1
|
Yu H, Li X, Tang S, He Q, Jiang M, Li X, Fang F, Zhang G. Iron-catalyzed ligand-free diazidation of alkenes controlled by the ratio of TBHP to TMSN 3. Org Biomol Chem 2025; 23:308-312. [PMID: 39588581 DOI: 10.1039/d4ob01698j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The diazidation of alkenes through an iron-catalyzed, ligand-free system has been established, providing straightforward access to structurally vicinal diazides in good yields at room temperature with TMSN3 as the azido source. The ratio of tBuOOH to TMSN3 was essential for the reaction: one equivalent TMSN3 was needed to react with tBuOOH to form HN3 as a nucleophile in the reaction ultimately achieving the diazidation of alkenes.
Collapse
Affiliation(s)
- Hongzhou Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Xingyu Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Shitong Tang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Qian He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Mengchen Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Xinyue Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Fang Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Guoyu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
2
|
Staerz SD, Anamoah C, Tepe JJ. 20S proteasome enhancers prevent cytotoxic tubulin polymerization-promoting protein induced α-synuclein aggregation. iScience 2024; 27:110166. [PMID: 38974969 PMCID: PMC11225362 DOI: 10.1016/j.isci.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Synucleinopathies are a class of neurodegenerative diseases defined by the presence of α-synuclein inclusions. The location and composition of these α-synuclein inclusions directly correlate to the disease pattern. The inclusions in Multiple System Atrophy are located predominantly in oligodendrocytes and are rich in a second protein, p25α. P25α plays a key role in neuronal myelination by oligodendrocytes. In healthy oligodendrocytes, there is little to no α-synuclein present. If aberrant α-synuclein is present, p25α leaves the myelin sheaths and quickly co-aggregates with α-synuclein, resulting in the disruption of the cellular process and ultimately cell death. Herein, we report that p25α is susceptible for 20S proteasome-mediated degradation and that p25α induces α-synuclein aggregation, resulting in proteasome impairment and cell death. In addition, we identified small molecules 20S proteasome enhancers that prevent p25α induced α-synuclein fibrilization, restore proteasome impairment, and enhance cell viability.
Collapse
Affiliation(s)
- Sophia D. Staerz
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Charles Anamoah
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Jetze J. Tepe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
3
|
Asra R, Malmakova AE, Jones AM. Electrochemical Synthesis of the In Human S-oxide Metabolites of Phenothiazine-Containing Antipsychotic Medications. Molecules 2024; 29:3038. [PMID: 38998990 PMCID: PMC11243251 DOI: 10.3390/molecules29133038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The tractable preparation of Phase I drug metabolites is a critical step to understand the first-pass behaviour of novel chemical entities (NCEs) in drug discovery. In this study, we have developed a structure-electroactivity relationship (SeAR)-informed electrochemical reaction of the parent 2-chlorophenothiazine and the antipsychotic medication, chlorpromazine. With the ability to dial-in under current controlled conditions, the formation of S-oxide and novel S,S-dioxide metabolites has been achieved for the first time on a multi-milligram scale using a direct batch electrode platform. A potential rationale for the electrochemical formation of these metabolites in situ is proposed using molecular docking to a cytochrome P450 enzyme.
Collapse
Affiliation(s)
- Ridho Asra
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Aigul Erbosynovna Malmakova
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Bekturov Institute of Chemical Sciences, Almaty 050010, Kazakhstan
| | - Alan M Jones
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Mathure D, Sonawane P, Ranpise H, Awasthi R. Nanoliposomes Embedded Nanocochleates for Codelivery of Artemether and Lumefantrine: An In Vitro and In Vivo Study. Assay Drug Dev Technol 2024; 22:63-72. [PMID: 38193797 DOI: 10.1089/adt.2023.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Antimalarial drugs are being encapsulated in nanotechnology-based carriers because there are not enough new treatment options and people are becoming more resistant to the ones that are already available. This approach uses two or more biochemical targets of malarial parasites. The codelivery of artemether and lumefantrine (AL) combines the synergistic effect of artemether for an early onset of action followed by the prolonged effect of lumefantrine. The bioavailability of artemether and lumefantrine is low due to their low solubility. Thus, an alternative lipidic formulation, namely nanocochleate, was developed for the selected drugs by adding calcium ions into preformed nanoliposomes (AL-loaded liposomes). Using phospholipon 90H and cholesterol, a thin-film hydration method produced drug-loaded liposomes. The synthesized AL-loaded liposomes were further incorporated into nanocochleates. The formulations were evaluated for in vitro and in vivo parameters. Nanocochleates had a particle size of 200.7 nm, a zeta potential of -9.4 mV, and an entrapment efficiency of 73.12% ± 1.82% and 61.46% ± 0.78%, respectively, for artemether and lumefantrine. Whereas liposomes had a particle size of 210 nm and an entrapment efficiency of 67.34% ± 1.52% and 53.24% ± 0.78%, respectively, for artemether and lumefantrine. An X-ray diffraction study confirmed the amorphous state of artemether and lumefantrine in liposomes and nanocochleate. Nanocochleate showed a controlled release profile for loaded drugs. When compared with free drugs, nanocochleate showed low tissue distribution and a 20-fold increase in bioavailability in rats. Thus, nanocochleate offers an interesting alternative to an existing dosage form for the treatment of malaria.
Collapse
Affiliation(s)
- Dyandevi Mathure
- Department of Pharmaceutics, Bharati Vidyapeeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Prashant Sonawane
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Hemantkumar Ranpise
- Department of Pharmaceutics, RMPs Bhalchandra College of Pharmacy, Pune, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES University, Dehradun, India
| |
Collapse
|
5
|
Purohit P, Dutta P, Roy PK. Empirically validated theoretical analysis of visual-spatial perception under change of nervous system arousal. Front Comput Neurosci 2023; 17:1136985. [PMID: 37251600 PMCID: PMC10213702 DOI: 10.3389/fncom.2023.1136985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Visual-spatial perception is a process for extracting the spatial relationship between objects in the environment. The changes in visual-spatial perception due to factors such as the activity of the sympathetic nervous system (hyperactivation) or parasympathetic nervous system (hypoactivation) can affect the internal representation of the external visual-spatial world. We formulated a quantitative model of the modulation of visual-perceptual space under action by hyperactivation or hypoactivation-inducing neuromodulating agents. We showed a Hill equation based relationship between neuromodulator agent concentration and alteration of visual-spatial perception utilizing the metric tensor to quantify the visual space. Methods We computed the dynamics of the psilocybin (hyperactivation-inducing agent) and chlorpromazine (hypoactivation-inducing agent) in brain tissue. Then, we validated our quantitative model by analyzing the findings of different independent behavioral studies where subjects were assessed for alterations in visual-spatial perception under the action of psilocybin and under chlorpromazine. To validate the neuronal correlates, we simulated the effect of the neuromodulating agent on the computational model of the grid-cell network, and also performed diffusion MRI-based tractography to find the neural tracts between the cortical areas involved: V2 and the entorhinal cortex. Results We applied our computational model to an experiment (where perceptual alterations were measured under psilocybin) and found that for n (Hill-coefficient) = 14.8 and k = 1.39, the theoretical prediction followed experimental observations very well (χ2 test robustly satisfied, p > 0.99). We predicted the outcome of another psilocybin-based experiment using these values (n = 14.8 and k = 1.39), whereby our prediction and experimental outcomes were well corroborated. Furthermore, we found that also under hypoactivation (chlorpromazine), the modulation of the visual-spatial perception follows our model. Moreover, we found neural tracts between the area V2 and entorhinal cortex, thus providing a possible brain network responsible for encoding visual-spatial perception. Thence, we simulated the altered grid-cell network activity, which was also found to follow the Hill equation. Conclusion We developed a computational model of visuospatial perceptual alterations under altered neural sympathetic/parasympathetic tone. We validated our model using analysis of behavioral studies, neuroimaging assessment, and neurocomputational evaluation. Our quantitative approach may be probed as a potential behavioral screening and monitoring methodology in neuropsychology to analyze perceptual misjudgment and mishaps by highly stressed workers.
Collapse
Affiliation(s)
- Pratik Purohit
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Prasun Dutta
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, India
| | - Prasun K. Roy
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
- Department of Life Sciences, Shiv Nadar University (SNU), Greater Noida, India
| |
Collapse
|
6
|
Tiefenthaler CM, Hirst JM, Edmonds KP, Atayee RS. Chlorpromazine's Potential Role in Palliating Distressing Symptoms Associated with Hyperactive Delirium in Patients at End of Life. J Palliat Med 2023. [PMID: 36847737 DOI: 10.1089/jpm.2022.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Background: The hyperactive subtype of delirium is characterized by agitation, restlessness, delusions, and/or hallucinations, which commonly present near end of life (EoL). Symptom relief often requires the use of medications, such as chlorpromazine (CPZ), to reduce patient distress by inducing proportional sedation. Objective: The purpose of this study was to evaluate CPZ's potential role in managing the distress of hyperactive delirium in patients receiving EoL care. Methods: A retrospective observational study among hospitalized patients with advanced cancer at EoL between January 2020 to December 2021. Results: Sustained improvement in symptoms of delirium was seen in 80% of patients as identified in the palliative psychiatrist's progress notes. Meanwhile, 75% of patient's improvement was reported in nursing-driven Delirium Observation Screening Scale. Conclusion: This study elucidates that at doses of ∼100 mg/day, CPZ is potentially an effective medication for patients with advanced cancer, experiencing hyperactive delirium in their final week of life.
