelberg, Germany
| | - Anna Postepska-Igielska
- Division of Molecular Biology of the Cell II; German Cancer Research Center; DKFZ-ZMBH Alliance; Heidelberg, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II; German Cancer Research Center; DKFZ-ZMBH Alliance; Heidelberg, Germany
| |
Collapse
|
31
|
Cao K, Lailler N, Zhang Y, Kumar A, Uppal K, Liu Z, Lee EK, Wu H, Medrzycki M, Pan C, Ho PY, Cooper GP, Dong X, Bock C, Bouhassira EE, Fan Y. High-resolution mapping of h1 linker histone variants in embryonic stem cells. PLoS Genet 2013; 9:e1003417. [PMID: 23633960 PMCID: PMC3636266 DOI: 10.1371/journal.pgen.1003417] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 02/13/2013] [Indexed: 02/07/2023] Open
Abstract
H1 linker histones facilitate higher-order chromatin folding and are essential for mammalian development. To achieve high-resolution mapping of H1 variants H1d and H1c in embryonic stem cells (ESCs), we have established a knock-in system and shown that the N-terminally tagged H1 proteins are functionally interchangeable to their endogenous counterparts in vivo. H1d and H1c are depleted from GC- and gene-rich regions and active promoters, inversely correlated with H3K4me3, but positively correlated with H3K9me3 and associated with characteristic sequence features. Surprisingly, both H1d and H1c are significantly enriched at major satellites, which display increased nucleosome spacing compared with bulk chromatin. While also depleted at active promoters and enriched at major satellites, overexpressed H10 displays differential binding patterns in specific repetitive sequences compared with H1d and H1c. Depletion of H1c, H1d, and H1e causes pericentric chromocenter clustering and de-repression of major satellites. These results integrate the localization of an understudied type of chromatin proteins, namely the H1 variants, into the epigenome map of mouse ESCs, and we identify significant changes at pericentric heterochromatin upon depletion of this epigenetic mark. Embryonic stem cells (ESCs) possess unique chromatin and epigenetic signatures, which are important in defining the identity and genome plasticity of pluripotent stem cells. Although ESC epigenomes have been extensively characterized, the genome localization of histone H1 variants, the chromatin structural proteins facilitating higher-order chromatin folding, remains elusive. Linker histone H1 is essential for mammalian development and regulates the expression of specific genes in ESCs. Here, by using a knock-in system coupled with ChIP–seq, we first achieve the high resolution mapping of two H1 variants on a genome-wide scale in mouse ESCs. Our study reveals the correlations of this underexplored histone family with other epigenetic marks and genome attributes. Surprisingly, we identify a dramatic enrichment of H1d and H1c at major satellite sequences. H10, mapped using an overexpressing ESC line, shows similar features at active promoters but differential binding at repetitive sequences compared with H1d and H1c. Furthermore, using mutant ESCs that are deficient for multiple H1 variants, we demonstrate the role of H1 in chromocenter clustering and transcriptional repression of major satellites. Thus, these results connect this important repressive mark with the well understood ESC epigenome and identify novel functions of H1 in mammalian genome organization.
Collapse
Affiliation(s)
- Kaixiang Cao
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nathalie Lailler
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yunzhe Zhang
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ashwath Kumar
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Karan Uppal
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Zheng Liu
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Eva K. Lee
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Hongwei Wu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Magdalena Medrzycki
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Chenyi Pan
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Po-Yi Ho
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Guy P. Cooper
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Xiao Dong
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Eric E. Bouhassira
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yuhong Fan
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Enukashvily NI, Ponomartsev NV. Mammalian satellite DNA: a speaking dumb. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 90:31-65. [PMID: 23582201 DOI: 10.1016/b978-0-12-410523-2.00002-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tandemly organized highly repetitive satellite DNA is the main DNA component of centromeric/pericentromeric constitutive heterochromatin. For almost a century, it was considered as "junk DNA," only a small portion of which is used for kinetochore formation. The current review summarizes recent data about satellite DNA transcription. The possible functions of the transcripts are discussed.