Collapse
Affiliation(s)
- Casey M Tiefenthaler
- Department of Pharmacy, University of California Health, La Jolla, California, USA
| | - Jeremy M Hirst
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, UC San Diego Section of Palliative Care, La Jolla, California, USA.,Palliative Care Program, University of California San Diego, San Diego, California, USA
| | - Kyle P Edmonds
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, UC San Diego Section of Palliative Care, La Jolla, California, USA.,Palliative Care Program, University of California San Diego, San Diego, California, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Rabia S Atayee
- Department of Pharmacy, University of California Health, La Jolla, California, USA.,Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, UC San Diego Section of Palliative Care, La Jolla, California, USA.,Palliative Care Program, University of California San Diego, San Diego, California, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Tenebrio molitor as a Simple and Cheap Preclinical Pharmacokinetic and Toxicity Model. Int J Mol Sci 2023; 24:ijms24032296. [PMID: 36768618 PMCID: PMC9917132 DOI: 10.3390/ijms24032296] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
The progression of drugs into clinical phases requires proper toxicity assessment in animals and the correct identification of possible metabolites. Accordingly, different animal models are used to preliminarily evaluate toxicity and biotransformations. Rodents are the most common models used to preliminarily evaluate the safety of drugs; however, their use is subject to ethical consideration and elevated costs, and strictly regulated by national legislations. Herein, we developed a novel, cheap and convenient toxicity model using Tenebrio molitor coleoptera (TMC). A panel of 15 drugs-including antivirals and antibacterials-with different therapeutic applications was administered to TMC and the LD50 was determined. The values are comparable with those already determined in mice and rats. In addition, a TMC model was used to determine the presence of the main metabolites and in vivo pharmacokinetics (PK), and results were compared with those available from in vitro assays and the literature. Taken together, our results demonstrate that TMC can be used as a novel and convenient preliminary toxicity model to preliminarily evaluate the safety of experimental compounds and the formation of main metabolites, and to reduce the costs and number of rodents, according to 3R principles.
Collapse
|
8
|
Pharmacodynamic model of slow reversible binding and its applications in pharmacokinetic/pharmacodynamic modeling: review and tutorial. J Pharmacokinet Pharmacodyn 2022; 49:493-510. [PMID: 36040645 PMCID: PMC9578295 DOI: 10.1007/s10928-022-09822-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Therapeutic responses of most drugs are initiated by the rate and degree of binding to their receptors or targets. The law of mass action describes the rate of drug-receptor complex association (kon) and dissociation (koff) where the ratio koff/kon is the equilibrium dissociation constant (Kd). Drugs with slow reversible binding (SRB) often demonstrate delayed onset and prolonged pharmacodynamic effects. This report reviews evidence for drugs with SRB features, describes previous pharmacokinetic/pharmacodynamic (PK/PD) modeling efforts of several such drugs, provides a tutorial on the mathematics and properties of SRB models, demonstrates applications of SRB models to additional compounds, and compares PK/PD fittings of SRB with other mechanistic models. We identified and summarized 52 drugs with in vitro-confirmed SRB from a PubMed literature search. Simulations with a SRB model and observed PK/PD profiles showed delayed and prolonged responses and that increasing doses/kon or decreasing koff led to greater expected maximum effects and a longer duration of effects. Recession slopes for return of responses to baseline after single doses were nearly linear with an inflection point that approaches a limiting value at larger doses. The SRB model newly captured literature data for the antihypertensive effects of candesartan and antiallergic effects of noberastine. Their PD profiles could also be fitted with indirect response and biophase models with minimal differences. The applicability of SRB models is probably commonplace, but underappreciated, owing to the need for in vitro confirmation of binding kinetics and the similarity of PK/PD profiles to models with other mechanistic determinants.
Collapse
|
9
|
The Impact of the Antipsychotic Medication Chlorpromazine on Cytotoxicity through Ca 2+ Signaling Pathway in Glial Cell Models. Neurotox Res 2022; 40:791-802. [PMID: 35438391 DOI: 10.1007/s12640-022-00507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
Chlorpromazine, an antipsychotic medication, is conventionally applied to cope with the psychotic disorder such as schizophrenia. In cellular studies, chlorpromazine exerts many different actions through calcium ion (Ca2+) signaling, but the underlying pathways are elusive. This study explored the effect of chlorpromazine on viability, Ca2+ signaling pathway and their relationship in glial cell models (GBM 8401 human glioblastoma cell line and Gibco® Human Astrocyte (GHA)). First, chlorpromazine between 10 and 40 μM induced cytotoxicity in GBM 8401 cells but not in GHA cells. Second, in terms of Ca2+ homeostasis, chlorpromazine (10-30 μM) increased intracellular Ca2+ concentrations ([Ca2+]i) rises in GBM 8401 cells but not in GHA cells. Ca2+ removal reduced the signal by approximately 55%. Furthermore, chelation of cytosolic Ca2+ with BAPTA-AM reduced chlorpromazine (10-40 μM)-induced cytotoxicity in GBM 8401 cells. Third, in Ca2+-containing medium of GBM 8401 cells, chlorpromazine-induced Ca2+ entry was inhibited by the modulators of store-operated Ca2+ channel (2-APB and SKF96365). Lastly, in Ca2+-free medium of GBM 8401 cells, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin completely inhibited chlorpromazine-increased [Ca2+]i rises. Conversely, treatment with chlorpromazine abolished thapsigargin-increased [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 abolished chlorpromazine-increased [Ca2+]i rises. Together, in GBM 8401 cells but not in GHA cells, chlorpromazine increased [Ca2+]i rises by Ca2+ influx via store-operated Ca2+ entry and PLC-dependent Ca2+ release from the endoplasmic reticulum. Moreover, the Ca2+ chelator BAPTA-AM inhibited cytotoxicity in chlorpromazine-treated GBM 8401 cells. Therefore, Ca2+ signaling was involved in chlorpromazine-induced cytotoxicity in GBM 8401 cells.
Collapse
|
10
|
Repurposed antipsychotic chlorpromazine inhibits colorectal cancer and pulmonary metastasis by inducing G2/M cell cycle arrest, apoptosis, and autophagy. Cancer Chemother Pharmacol 2022; 89:331-346. [PMID: 35067737 DOI: 10.1007/s00280-021-04386-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 01/18/2023]
|
11
|
The Effect of Polymers on Drug Release Kinetics in Nanoemulsion In Situ Gel Formulation. Polymers (Basel) 2022; 14:polym14030427. [PMID: 35160417 PMCID: PMC8839451 DOI: 10.3390/polym14030427] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is an ocular condition characterized by elevated intraocular pressure (IOP). Conventional treatments of glaucoma face poor corneal permeability and bioavailability. To address these issues, a nanoemulsion in situ gel of Timolol maleate was developed in this study by adding the polymer Carbopol 934p. Using Carbopol 934p, a novel ophthalmic pH-induced nanoemulsion in situ gel was formulated. The formulation was liquid at pH 4 and quickly gelled when the pH was raised to 7.4 (Lacrimal pH). The pH-triggered in situ gelling mechanism demonstrated continuous drug release over a 24 h cycle. A total of nine trial formulations were prepared (NEI1–NEI9) and subjected to various physicochemical and in vitro evaluations. According to the in vitro release kinetics, the drug release of Timolol maleate nanoemulsion in situ gel NEI5 followed zero-order kinetics, with a release exponent value of 0.902, indicating that the mechanism of release was non-Fickian diffusion regulated. In vivo results showed that Timolol maleate nanoemulsion in situ gel NEI5 provided a better-sustained release of the drug, compared with the Timolet OD eye drops. The formulation is stable in storage, with no distinguishable change in appearance, physical properties, quality, and percentage drug release. NEI5 also reduces drug administration frequency, which improves patient compliance. Timolol maleate nanoemulsion in situ gel NEI5 achieved the goal of controlled drug delivery with extended-release and cost-effectiveness, lowering the dosage and frequency of drug administration, and thus may improve patient compliance. In conclusion, the stable nanoemulsion in situ gel of Timolol maleate NEI5 decreases intraocular pressure (IOP) over a prolonged period.