Collapse
|
33
|
Fadloun A, Eid A, Torres-Padilla ME. Mechanisms and dynamics of heterochromatin formation during mammalian development: closed paths and open questions. Curr Top Dev Biol 2013; 104:1-45. [PMID: 23587237 DOI: 10.1016/b978-0-12-416027-9.00001-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Early embryonic development in mammals is characterized by major changes in the components of the chromatin and its remodeling. The embryonic chromatin and the nuclear organization in the mouse preimplantation embryo display particular features that are dramatically different from somatic cells. These include the highly specific organization of the pericentromeric heterochromatin within the nucleus and the suggested lack of conventional heterochromatin. We postulate that the plasticity of the cells in the early embryo relies on the distinctive heterochromatin features that prevail during early embryogenesis. Here, we review some of these features and discuss recent findings on the mechanisms driving heterochromatin formation after fertilization, in particular, the emerging role of RNA as a regulator of heterochromatic loci also in mammals. Finally, we believe that there are at least three major avenues that should be addressed in the coming years: (i) Is heterochromatin a driving force in development? (ii) Does it have a role in lineage allocation? (iii) How can heterochromatin "regulate" epigenetic reprogramming?
Collapse
Affiliation(s)
- Anas Fadloun
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, Illkirch, France
| | | | | |
Collapse
|
34
|
Kishi Y, Kondo S, Gotoh Y. Transcriptional activation of mouse major satellite regions during neuronal differentiation. Cell Struct Funct 2012; 37:101-10. [PMID: 22976370 DOI: 10.1247/csf.12009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent studies have revealed various biological functions for repetitive sequences, which make up about half of the human genome. One such sequence, major satellites, which are tandem repetitive sequences adjacent to the centromere, have been shown to be a kinetochore component that plays a role in the formation and function of the pericentric heterochromatin necessary for mitosis. However, it is unknown whether these regions also play a role in post-mitotic cells. Here, we show that, during neuronal differentiation, the heterochromatin domains that include major satellite regions become both enriched with the active histone modification lysine-4 trimethylation of histone H3, and more sensitive to nuclease, both of which suggest increased activation of this area. Further supporting this notion, we also found that transcription from major satellite regions is significantly increased during neuronal differentiation both in vitro and in vivo. These results together suggest that the structural and transcriptional state of major satellite regions changes dramatically during neuronal differentiation, implying that this region might play a role in differentiating neurons.
Collapse
Affiliation(s)
- Yusuke Kishi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan.
| | | | | |
Collapse
|
35
|
Abstract
The pericentromere and centromere regions of the genome have previously been considered tightly compacted and transcriptionally inert. However, there is mounting evidence that these regions not only actively produce transcripts but that these pericentric and centromeric transcripts are also vital to maintaining genome stability and proper cell division. In this review, we define the pericentromere and centromere of eukaryotic chromosomes in terms of their histone modifications and their nascent transcripts. In addition, we present the currently known roles these transcripts play in heterochromatin formation, development, and differentiation, as well as their interaction with centromeric proteins, and ultimately centromere function. Recent work has added considerable complexity to the theoretical framework defining the innate requirement for pericentric and centromeric transcription. It is clear that maintaining a fine balance of transcriptional output is critical, as deviations from this balance result in centromere disfunction and genomic instability.
Collapse
|
36
|
Lansdorp PM, Falconer E, Tao J, Brind'Amour J, Naumann U. Epigenetic differences between sister chromatids? Ann N Y Acad Sci 2012; 1266:1-6. [PMID: 22901250 DOI: 10.1111/j.1749-6632.2012.06505.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Semi-conservative replication ensures that the DNA sequence of sister chromatids is identical except for replication errors and variation in the length of telomere repeats resulting from replicative losses and variable end processing. What happens with the various epigenetic marks during DNA replication is less clear. Many chromatin marks are likely to be copied onto both sister chromatids in conjunction with DNA replication, whereas others could be distributed randomly between sister chromatids. Epigenetic differences between sister chromatids could also emerge in a more predictable manner, for example, following processes that are associated with lagging strand DNA replication. The resulting epigenetic differences between sister chromatids could result in different gene expression patterns in daughter cells. This possibility has been difficult to test because techniques to distinguish between parental sister chromatids require analysis of single cells and are not obvious. Here, we briefly review the topic of sister chromatid epigenetics and discuss how the identification of sister chromatids in cells could change the way we think about asymmetric cell divisions and stochastic variation in gene expression between cells in general and paired daughter cells in particular.