Collapse
|
12
|
Ngamratanapaiboon S, Yambangyang P. Quantification of antipsychotic biotransformation in brain microvascular endothelial cells by using untargeted metabolomics. Drug Discov Ther 2022; 15:317-324. [PMID: 35034925 DOI: 10.5582/ddt.2021.01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Most studies of antipsychotic-therapies have highlighted the discrepancy between plasma and brain pharmacokinetics of antipsychotics, but how the drug changes through the blood brain barrier (BBB) has not been investigated. Cell-based metabolomics using liquid chromatography-mass spectrometry (LC-MS) combined with multivariate data analysis were applied for screening of antipsychotic metabolites in the BBB. We applied this approach to analyze the antipsychotic biotransformation in brain microvascular endothelia cells (BMVECs), the main component of the BBB. From this study, five, four, three, and one metabolite of chlorpromazine, clozapine, haloperidol and risperidone, respectively, were locally metabolized on the BMVECs. These results confirm that there is a drug biotransformation process within the BBB and show that drug metabolite screening employed cell-based metabolomics using LC-MS, combined with multivariate analysis in the study of BMVECs exposed to antipsychotics can provide a way to screen drug metabolites in the BBB.
Collapse
Affiliation(s)
- Surachai Ngamratanapaiboon
- Division of Pharmacology, Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Pracha Yambangyang
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
13
|
Chan SW, Shafi T, Ford RC. Kite-Shaped Molecules Block SARS-CoV-2 Cell Entry at a Post-Attachment Step. Viruses 2021; 13:v13112306. [PMID: 34835112 PMCID: PMC8619434 DOI: 10.3390/v13112306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Anti-viral small molecules are currently lacking for treating coronavirus infection. The long development timescales for such drugs are a major problem, but could be shortened by repurposing existing drugs. We therefore screened a small library of FDA-approved compounds for potential severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antivirals using a pseudovirus system that allows a sensitive read-out of infectivity. A group of structurally-related compounds, showing moderate inhibitory activity with IC50 values in the 2–5 μM range, were identified. Further studies demonstrated that these “kite-shaped” molecules were surprisingly specific for SARS-CoV-1 and SARS-CoV-2 and that they acted early in the entry steps of the viral infectious cycle, but did not affect virus attachment to the cells. Moreover, the compounds were able to prevent infection in both kidney- and lung-derived human cell lines. The structural homology of the hits allowed the production of a well-defined pharmacophore that was found to be highly accurate in predicting the anti-viral activity of the compounds in the screen. We discuss the prospects of repurposing these existing drugs for treating current and future coronavirus outbreaks.
Collapse
|
14
|
Le Corre P, Loas G. Repurposing functional inhibitors of acid sphingomyelinase (fiasmas): an opportunity against SARS-CoV-2 infection? J Clin Pharm Ther 2021; 46:1213-1219. [PMID: 33645763 PMCID: PMC8014536 DOI: 10.1111/jcpt.13390] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/09/2021] [Accepted: 02/09/2021] [Indexed: 12/31/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Infection by SARS-CoV-2, the virus responsible of COVID-19, is associated with limited treatment options. The purpose of this study was to evaluate the rationale for repurposing functional inhibitors of acid sphingomyelinase (FIASMAs), several of which are approved medicines, for the treatment of SAR-CoV-2 infections. COMMENT We propose and discuss the FIASMAs' lysosomotropism as a possible explanation for their observed in vitro activities against viruses, and more specifically against infections caused by coronaviruses such as SARS-CoV-2. Successful in vitro-to-in vivo translation of FIASMAs requires that their pharmacokinetics (dosing regimen and drug-drug interactions) are matched with viral kinetics. WHAT IS NEW AND CONCLUSION Drug repurposing to ensure rapid patient access to effective treatment has garnered much attention in this era of the COVID-19 pandemic. The observed lysosomotropic activity of small-molecule FIASMA compounds suggests that their repurposing as potential drugs against SARS-CoV-2 is promising.
Collapse
Affiliation(s)
- Pascal Le Corre
- Pôle PharmacieService Hospitalo‐Universitaire de PharmacieCHU de RennesRennesFrance
- Univ RennesCHU RennesInsermEHESP, Irset (Institut de recherche en santé environnement et travail) ‐ UMR_S 1085RennesFrance
- Laboratoire de Biopharmacie et Pharmacie CliniqueFaculté de PharmacieUniversité de Rennes 1RennesFrance
| | - Gwenolé Loas
- Department of PsychiatryHôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
- Research Unit (ULB 266)Hôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
| |
Collapse
|
15
|
Chan S, Shafi T, Ford RC. Kite-shaped molecules block SARS-CoV-2 cell entry at a post-attachment step.. [DOI: 10.1101/2021.05.29.446272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ABSTRACTAnti-viral small molecules are currently lacking for treating coronavirus infection. The long development timescales for such drugs are a major problem, but could be shortened by repurposing existing drugs. We therefore screened a small library of FDA-approved compounds for potential severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antivirals using a pseudovirus system that allows a sensitive read-out of infectivity. A group of structurally-related compounds, showing moderate inhibitory activity with IC50values in the 1-5µM range, were identified. Further studies demonstrated that these ‘kite-shaped’ molecules were surprisingly specific for SARS-CoV and SARS-CoV-2 and that they acted early in the entry steps of the viral infectious cycle, but did not affect virus attachment to the cells. Moreover the compounds were able to prevent infection in both kidney- and lung-derived human cell lines. The structural homology of the hits allowed the production of a well-defined pharmacophore that was found to be highly accurate in predicting the anti-viral activity of the compounds in the screen. We discuss the prospects of repurposing these existing drugs for treating current and future coronavirus outbreaks.
Collapse
|
16
|
Ahmad S, Mahmood T, Ahmad M, Arshad MN, Ullah F, Shafiq M, Aslam S, Asiri AM. Synthesis, single crystal X-ray, spectroscopic and computational (DFT) studies 2,1-benzothiazine based hydrazone derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Wu Z, Graf FE, Hirsch HH. Antivirals against human polyomaviruses: Leaving no stone unturned. Rev Med Virol 2021; 31:e2220. [PMID: 33729628 DOI: 10.1002/rmv.2220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022]
Abstract
Human polyomaviruses (HPyVs) encompass more than 10 species infecting 30%-90% of the human population without significant illness. Proven HPyV diseases with documented histopathology affect primarily immunocompromised hosts with manifestations in brain, skin and renourinary tract such as polyomavirus-associated nephropathy (PyVAN), polyomavirus-associated haemorrhagic cystitis (PyVHC), polyomavirus-associated urothelial cancer (PyVUC), progressive multifocal leukoencephalopathy (PML), Merkel cell carcinoma (MCC), Trichodysplasia spinulosa (TS) and pruritic hyperproliferative keratinopathy. Although virus-specific immune control is the eventual goal of therapy and lasting cure, antiviral treatments are urgently needed in order to reduce or prevent HPyV diseases and thereby bridging the time needed to establish virus-specific immunity. However, the small dsDNA genome of only 5 kb of the non-enveloped HPyVs only encodes 5-7 viral proteins. Thus, HPyV replication relies heavily on host cell factors, thereby limiting both, number and type of specific virus-encoded antiviral targets. Lack of cost-effective high-throughput screening systems and relevant small animal models complicates the preclinical development. Current clinical studies are limited by small case numbers, poorly efficacious compounds and absence of proper randomized trial design. Here, we review preclinical and clinical studies that evaluated small molecules with presumed antiviral activity against HPyVs and provide an outlook regarding potential new antiviral strategies.
Collapse
Affiliation(s)
- Zongsong Wu
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Fabrice E Graf
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland.,Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
18
|
Blaess M, Kaiser L, Sauer M, Csuk R, Deigner HP. COVID-19/SARS-CoV-2 Infection: Lysosomes and Lysosomotropism Implicate New Treatment Strategies and Personal Risks. Int J Mol Sci 2020; 21:E4953. [PMID: 32668803 PMCID: PMC7404102 DOI: 10.3390/ijms21144953] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023] Open
Abstract
In line with SARS and MERS, the SARS-CoV-2/COVID-19 pandemic is one of the largest challenges in medicine and health care worldwide. SARS-CoV-2 infection/COVID-19 provides numerous therapeutic targets, each of them promising, but not leading to the success of therapy to date. Neither an antiviral nor an immunomodulatory therapy in patients with SARS-CoV-2 infection/COVID-19 or pre-exposure prophylaxis against SARS-CoV-2 has proved to be effective. In this review, we try to close the gap and point out the likely relationships among lysosomotropism, increasing lysosomal pH, SARS-CoV-2 infection, and disease process, and we deduce an approach for the treatment and prophylaxis of COVID-19, and cytokine release syndrome (CRS)/cytokine storm triggered by bacteria or viruses. Lysosomotropic compounds affect prominent inflammatory messengers (e.g., IL-1B, CCL4, CCL20, and IL-6), cathepsin-L-dependent viral entry of host cells, and products of lysosomal enzymes that promote endothelial stress response in systemic inflammation. As supported by recent clinical data, patients who have already taken lysosomotropic drugs for other pre-existing conditions likely benefit from this treatment in the COVID-19 pandemic. The early administration of a combination of antivirals such as remdesivir and lysosomotropic drugs, such as the antibiotics teicoplanin or dalbavancin, seems to be able to prevent SARS-CoV-2 infection and transition to COVID-19.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany; (M.B.); (L.K.)
| | - Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany; (M.B.); (L.K.)