Collapse
Affiliation(s)
- Peter M Lansdorp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
37
|
Chan FL, Wong LH. Transcription in the maintenance of centromere chromatin identity. Nucleic Acids Res 2012; 40:11178-88. [PMID: 23066104 PMCID: PMC3526279 DOI: 10.1093/nar/gks921] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent evidence has shown that transcription is permissible through the purportedly repressive centromere domain, and that this transcriptional activity is of functional consequence. The best-studied example is transcription of the pericentric DNA repeats in the generation of siRNAs required for pericentric heterochromatin assembly in yeast. However, non-siRNA transcripts emanating from both pericentric and centromere core domains have also been detected in a cell cycle and cellular differentiation-dependent manner. Elevated levels of centromeric transcripts have also been detected in some cancers; however, it is still unclear how high levels of centromere transcripts may contribute towards disease progression. More recent studies have demonstrated that careful regulation of the histone modifications and transcription level at the centromere is vital for the recruitment of key centromere proteins and assembly of CENP-A domain. Here, we compare the transcriptional dynamics and function of various transcripts derived from pericentromeric and centromere core regions. We also propose a model in which the chromatin remodelling activity of transcription, and the resultant transcripts, contribute synergistically to perpetuate centromere chromatin identity.
Collapse
Affiliation(s)
- F Lyn Chan
- Epigenetics and Chromatin Research Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | |
Collapse
|
38
|
|
39
|
Probst AV, Almouzni G. Heterochromatin establishment in the context of genome-wide epigenetic reprogramming. Trends Genet 2011; 27:177-85. [PMID: 21497937 DOI: 10.1016/j.tig.2011.02.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/09/2011] [Accepted: 02/11/2011] [Indexed: 01/08/2023]
Abstract
Heterochromatin at pericentric satellites, characterized by a specific chromatin signature and chromocenter organization, is of paramount importance for genome function. Re-establishment of this organization after fertilization takes place in the context of genome-wide epigenetic reprogramming. We review how the asymmetry in histone variants and post-translational modifications between paternal and maternal genomes and their respective pericentric heterochromatin domains evolve during early cleavage stages in mouse. We draw a parallel between these data and the burst of pericentric satellite transcription that occurs concomitantly with the dynamic reorganization of the pericentric domains into chromocenters in two-cell stage embryos. Based on this new angle, we propose that a crucial developmental transition at the two-cell stage allows chromocenter formation by involving non-coding satellite transcripts to trigger specific chromatin changes.
Collapse
Affiliation(s)
- Aline V Probst
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 6247 and Institut National de la Santé et de la Recherche Médicale Unité 931 - Genetics, Reproduction and Development, Clermont University, 24 avenue des Landais, 63177 Aubière CEDEX, France
| | | |
Collapse
|
40
|
SUMOylation promotes de novo targeting of HP1α to pericentric heterochromatin. Nat Genet 2011; 43:220-7. [PMID: 21317888 DOI: 10.1038/ng.765] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/18/2011] [Indexed: 12/13/2022]
Abstract
HP1 enrichment at pericentric heterochromatin is considered important for centromere function. Although HP1 binding to H3K9me3 can explain its accumulation at pericentric heterochromatin, how it is initially targeted there remains unclear. Here, in mouse cells, we reveal the presence of long nuclear noncoding transcripts corresponding to major satellite repeats at the periphery of pericentric heterochromatin. Furthermore, we find that major transcripts in the forward orientation specifically associate with SUMO-modified HP1 proteins. We identified this modification as SUMO-1 and mapped it in the hinge domain of HP1α. Notably, the hinge domain and its SUMOylation proved critical to promote the initial targeting of HP1α to pericentric domains using de novo localization assays, whereas they are dispensable for maintenance of HP1 domains. We propose that SUMO-HP1, through a specific association with major forward transcript, is guided at the pericentric heterochromatin domain to seed further HP1 localization.
Collapse
|
41
|
|
42
|
Vourc'h C, Biamonti G. Transcription of Satellite DNAs in Mammals. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:95-118. [PMID: 21287135 DOI: 10.1007/978-3-642-16502-3_5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Centromeric and pericentric regions have long been regarded as transcriptionally inert portions of chromosomes. A number of studies in the past 10 years disproved this dogma and provided convincing evidence that centromeric and pericentric sequences are transcriptionally active in several biological contexts.In this chapter, we provide a comprehensive picture of the various contexts (cell growth and differentiation, stress, effect of chromatin organization) in which these sequences are expressed in mouse and human cells and discuss the possible functional implications of centromeric and pericentric sequences activation and/or of the resulting noncoding RNAs. Moreover, we provide an overview of the molecular mechanisms underlying the activation of centromeric and pericentromeric sequences as well as the structural features of encoded RNAs.