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, D-79104 Freiburg, Germany
| | - Martin Sauer
- Department of Anesthesiology and Intensive Care Medicine, University of Rostock, Schillingallee 35, D-18057 Rostock, Germany;
- Department of Intensive Care Medicine, Hospital of Magdeburg, Birkenallee 34, D-39130 Magdeburg, Germany
- Fraunhofer Institute IZI, Leipzig, EXIM Department, Schillingallee 68, D-18057 Rostock, Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany;
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany; (M.B.); (L.K.)
- Fraunhofer Institute IZI, Leipzig, EXIM Department, Schillingallee 68, D-18057 Rostock, Germany
- Associated Member, Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| |
Collapse
|
19
|
Yahata M, Ishii Y, Nakagawa T, Watanabe T, Miyawaki I. Applicability of the Øie-Tozer model to predict three types of distribution volume (Vd) in humans: Vd in central compartment, Vd at steady state, and Vd at beta phase. Biopharm Drug Dispos 2020; 41:151-165. [PMID: 32187715 DOI: 10.1002/bdd.2224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/09/2020] [Accepted: 03/14/2020] [Indexed: 11/11/2022]
Abstract
This study aimed to investigate the applicability of the Øie-Tozer model to predict human distribution volume (Vd) in the central compartment (V1 ), Vd at steady state (Vdss ), and Vd at beta phase (Vdβ ) based on animal Vd. Twenty compounds that have a human V1 /Vdss of 0.053-0.66 were selected from the literature. After intravenous administration of the compounds at 0.1 mg/kg to rats, dogs, and monkeys, plasma concentrations were determined, and pharmacokinetic parameters were obtained by one/two-compartmental analyses. The human V1 , Vdss , and Vdβ were predicted from animal Vd using the Øie-Tozer model, and the predictability was compared with that using proportionality and simple allometry. The Øie-Tozer model was the most reliable method for the overall prediction of Vd and applicable for accurately predicting human V1 , Vdss , and Vdβ (89%, 85%, and 68% of the compounds within a 3-fold error, respectively) when data of monkey for V1 and data of three animal species for Vdss and Vdβ were used. Additionally, the predicted human Vd with the two-compartment model was applicable for predicting pharmacokinetic profiles/parameters in humans after intravenous administration of 18 compounds [except for valproic acid (monophasic elimination profile) and chlorpromazine (deviation: Vdss < V1 )]. The prediction was more accurate than that using the predicted Vdss with the one-compartment model (e.g., underestimation of maximum plasma concentrations: 2 vs 8 compounds within a 3-fold error, respectively). In summary, the Øie-Tozer model was applicable for predicting human V1 , Vdss , and Vdβ , and their predicted Vd with the two-compartment model can lead to accurate pharmacokinetic prediction of compounds that show biphasic elimination.
Collapse
Affiliation(s)
- Masahiro Yahata
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd, Osaka, Japan.,Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Nakagawa
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd, Osaka, Japan
| | - Takao Watanabe
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd, Osaka, Japan
| | - Izuru Miyawaki
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd, Osaka, Japan
| |
Collapse
|
20
|
Short communication: Chlorpromazine causes a time-dependent decrease of lipids in Saccharomyces cerevisiae. Interdiscip Toxicol 2020; 12:41-44. [PMID: 32189986 PMCID: PMC7061449 DOI: 10.2478/intox-2019-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/11/2019] [Indexed: 11/30/2022] Open
Abstract
Chlorpromazine (CPZ) is still a commonly prescribed antipsychotic which causes poorly understood idiosyncratic toxicity such as cholestasis, phospholipidosis and steatosis. CPZ has diverse cellular targets and exerts various toxicity mechanisms whose exploration is necessary to understand CPZ side effects. We report here that CPZ causes a decrease of total lipid content in Saccharomyces cerevisiae at the same dose range as that used on mammalian cells. The observed lipid decrease was obvious after 4 and 9 hours of treatment, and disappeared after 24 hours due to cells adaptation to the chemical stress. The inhibitory effect of CPZ was antagonized by the antioxidant N-acetyl L-cysteine and is likely caused by the parent compound. The obtained results demonstrate that yeast model is valid to investigate the involved CPZ toxicity mechanisms, particularly in terms of lipids alteration. This would contribute to understand CPZ side effects in simple model and reduce experimentation on animals.
Collapse
|
21
|
Bednarczyk D, Sanghvi MV. The impact of assay recovery on the apparent permeability, a function of lysosomal trapping. Xenobiotica 2019; 50:753-760. [DOI: 10.1080/00498254.2019.1691284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dallas Bednarczyk
- Pharmacokinetic Sciences, Novartis Institutes of BioMedical Science, Cambridge, MA, USA
| | - Menaka V Sanghvi
- Pharmacokinetic Sciences, Novartis Institutes of BioMedical Science, Cambridge, MA, USA
| |
Collapse
|
22
|
Sayyed K, Aljebeai AK, Al-Nachar M, Chamieh H, Taha S, Abdel-Razzak Z. Interaction of cigarette smoke condensate and some of its components with chlorpromazine toxicity on Saccharomyces cerevisiae. Drug Chem Toxicol 2019; 45:77-87. [PMID: 31514548 DOI: 10.1080/01480545.2019.1659809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chlorpromazine (CPZ) is an antipsychotic phenothiazine which is still commonly prescribed though it causes idiosyncratic toxicity such as cholestasis. CPZ toxicity mechanisms involve oxidative stress among others. Cigarette smoke (CS) causes deleterious effects through diverse mechanisms such as oxidative stress. CS alters drug metabolizing enzymes expression and drug transporters expression and activity in animal cell models as well as in Saccharomyces cerevisiae. CS therefore alters pharmacokinetic and pharmacodynamics of many drugs including CPZ and caffeine whose toxicity is promoted by CS condensate (CSC). CSC interaction with CPZ toxicity deserves investigation. In this study, CSC exerted mild toxicity on Saccharomyces cerevisiae which resisted to this chemical stress after several hours. CPZ toxicity on yeast was dose-dependent and the cells resisted to CPZ up to 40 µM after 24 h of treatment. Yeast cells treated simultaneously with CPZ and a nontoxic CSC dose were less sensitive to CPZ. CSC probably triggers cross-resistance to CPZ. Using Sod1 mutant strain, we showed that this gene is potentially involved in the potential cross-resistance. Other genes encoding stress-related transcription factors could be involved in this process. Nicotine and cadmium chloride, which caused a dose-dependent toxicity individually, acted with CPZ in an additive or synergistic manner in terms of toxicity. Although our results cannot be extrapolated to humans, they clearly show that CSC and its components interact with CPZ toxicity.
Collapse
Affiliation(s)
- Katia Sayyed
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Abdel-Karim Aljebeai
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Mariam Al-Nachar
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Hala Chamieh
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Samir Taha
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Ziad Abdel-Razzak
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| |
Collapse
|
23
|
Evaluation of molecularly imprinted polymers for chlorpromazine and bromopromazine prepared by multi-step swelling and polymerization method—The application for the determination of chlorpromazine and its metabolites in rat plasma by column-switching LC. J Pharm Biomed Anal 2019; 174:248-255. [DOI: 10.1016/j.jpba.2019.05.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 11/19/2022]
|
24
|
Baloch J, Sohail MF, Sarwar HS, Kiani MH, Khan GM, Jahan S, Rafay M, Chaudhry MT, Yasinzai M, Shahnaz G. Self-Nanoemulsifying Drug Delivery System (SNEDDS) for Improved Oral Bioavailability of Chlorpromazine: In Vitro and In Vivo Evaluation. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E210. [PMID: 31137751 PMCID: PMC6572212 DOI: 10.3390/medicina55050210] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
Abstract
Background and Objectives: Lipid-based self-nanoemulsifying drug delivery systems (SNEDDS) have resurged the eminence of nanoemulsions by modest adjustments and offer many valuable opportunities in drug delivery. Chlorpromazine, an antipsychotic agent with poor aqueous solubility-with extensive first-pass metabolism-can be a suitable candidate for the development of SNEDDS. The current study was designed to develop triglyceride-based SNEDDS of chlorpromazine to achieve improved solubility, stability, and oral bioavailability. Materials and Methods: Fifteen SNEDDS formulations of each short, medium, and long chain, triglycerides were synthesized and characterized to achieve optimized formulation. The optimized formulation was characterized for several in vitro and in vivo parameters. Results: Particle size, zeta potential, and drug loading of the optimized SNEDDS (LCT14) were found to be 178 ± 16, -21.4, and 85.5%, respectively. Long chain triglyceride (LCT14) showed a 1.5-fold increased elimination half-life (p < 0.01), up to 6-fold increased oral bioavailability, and 1.7-fold decreased plasma clearance rate (p < 0.01) compared to a drug suspension. Conclusion: The findings suggest that SNEDDS based on long-chain triglycerides (LCT14) formulations seem to be a promising alternative for improving the oral bioavailability of chlorpromazine.