Collapse
Affiliation(s)
- Claire Vourc'h
- INSERM U823; Institut Albert Bonniot, Université Joseph Fourier-Grenoble, La Tronche BP170, 38042, Grenoble cedex 9, France,
| | | |
Collapse
|
43
|
Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 2010; 19:625-38. [PMID: 20951352 DOI: 10.1016/j.devcel.2010.09.002] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 07/01/2010] [Accepted: 08/18/2010] [Indexed: 01/21/2023]
Abstract
At the time of fertilization, the paternal genome lacks the typical configuration and marks characteristic of pericentric heterochromatin. It is thus essential to understand the dynamics of this region during early development, its importance during that time period and how a somatic configuration is attained. Here, we show that pericentric satellites undergo a transient peak in expression precisely at the time of chromocenter formation. This transcription is regulated in a strand-specific manner in time and space and is strongly biased by the parental asymmetry. The transcriptional upregulation follows a developmental clock, yet when replication is blocked chromocenter formation is impeded. Furthermore, interference with major satellite transcripts using locked nucleic acid (LNA)-DNA gapmers results in developmental arrest before completion of chromocenter formation. We conclude that the exquisite strand-specific expression dynamics at major satellites during the 2-cell stage, with both up and downregulation, are necessary events for proper chromocenter organization and developmental progression.
Collapse
Affiliation(s)
- Aline V Probst
- Laboratory of Nuclear Dynamics and Genome Plasticity, Unité Mixte de Recherche, 218 Centre National de la Recherche Scientifique/Institut Curie, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
44
|
Massé J, Laurent A, Nicol B, Guerrier D, Pellerin I, Deschamps S. Involvement of ZFPIP/Zfp462 in chromatin integrity and survival of P19 pluripotent cells. Exp Cell Res 2010; 316:1190-201. [DOI: 10.1016/j.yexcr.2010.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 01/27/2023]
|
45
|
Falconer E, Chavez EA, Henderson A, Poon SSS, McKinney S, Brown L, Huntsman DG, Lansdorp PM. Identification of sister chromatids by DNA template strand sequences. Nature 2009; 463:93-7. [PMID: 20016487 DOI: 10.1038/nature08644] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 11/06/2009] [Indexed: 01/06/2023]
Abstract
It is generally assumed that sister chromatids are genetically and functionally identical and that segregation to daughter cells is a random process. However, functional differences between sister chromatids regulate daughter cell fate in yeast and sister chromatid segregation is not random in Escherichia coli. Differentiated sister chromatids, coupled with non-random segregation, have been proposed to regulate cell fate during the development of multicellular organisms. This hypothesis has not been tested because molecular features to reliably distinguish between sister chromatids are not obvious. Here we show that parental 'Watson' and 'Crick' DNA template strands can be identified in sister chromatids of murine metaphase chromosomes using CO-FISH (chromosome orientation fluorescence in situ hybridization) with unidirectional probes specific for centromeric and telomeric repeats. All chromosomes were found to have a uniform orientation with the 5' end of the short arm on the same strand as T-rich major satellite repeats. The invariable orientation of repetitive DNA was used to differentially label sister chromatids and directly study mitotic segregation patterns in different cell types. Whereas sister chromatids appeared to be randomly distributed between daughter cells in cultured lung fibroblasts and embryonic stem cells, significant non-random sister chromatid segregation was observed in a subset of colon crypt epithelial cells, including cells outside positions reported for colon stem cells. Our results establish that DNA template sequences can be used to distinguish sister chromatids and follow their mitotic segregation in vivo.