Collapse
Affiliation(s)
- Jeand Baloch
- Sulaiman Bin Abdullah Aba Al-Khail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), International Islamic University, Islamabad 44000, Pakistan.
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore 54770, Pakistan.
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Hafiz Shaib Sarwar
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore 54770, Pakistan.
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Maria Hassan Kiani
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Sarwat Jahan
- Department of Animal Sciences, Quaid-i- Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Rafay
- Department of Forester, Range and Wild life management, College f Agriculture and Environmental Sciences, The Islamia University, Bahawalpur 63100, Pakistan.
| | - Muhammad Tausif Chaudhry
- Environmental Analytical Lab, NPSL, Pakistan Council of Scientific and Industrial Research (PCSIR), Islamabad 45710, Pakistan.
| | - Masoom Yasinzai
- Sulaiman Bin Abdullah Aba Al-Khail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), International Islamic University, Islamabad 44000, Pakistan.
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
25
|
Boyd-Kimball D, Gonczy K, Lewis B, Mason T, Siliko N, Wolfe J. Classics in Chemical Neuroscience: Chlorpromazine. ACS Chem Neurosci 2019; 10:79-88. [PMID: 29929365 DOI: 10.1021/acschemneuro.8b00258] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The discovery of chlorpromazine in the early 1950s revolutionized the clinical treatment of schizophrenia, galvanized the development of psychopharmacology, and standardized protocols used for testing the clinical efficacy of antipsychotics. Furthermore, chlorpromazine expanded our understanding of the role of chemical messaging in neurotransmission and reduced the stigma associated with mental illness, facilitating deinstitutionalization in the 1960s and 1970s. In this review, we will discuss the synthesis, manufacturing, metabolism and pharmacokinetics, pharmacology, structure-activity relationship, and adverse effects of chlorpromazine. In conclusion, we summarize the history and significant contributions of chlorpromazine that have resulted in this potent first-generation antipsychotic maintaining its clinical relevance for nearly 70 years.
Collapse
Affiliation(s)
- Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio 44601, United States
| | - Katelyn Gonczy
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio 44601, United States
| | - Benjamin Lewis
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio 44601, United States
| | - Thomas Mason
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio 44601, United States
| | - Nicole Siliko
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio 44601, United States
| | - Jacob Wolfe
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio 44601, United States
| |
Collapse
|
26
|
Hasuo H, Fujii R, Uchitani K, Sakuma H, Kanbara K, Fukunaga M. Intravenous Chlorpromazine for the Short-Term Treatment of Insomnia in End-Stage Cancer Patients With Difficulty in Oral Administration. J Pain Palliat Care Pharmacother 2018; 32:134-140. [PMID: 30380977 DOI: 10.1080/15360288.2018.1525468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The objective of the study was to evaluate effectiveness and safety of intravenous chlorpromazine for the short-term treatment of insomnia in end-stage cancer patients. Insomnia occurs as one of distressing symptoms in 70% of end-stage cancer patients. End-stage cancer patients often have difficulty in oral administration because of disease progress. We retrospectively evaluated 30 end-stage cancer patients with difficulty in oral administration who received intravenous chlorpromazine for the short-term treatment of insomnia. A primary end point was sleep quality based on St. Mary's Hospital Sleep Questionnaire 3 days after the treatment. Improved sleep quality was observed on the day after the treatment and later (P < .001), and the effective rate mean was 0.63 (95% confidential interval: 0.45-0.81) 3 days after the treatment. Increased total sleep time and decreased sleep latency time were observed 3 days after the treatment (P < .001); however, no improvement in depth of sleep was achieved (P = .231). There was no adverse event except for two delirium cases. The study indicated that intravenous chlorpromazine can be applied safely and effectively for the short-term treatment of insomnia in end-stage cancer patients with difficulty in oral administration.
Collapse
|
27
|
El-Sakkary N, Chen S, Arkin MR, Caffrey CR, Ribeiro P. Octopamine signaling in the metazoan pathogen Schistosoma mansoni: localization, small-molecule screening and opportunities for drug development. Dis Model Mech 2018; 11:dmm033563. [PMID: 29925529 PMCID: PMC6078403 DOI: 10.1242/dmm.033563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
Schistosomiasis is a tropical disease caused by a flatworm trematode parasite that infects over 200 million people worldwide. Treatment and control of the disease rely on just one drug, praziquantel. The possibility of drug resistance coupled with praziquantel's variable efficacy encourages the identification of new drugs and drug targets. Disruption of neuromuscular homeostasis in parasitic worms is a validated strategy for drug development. In schistosomes, however, much remains to be understood about the organization of the nervous system, its component neurotransmitters and potential for drug discovery. Using synapsin as a neuronal marker, we map the central and peripheral nervous systems in the Schistosoma mansoni adult and schistosomulum (post-infective larva). We discover the widespread presence of octopamine (OA), a tyrosine-derived and invertebrate-specific neurotransmitter involved in neuromuscular coordination. OA labeling facilitated the discovery of two pairs of ganglia in the brain of the adult schistosome, rather than the one pair thus far reported for this and other trematodes. In quantitative phenotypic assays, OA and the structurally related tyrosine-derived phenolamine and catecholamine neurotransmitters differentially modulated schistosomulum motility and length. Similarly, from a screen of 28 drug agonists and antagonists of tyrosine-derivative signaling, certain drugs that act on OA and dopamine receptors induced robust and sometimes complex concentration-dependent effects on schistosome motility and length; in some cases, these effects occurred at concentrations achievable in vivo The present data advance our knowledge of the organization of the nervous system in this globally important pathogen and identify a number of drugs that interfere with tyrosine-derivative signaling, one or more of which might provide the basis for a new chemotherapeutic approach to treat schistosomiasis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nelly El-Sakkary
- Institute of Parasitology, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste Anne de Bellevue, Quebec, Canada H9X-3V9
| | - Steven Chen
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michelle R Arkin
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste Anne de Bellevue, Quebec, Canada H9X-3V9
| |
Collapse
|
28
|
Hasuo H, Kanbara K, Fujii R, Uchitani K, Sakuma H, Fukunaga M. Factors Associated with the Effectiveness of Intravenous Administration of Chlorpromazine for Delirium in Patients with Terminal Cancer. J Palliat Med 2018; 21:1257-1264. [PMID: 29757064 DOI: 10.1089/jpm.2017.0669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Delirium in patients with terminal cancer is irreversible and increases treatment resistance, which leads to a deterioration in quality of life. OBJECTIVE To investigate factors affecting the effectiveness and safety of intravenous chlorpromazine for irreversible delirium in patients with terminal cancer. DESIGN/MEASUREMENTS Multiple regression analysis for factors affecting treatment effectiveness was carried out based on a retrospective comparison between responders and nonresponders to intravenous chlorpromazine. SETTING/SUBJECTS Ninety-seven patients with terminal cancer who were treated with intravenous chlorpromazine for irreversible delirium were included. RESULTS The rate of patients with ≥50% improvement in mean Nursing Delirium Screening Scale score from pretreatment to day three of chlorpromazine treatment was 0.48 (95% confidence interval [CI]: 0.38-0.58). Factors affecting chlorpromazine treatment effectiveness were hyperactive delirium (odds ratio [OR]: 6.25, 95% CI: 1.14-34.5) and longer survival (OR: 1.096, 95% CI: 1.05-1.14). The mean chlorpromazine dose was low, at 17.9 mg/day. Adverse events were reported in 11 patients (11.3%) by day three of chlorpromazine treatment, and all were observed in patients who survived less than two weeks after chlorpromazine treatment. Patients who died, who had decreased blood pressure during chlorpromazine administration, and who showed acute akathisia all displayed shock index ≥1. CONCLUSIONS Intravenous administration of low-dose chlorpromazine may be an effective and safe treatment option for delirium in patients with terminal cancer who have hyperactive delirium, longer predictive prognosis, and shock index <1.
Collapse
Affiliation(s)
- Hideaki Hasuo
- Department of Psychosomatic Medicine, Kansai Medical University , Hirakata, Osaka, Japan
| | - Kenji Kanbara
- Department of Psychosomatic Medicine, Kansai Medical University , Hirakata, Osaka, Japan
| | - Ryohei Fujii
- Department of Psychosomatic Medicine, Kansai Medical University , Hirakata, Osaka, Japan
| | - Kazuki Uchitani
- Department of Psychosomatic Medicine, Kansai Medical University , Hirakata, Osaka, Japan
| | - Hiroko Sakuma
- Department of Psychosomatic Medicine, Kansai Medical University , Hirakata, Osaka, Japan
| | - Mikihiko Fukunaga
- Department of Psychosomatic Medicine, Kansai Medical University , Hirakata, Osaka, Japan
| |
Collapse
|
29
|
Doležal R, Karásková N, Musil K, Novák M, Maltsevskaya NV, Maliňák D, Kolář K, Soukup O, Kuča K, Žďárová Karasová J. Characterization of the Penetration of the Blood–Brain Barrier by High-Performance Liquid Chromatography (HPLC) Using a Stationary Phase with an Immobilized Artificial Membrane. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1424175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Rafael Doležal
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Natálie Karásková
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Karel Musil
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Martin Novák
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | | | - Dávid Maliňák
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Karel Kolář
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Chemistry and Chemical Education, Faculty of Education, Charles University, Prague, Czech Republic
| | - Ondřej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Brno, Czech Republic
| | - Kamil Kuča
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jana Žďárová Karasová
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Brno, Czech Republic
| |
Collapse
|
30
|
Ahmad S, Zaib S, Jalil S, Shafiq M, Ahmad M, Sultan S, Iqbal M, Aslam S, Iqbal J. Synthesis, characterization, monoamine oxidase inhibition, molecular docking and dynamic simulations of novel 2,1-benzothiazine-2,2-dioxide derivatives. Bioorg Chem 2018; 80:498-510. [PMID: 29996111 DOI: 10.1016/j.bioorg.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Abstract
In this research work, we report the synthesis and biological evaluation of two new series of 1-benzyl-4-(benzylidenehydrazono)-3,4-dihydro-1H-benzo[c] [1,2]thiazine 2,2-dioxides and 1-benzyl-4-((1-phenylethylidene)hydrazono)-3,4-dihydro-1H-benzo[c][1,2]thiazine 2,2-dioxides. The synthetic plan involves the mesylation of methyl anthranilate with subsequent N-benzylation of the product. The methyl 2-(N-benzylmethylsulfonamido)benzoate was subjected to cyclization reaction in the presence of sodium hydride to obtain 1-benzyl-1H-benzo[c][1,2]thiazin-4(3H)-one 2,2-dioxide which was treated with hydrazine hydrate to get corresponding hydrazone precursor. Finally, the titled compounds were obtained by reaction of hydrazone with various substituted aldehydes and ketones. The synthesized derivatives were subjected to carry out their inhibition activities against monoamine oxidases along with modelling investigations to evaluate their binding interactions and dynamic stability during the docking studies. The inhibition profile of potent compounds was found as competitive for both the isozymes. The compounds were more selective inhibitors of MAO-A as compared to MAO-B. Moreover, drug likeness profile of the derivatives was evaluated to have an additional insight into the physicochemical properties. The molecular dynamic simulations predicted the behaviour of amino acids with the active site residues.
Collapse
Affiliation(s)
- Shakeel Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Saquib Jalil
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Shafiq
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan.
| | - Sadia Sultan
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Mazhar Iqbal
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
31
|
Evaluation of transcriptomic signature as a valuable tool to study drug-induced cholestasis in primary human hepatocytes. Arch Toxicol 2017; 91:2879-2893. [DOI: 10.1007/s00204-017-1930-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/11/2017] [Indexed: 12/22/2022]
|
32
|
Ye M, Nagar S, Korzekwa K. A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding. Biopharm Drug Dispos 2017; 37:123-41. [PMID: 26531057 DOI: 10.1002/bdd.1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/12/2015] [Accepted: 10/17/2015] [Indexed: 11/07/2022]
Abstract
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Min Ye
- Department of Pharmaceutical Science, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Swati Nagar
- Department of Pharmaceutical Science, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Ken Korzekwa
- Department of Pharmaceutical Science, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| |
Collapse
|
33
|
Hendrickx S, Uğur DY, Yilmaz IT, Şener E, Van Schepdael A, Adams E, Broeckhoven K, Cabooter D. A sensitive capillary LC-UV method for the simultaneous analysis of olanzapine, chlorpromazine and their FMO-mediated N-oxidation products in brain microdialysates. Talanta 2017; 162:268-277. [DOI: 10.1016/j.talanta.2016.09.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 01/14/2023]
|
34
|
Jiménez JJ, Muñoz BE, Sánchez MI, Pardo R, Vega MS. Fate of the drug chlorpromazine in river water according to laboratory assays. Identification and evolution over time of degradation products. Sorption to sediment. CHEMOSPHERE 2016; 162:285-292. [PMID: 27513549 DOI: 10.1016/j.chemosphere.2016.07.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Toxic effects of the non-biodegradable drug chlorpromazine and its degradation products have been reported on microorganisms in aqueous media. Here, chlorpromazine degradation assays in forced and non-forced conditions have been done to know its persistence and degradation products in river water. Sunlight irradiation promotes the complete degradation of chlorpromazine (2 μg L(-1)) in less than 4 h, but if the exposure to sunlight is limited chlorpromazine is detected during 4 weeks in river water. Sixteen degradation products in surface water are described for first time after solid-phase extraction and analysis by ultra-pressure liquid chromatography/quadrupole time-of-flight/mass spectrometry; their structures are proposed from the molecular formulae of the fragment-ions observed in high-resolution tandem mass spectra. Hydroxylation and oxidation products such as chlorpromazine sulfoxide, 2-hydroxypromazine and 2-hydroxypromazine sulfoxide were predominant degradation products in the early stages; some benzo[1,4]thiazin-6-ol derivatives resulting from the breakdown of the phenothiazine core were the major and relatively stable products after 20 weeks under non-forced conditions. A degradation pathway of chlorpromazine in water is outlined. Moreover, it is shown that chlorpromazine is very strongly adsorbed on sediment while the degradation products that kept the promazine core have a notable capacity of sorption, too; sorption coefficients are calculated. Finally, a prediction about the toxicity of the degradation products in aquatic ecosystems suggests that some of them have toxicities similar, or even higher, than chlorpromazine.
Collapse
Affiliation(s)
- Juan J Jiménez
- Department of Analytical Chemistry, Faculty of Sciences, Campus Miguel Delibes, University of Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain; I.U. CINQUIMA, Campus Miguel Delibes, University of Valladolid, Paseo de Belén 5, 47011 Valladolid, Spain.
| | - Beatriz E Muñoz
- Department of Analytical Chemistry, School of Industrial Engineers, University of Valladolid, Francisco Mendizábal 1, 47014 Valladolid, Spain
| | - María I Sánchez
- Department of Analytical Chemistry, School of Industrial Engineers, University of Valladolid, Francisco Mendizábal 1, 47014 Valladolid, Spain
| | - Rafael Pardo
- Department of Analytical Chemistry, Faculty of Sciences, Campus Miguel Delibes, University of Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain
| | - María S Vega
- Department of Analytical Chemistry, Faculty of Sciences, Campus Miguel Delibes, University of Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
35
|
Yonezawa Y, Ohsumi T, Miyashita T, Kataoka A, Hashimoto K, Nejishima H, Ogawa H. Evaluation of skin phototoxicity study using SD rats by transdermal and oral administration. J Toxicol Sci 2016; 40:667-83. [PMID: 26558448 DOI: 10.2131/jts.40.667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Guinea pigs are the most frequently used animals in phototoxicity studies. However, general toxicity studies most often use Sprague-Dawley (SD) rats. To reduce the number of animals needed for drug development, we examined whether skin phototoxicity studies could be performed using SD rats. A total of 19 drugs that had previously been shown to have phototoxic potential and 3 known phototoxic compounds were administered transdermally to guinea pigs and SD rats. Eleven of the potentially phototoxic drugs and 2 of the known phototoxic compounds were also administered orally to guinea pigs and SD rats. After administration, the animals were irradiated with UV-A (10 J/cm(2)) and UV-B (0.25 J/cm(2) in guinea pigs and 0.031 J/cm(2) in SD rats) with doses based on standard phototoxicity study guidelines and the results of a minimum erythema dose test, respectively. In the transdermal administration study, all of the known phototoxic compounds and 7 of the drugs induced phototoxic reactions. In the oral administration study, both known phototoxic compounds and 5 drugs induced phototoxic reactions in both species; one compound each was found to be toxic only in SD rats or guinea pigs. The concordance rate of guinea pigs and SD rats was 100% in the transdermal administration study and 85% in the oral administration study. This study demonstrated that phototoxicity studies using SD rats have the same potential to detect phototoxic compounds as studies using guinea pigs.