Collapse
Affiliation(s)
- Ester Falconer
- Terry Fox Laboratory, B.C. Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ferri F, Bouzinba-Segard H, Velasco G, Hubé F, Francastel C. Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 2009; 37:5071-80. [PMID: 19542185 PMCID: PMC2731909 DOI: 10.1093/nar/gkp529] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-coding RNAs are emerging as key players in many fundamental biological processes, including specification of higher-order chromatin structure. We examined the implication of RNA transcribed from mouse centromeric minor satellite repeats in the formation and function of centromere-associated complexes. Here we show that the levels of minor satellite RNA vary during cell-cycle progression, peaking in G2/M phase, concomitant with accumulation of proteins of the chromosomal passenger complex near the centromere. Consistent with this, we describe that murine minor satellite RNA are components of CENP-A-associated centromeric fractions and associate with proteins of the chromosomal passenger complex Aurora B and Survivin at the onset of mitosis. Interactions of endogenous Aurora B with CENP-A and Survivin are sensitive to RNaseA. Likewise, the kinase activity of Aurora B requires an RNA component. More importantly, Aurora B kinase activity can be potentiated by minor satellite RNA. In addition, decreased Aurora B activity after RNA depletion can be specifically rescued by restitution of these transcripts. Together, our data provide new functional evidence for minor satellite transcripts as key partners and regulators of the mitotic kinase Aurora B.
Collapse
Affiliation(s)
| | | | | | | | - Claire Francastel
- *To whom correspondence should be addressed. Tel: +33 1 57 27 89 18; Fax: +33 1 57 27 89 11;
| |
Collapse
|
47
|
Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 2009; 10:192-206. [PMID: 19234478 DOI: 10.1038/nrm2640] [Citation(s) in RCA: 574] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies that concern the mechanism of DNA replication have provided a major framework for understanding genetic transmission through multiple cell cycles. Recent work has begun to gain insight into possible means to ensure the stable transmission of information beyond just DNA, and has led to the concept of epigenetic inheritance. Considering chromatin-based information, key candidates have arisen as epigenetic marks, including DNA and histone modifications, histone variants, non-histone chromatin proteins, nuclear RNA as well as higher-order chromatin organization. Understanding the dynamics and stability of these marks through the cell cycle is crucial in maintaining a given chromatin state.
Collapse
Affiliation(s)
- Aline V Probst
- Laboratory of Nuclear Dynamics and Genome Plasticity, UMR218 Centre National de la Recherche Scientifique/Institut Curie, 26, rue d'Ulm, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
48
|
O'Neill RJ, Carone DM. The role of ncRNA in centromeres: a lesson from marsupials. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 48:77-101. [PMID: 19521813 DOI: 10.1007/978-3-642-00182-6_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Though centromeres have been thought to be comprised of repetitive, transcriptionally inactive DNA, new evidence suggests that eukaryotic centromeres produce a variety of transcripts and that RNA is essential for centromere competence. It has been proposed that centromere satellite transcripts play an essential role in centromere function through demarcation of the kinetochore-binding domain. However, the regional limits and regulation of transcription within the mammalian centromere are unknown. Analysis of transcriptional domains within the centromere in mammalian models is impeded by the unbridgeable expanse of satellite monomers throughout the pericentromere. The comparatively small size of the wallaby centromere and the evolutionary role of the centromere in marsupial speciation events position the wallaby centromere as a tractable and valuable mammalian centromere model. We highlight the current understanding of the wallaby centromere and the role of transcription in centromere function.
Collapse
Affiliation(s)
- Rachel J O'Neill
- Center for Applied Genetics and Technology, Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
49
|
|
50
|
Lu J, Gilbert DM. Cell cycle regulated transcription of heterochromatin in mammals vs. fission yeast: functional conservation or coincidence? Cell Cycle 2008; 7:1907-10. [PMID: 18604169 DOI: 10.4161/cc.7.13.6206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although it is tempting to speculate that the transcription-dependent heterochromatin assembly pathway found in fission yeast may operate in higher mammals, transcription of heterochromatin has been difficult to substantiate in mammalian cells. We recently demonstrated that transcription from the mouse pericentric heterochromatin major (gamma) satellite repeats is under cell cycle control, being sharply downregulated at the metaphase to anaphase transition and resuming in late G(1)-phase dependent upon passage through the restriction point. The highest rates of transcription were in early S-phase and again in mitosis with different RNA products detected at each of these times.(1) Importantly, differences in the percentage of cells in G(1)-phase can account for past discrepancies in the detection of major satellite transcripts and suggest that pericentric heterochromatin transcription takes place in all proliferating mammalian cells. A similar cell cycle regulation of heterochromatin transcription has now been shown in fission yeast,(2,3) providing further support for a conserved mechanism. However, there are still fundamental differences between these two systems that preclude the identification of a functional or mechanistic link.
Collapse
Affiliation(s)
- Junjie Lu
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | | |
Collapse
|