Collapse
Affiliation(s)
- Yutaka Yonezawa
- Pharmacokinetics and Safety Department Drug Research Center Kaken Pharmaceutical Co., Ltd
| | | | | | | | | | | | | |
Collapse
|
36
|
Alsaab H, Alzhrani RM, Boddu SHS. Evaluation of the percutaneous absorption of chlorpromazine from PLO gels across porcine ear and human abdominal skin. Drug Dev Ind Pharm 2015; 42:1258-66. [PMID: 26599694 DOI: 10.3109/03639045.2015.1122610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The overall objective of this work is to determine the percutaneous absorption of chlorpromazine hydrochloride from pluronic lecithin organogels (PLO gels) and verify the suitability of topically applied chlorpromazine hydrochloride PLO gels for use in hospice patients for relieving symptoms such as vomiting and nausea during the end stages of life. METHODS PLO gels of chlorpromazine hydrochloride were prepared using isopropyl palmitate (IPP) or ricinoleic acid (RA) as oil phase. In vitro percutaneous absorption of chlorpromazine hydrochloride was assessed through porcine ear and human abdominal skin. Further, the theoretical steady state plasma concentration (Css) of chlorpromazine was calculated from the flux values. RESULTS The pH, viscosity, and stability of both PLO gels prepared with IPP and RA were comparable. The thixotropic property of RA PLO gel was found to be better than that of IPP PLO gel. The permeation of chlorpromazine hydrochloride was higher from RA PLO gel than from IPP PLO gel and pure drug solution. Theoretical Css of chlorpromazine from pure drug solution, IPP PLO gel and RA PLO gel were found to be 1.05, 1.20, and 1.50 ng/ml, respectively. PLO gels only marginally increased the flux and theoretical Css of chlorpromazine. CONCLUSION From this study, it is clearly evident that PLO gels fail to achieve required systemic levels of chlorpromazine following topical application. Chlorpromazine PLO gel may not be effective in treating nausea and vomiting for hospice patients with swallowing difficulties.
Collapse
Affiliation(s)
- Hashem Alsaab
- a Department of Pharmacy Practice , College of Pharmacy and Pharmaceutical Sciences, The University of Toledo , Toledo, OH , USA
| | - Rami M Alzhrani
- a Department of Pharmacy Practice , College of Pharmacy and Pharmaceutical Sciences, The University of Toledo , Toledo, OH , USA
| | - Sai H S Boddu
- a Department of Pharmacy Practice , College of Pharmacy and Pharmaceutical Sciences, The University of Toledo , Toledo, OH , USA
| |
Collapse
|
37
|
Hendren G, Aponte-Feliciano A, Kovac A. Safety and efficacy of commonly used antiemetics. Expert Opin Drug Metab Toxicol 2015; 11:1753-67. [DOI: 10.1517/17425255.2015.1080688] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Mueller SO, Guillouzo A, Hewitt PG, Richert L. Drug biokinetic and toxicity assessments in rat and human primary hepatocytes and HepaRG cells within the EU-funded Predict-IV project. Toxicol In Vitro 2015; 30:19-26. [PMID: 25952325 DOI: 10.1016/j.tiv.2015.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 03/24/2015] [Accepted: 04/15/2015] [Indexed: 12/17/2022]
Abstract
The overall aim of Predict-IV (EU-funded collaborative project #202222) was to develop improved testing strategies for drug safety in the late discovery phase. One major focus was the prediction of hepatotoxicity as liver remains one of the major organ leading to failure in drug development, drug withdrawal and has a poor predictivity from animal experiments. In this overview we describe the use and applicability of the three cell models employed, i.e., primary rat hepatocytes, primary human hepatocytes and the human HepaRG cell line, using four model compounds, chlorpromazine, ibuprofen, cyclosporine A and amiodarone. This overview described the data generated on mode of action of liver toxicity after long-term repeat-dosing. Moreover we have quantified parent compound and its distribution in various in vitro compartments, which allowed us to develop biokinetic models where we could derive real exposure concentrations in vitro. In conclusion, the complex data set enables quantitative measurements that proved the concept that we can define human relevant free and toxic exposure levels in vitro. Further compounds have to be analyzed in a broader concentration range to fully exploit these promising results for improved prediction of hepatotoxicity and hazard assessment for humans.
Collapse
Affiliation(s)
- Stefan O Mueller
- Nonclinical Safety, Merck Serono, Merck KGaA, Darmstadt, Germany; Food Chemistry and Toxicology, TU Kaiserslautern, Kaiserslautern, Germany.
| | | | - Philip G Hewitt
- Nonclinical Safety, Merck Serono, Merck KGaA, Darmstadt, Germany
| | - Lysiane Richert
- KaLy-Cell, 20A Rue du Général Leclerc, Plobsheim, France; Université de Franche-Comté, 25030 Besançon, France
| |
Collapse
|
39
|
Parmentier C, Truisi GL, Moenks K, Stanzel S, Lukas A, Kopp-Schneider A, Alexandre E, Hewitt PG, Mueller SO, Richert L. Transcriptomic hepatotoxicity signature of chlorpromazine after short- and long-term exposure in primary human sandwich cultures. Drug Metab Dispos 2013; 41:1835-42. [PMID: 23913027 DOI: 10.1124/dmd.113.052415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drug-induced liver injury is the most frequent reason for market withdrawal of approved drugs, and is difficult to predict in animal models. Here, we analyzed transcriptomic data derived from short- and long-term cultured primary human hepatocytes (PHH) exposed to the well known human hepatotoxin chlorpromazine (CPZ). Samples were collected from five PHH cultures after short-term (1 and 3 days) and long-term (14 days) repeat daily treatment with 0.1 or 0.2 µM CPZ, corresponding to C(max). Two PHH cultures were additionally treated with 1 µM CPZ, and the three others with 0.02 µM CPZ. Differences in the total number of gene changes were seen between donors and throughout treatment. Specific transcriptomic hepatotoxicity signatures were created for CPZ and consisted of inflammation/hepatitis, cholestasis, and liver proliferation in all five donors, as well as fibrosis and steatosis, which were observed in four of five donors. Necrosis was present in three of five donors, and an indicative signature of cirrhosis was observed after long-term 14-day repeat treatment, also in three of five donors. The inter-donor variability in the inflammatory response to CPZ treatment was associated with variability in the strength of the response of the transcriptomic hepatotoxicity signatures, suggesting that features of inflammation could be related to the idiosyncratic hepatotoxic effects of CPZ in humans.
Collapse
Affiliation(s)
- Céline Parmentier
- KaLy-Cell, Plobsheim, France (C.P., E.A., L.R.); Non-Clinical Safety, Merck Serono, Merck KGaA, Darmstadt, Germany (G.L.T., P.G.H., S.O.M.); Emergentec Biodevelopment GmbH, Vienna, Austria (K.M., A.L.); Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany (S.S., A.K.-S.); Institut für Angewandte Biowissenschaften, Karlsruhe Institute of Technology, Karlsruhe, Germany (G.L.T., S.O.M.); and Laboratoire de Toxicologie Cellulaire, EA4267 Université de Franche-Comté, Besançon, France (L.R.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Characterization of the circulating metabolites for a new chemical entity in humans is essential for safety assessment, an understanding of their contributions to pharmacologic activities, and their potential involvement in drug-drug interactions. This review examines the abundance of metabolites relative to the total parent drug [metabolite-to-parent (M/P) ratio] from 125 drugs in relation to their structural and physicochemical characteristics, lipoidal permeability, protein binding, and fractional formation from parent (fm). Our analysis suggests that fm is the major determinant of total drug M/P ratio for amine, alcohol, N- and S-oxide, and carboxylic acid metabolites. Passage from the hepatocyte to systemic circulation does not appear to be limiting owing to the vast majority of metabolites formed being relatively lipid permeable. In some cases, active transport plays an important role in this process (e.g., carboxylic acid metabolites). Differences in total parent drug clearance and metabolite clearance are attenuated by the reduction in lipophilicity introduced by the metabolic step and resultant compensatory changes in unbound clearance and protein binding. A small subclass of these drugs (e.g., terfenadine) is unintentional prodrugs with very high parent drug clearance, resulting in very high M/P ratios. In contrast, arenol metabolites show a more complex relationship with fm due largely to the new metabolic routes (conjugation) available to the metabolite compared with the parent drug molecule. For these metabolites, a more thorough understanding of the elimination clearance of the metabolite is critical to discern the likelihood of whether the phenol will constitute a major circulating metabolite.
Collapse
Affiliation(s)
- Cho-Ming Loi
- Pfizer, Inc., 10646 Science Center Drive, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
41
|
Gandhi A, Guo T, Shah P, Moorthy B, Ghose R. Chlorpromazine-induced hepatotoxicity during inflammation is mediated by TIRAP-dependent signaling pathway in mice. Toxicol Appl Pharmacol 2012; 266:430-8. [PMID: 23238562 DOI: 10.1016/j.taap.2012.11.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/14/2012] [Accepted: 11/17/2012] [Indexed: 12/11/2022]
Abstract
Inflammation is a major component of idiosyncratic adverse drug reactions (IADRs). To understand the molecular mechanism of inflammation-mediated IADRs, we determined the role of the Toll-like receptor (TLR) signaling pathway in idiosyncratic hepatotoxicity of the anti-psychotic drug, chlorpromazine (CPZ). Activation of TLRs recruits the first adaptor protein, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) to the TIR domain of TLRs leading to the activation of the downstream kinase, c-Jun-N-terminal kinase (JNK). Prolonged activation of JNK leads to cell-death. We hypothesized that activation of TLR2 by lipoteichoic acid (LTA) or TLR4 by lipopolysaccharide (LPS) will augment the hepatotoxicity of CPZ by TIRAP-dependent mechanism involving prolonged activation of JNK. Adult male C57BL/6, TIRAP(+/+) and TIRAP(-/-) mice were pretreated with saline, LPS (2 mg/kg) or LTA (6 mg/kg) for 30 min or 16 h followed by CPZ (5 mg/kg) or saline (vehicle) up to 24h. We found that treatment of mice with CPZ in presence of LPS or LTA leads to ~3-4 fold increase in serum ALT levels, a marked reduction in hepatic glycogen content, significant induction of serum tumor necrosis factor (TNF) α and prolonged JNK activation, compared to LPS or LTA alone. Similar results were observed in TIRAP(+/+) mice, whereas the effects of LPS or LTA on CPZ-induced hepatotoxicity were attenuated in TIRAP(-/-) mice. For the first time, we show that inflammation-mediated hepatotoxicity of CPZ is dependent on TIRAP, and involves prolonged JNK activation in vivo. Thus, TIRAP-dependent pathways may be targeted to predict and prevent inflammation-mediated IADRs.
Collapse
Affiliation(s)
- Adarsh Gandhi
- University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
42
|
D'Amico JM, Murray KC, Li Y, Chan KM, Finlay MG, Bennett DJ, Gorassini MA. Constitutively active 5-HT2/α1 receptors facilitate muscle spasms after human spinal cord injury. J Neurophysiol 2012; 109:1473-84. [PMID: 23221402 DOI: 10.1152/jn.00821.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In animals, the recovery of motoneuron excitability in the months following a complete spinal cord injury is mediated, in part, by increases in constitutive serotonin (5-HT2) and norepinephrine (α1) receptor activity, which facilitates the reactivation of calcium-mediated persistent inward currents (CaPICs) without the ligands serotonin and norepinephrine below the injury. In this study we sought evidence for a similar role of constitutive monoamine receptor activity in the development of spasticity in human spinal cord injury. In chronically injured participants with partially preserved sensory and motor function, the serotonin reuptake inhibitor citalopram facilitated long-lasting reflex responses (spasms) previously shown to be mediated by CaPICs, suggesting that in incomplete spinal cord injury, functional descending sources of monoamines are present to activate monoamine receptors below the lesion. However, in participants with motor or motor/sensory complete injuries, the inverse agonist cyproheptadine, which blocks both ligand and constitutive 5-HT2/α1 receptor activity, decreased long-lasting reflexes, whereas the neutral antagonist chlorpromazine, which only blocks ligand activation of these receptors, had no effect. When tested in noninjured control participants having functional descending sources of monoamines, chlorpromazine was effective in reducing CaPIC-mediated motor unit activity. On the basis of these combined results, it appears that in severe spinal cord injury, facilitation of persistent inward currents and muscle spasms is mainly mediated by the activation of constitutive 5-HT2 and α1 receptor activity. Drugs that more selectively block these constitutively active monoamine receptors may provide better oral control of spasticity, especially in motor complete spinal cord injury where reducing motoneuron excitability is the primary goal.
Collapse
Affiliation(s)
- Jessica M D'Amico
- Centre for Neuroscience, Univ. of Alberta, 5-005 Katz Group - Rexall Centre, Edmonton, AB, Canada T6G 2E1
| | | | | | | | | | | | | |
Collapse
|
43
|
Broeders JJW, van Eijkeren JCH, Blaauboer BJ, Hermens JLM. Transport of Chlorpromazine in the Caco-2 Cell Permeability Assay: A Kinetic Study. Chem Res Toxicol 2012; 25:1442-51. [DOI: 10.1021/tx300221k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica J. W. Broeders
- Institute for Risk Assessment
Sciences (IRAS), Utrecht University, P.O.
Box 80.177, NL-3508 TD Utrecht, The Netherlands
| | - Jan C. H. van Eijkeren
- National Institute of Public Health and the Environment (RIVM), P.O. Box
1, NL-3720 BA Bilthoven, The Netherlands
| | - Bas J. Blaauboer
- Institute for Risk Assessment
Sciences (IRAS), Utrecht University, P.O.
Box 80.177, NL-3508 TD Utrecht, The Netherlands
| | - Joop L. M. Hermens
- Institute for Risk Assessment
Sciences (IRAS), Utrecht University, P.O.
Box 80.177, NL-3508 TD Utrecht, The Netherlands
| |
Collapse
|
44
|
Degradation of the tricyclic antipsychotic drug chlorpromazine under environmental conditions, identification of its main aquatic biotic and abiotic transformation products by LC–MSn and their effects on environmental bacteria. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 889-890:24-38. [DOI: 10.1016/j.jchromb.2012.01.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 11/17/2022]
|
45
|
Borges NC, Rezende VM, Santana JM, Moreira RP, Moreira RF, Moreno P, Borges DC, Donato JL, Moreno RA. Chlorpromazine quantification in human plasma by UPLC–electrospray ionization tandem mass spectrometry. Application to a comparative pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3728-34. [DOI: 10.1016/j.jchromb.2011.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/09/2011] [Accepted: 10/17/2011] [Indexed: 11/17/2022]
|
46
|
Wen B, Zhou M. Metabolic activation of the phenothiazine antipsychotics chlorpromazine and thioridazine to electrophilic iminoquinone species in human liver microsomes and recombinant P450s. Chem Biol Interact 2009; 181:220-6. [DOI: 10.1016/j.cbi.2009.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/20/2009] [Accepted: 05/22/2009] [Indexed: 11/16/2022]
|
47
|
Popov K, Volovnenko T, Volovenko J. On the functionalization of benzo[e][2,1]thiazine. Beilstein J Org Chem 2009; 5:42. [PMID: 19936272 PMCID: PMC2779739 DOI: 10.3762/bjoc.5.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/26/2009] [Indexed: 11/23/2022] Open
Abstract
The reactions of benzo[e][2,1]thiazine-4-chloro-3-carbaldehydes 1 and benzo[e][2,1]thiazine-4-chloro-3-carbonitriles 2 with a number of oxidizing and reducing agents are reported. A number of new, highly functionalized benzo[e][2,1]thiazine derivatives having potential biological activity were synthesized and described.
Collapse
Affiliation(s)
- Kirill Popov
- Organic Chemistry Department, Kiev State University, Kiev, 01033, Ukraine
| | | | | |
Collapse
|
48
|
Wang JS, Zhu HJ, Markowitz JS, Donovan JL, Yuan HJ, Devane CL. Antipsychotic drugs inhibit the function of breast cancer resistance protein. Basic Clin Pharmacol Toxicol 2008; 103:336-41. [PMID: 18834354 DOI: 10.1111/j.1742-7843.2008.00298.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ABCG2 transporter breast cancer resistance protein (BCRP) has been identified in several physiological sites. It has been suggested to play an important role in disposition of many drugs and environmental toxins. We investigated the effects of several antipsychotic drugs, including risperidone, 9-hydroxy-risperidone (paliperidone), olanzapine, quetiapine, clozapine, haloperidol and chlorpromazine, and a positive control inhibitor Ko143 on functions of BCRP in MCF7 and BCRP over-expressing MCF7/MX100 cell lines using a BCRP prototypical substrate mitoxantrone. Our findings indicated that the tested antipsychotics rank order of potency of inhibition of BCRP according to concentrations required to reach 50% of maximum inhibition (IC(50)) was as follows: Ko143 (0.07 microM) > risperidone (38.1 microM) > clozapine (42.0 microM) > paliperidone (51 microM) > chlorpromazine (52.2 microM) > quetiapine (66.1 microM) > olanzapine = haloperidol (>100.0 microM). We further tested the effects of various concentrations of risperidone on the BCRP-mediated transport of oestrone-3-sulfate in a colon carcinoma cell line, Caco-2, a widely used model to study drug absorption. Our findings show that risperidone at concentrations ranging from 1 to 100 microM significantly inhibited intracellular accumulation of oestrone-3-sulfate in Caco-2 cell monolayers. The present results suggest that a potential source of pharmacokinetic interactions exists between BCRP substrates and several antipsychotics.
Collapse
Affiliation(s)
- Jun-Sheng Wang
- Laboratory of Drug Disposition and Pharmacogenetics, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Gaulier JM, Sauvage FL, Pauthier H, Saint-Marcoux F, Marquet P, Lachâtre G. Identification of Acepromazine in Hair: An Illustration of the Difficulties Encountered in Investigating Drug-facilitated Crimes. J Forensic Sci 2008; 53:755-9. [DOI: 10.1111/j.1556-4029.2008.00706.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Struwe M, Greulich KO, Junker U, Jean C, Zimmer D, Suter W, Plappert-Helbig U. Detection of photogenotoxicity in skin and eye in rat with the photo comet assay. Photochem Photobiol Sci 2008; 7:240-9. [DOI: 10.1039/b715756h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|