1
|
Zlitni S, Bowden S, Sberro H, Torres MDT, Vaughan JM, Pinto AFM, Pinto Y, Fernandez D, Röst H, Saghatelian A, de la Fuente-Nunez C, Bhatt AS. Dual quorum-sensing control of purine biosynthesis drives pathogenic fitness of Enterococcus faecalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607696. [PMID: 39185165 PMCID: PMC11343167 DOI: 10.1101/2024.08.13.607696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Enterococcus faecalis is a resident of the human gut, though upon translocation to the blood or body tissues, it can be pathogenic. Here we discover and characterize two peptide-based quorum-sensing systems that transcriptionally modulate de novo purine biosynthesis in E. faecalis. Using a comparative genomic analysis, we find that most enterococcal species do not encode this system; E. moraviensis, E. haemoperoxidus and E. caccae, three species that are closely related to E. faecalis, encode one of the two systems, and only E. faecalis encodes both systems. We show that these systems are important for the intracellular survival of E. faecalis within macrophages and for the fitness of E. faecalis in a murine wound infection model. Taken together, we combine comparative genomics, microbiological, bacterial genetics, transcriptomics, targeted proteomics and animal model experiments to describe a paired quorum sensing mechanism that directly influences central metabolism and impacts the pathogenicity of E. faecalis.
Collapse
Affiliation(s)
- Soumaya Zlitni
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
| | - Sierra Bowden
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Hila Sberro
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania; Philadelphia, Pennsylvania 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania; Philadelphia, Pennsylvania 19104, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Yishay Pinto
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
| | - Daniel Fernandez
- Program in Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H Macromolecular Structure Knowledge Center, Stanford University, Stanford, CA 94305, USA
| | - Hannes Röst
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, The University of Toronto, Toronto, ON, Canada
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania; Philadelphia, Pennsylvania 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania; Philadelphia, Pennsylvania 19104, USA
| | - Ami S. Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
- Lead contact
| |
Collapse
|
2
|
Douarre PE, Sauvage E, Poyart C, Glaser P. Host specificity in the diversity and transfer of lsa resistance genes in group B Streptococcus. J Antimicrob Chemother 2015; 70:3205-13. [PMID: 26410170 DOI: 10.1093/jac/dkv277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/12/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES In group B Streptococcus (GBS), cross-resistance to lincosamides, streptogramin A and pleuromutilins (LSAP) is mediated by the acquisition of lsa genes. Here, we characterized the diversity, mobility and ecology of lsa genes in this species. METHODS lsa variants were systematically identified by BLAST searches in the genomes of 531 GBS strains from different hosts and geographical origins. The associated phenotypes were determined by a microdilution MIC method. Acquisition of resistance genes was deduced from comparative genomics and phylogeny. Their mobility was tested by conjugation experiments. RESULTS lsa(E) and three variants of lsa(C) were identified in GBS strains. Two lsa(C) variants had not been previously reported. All four variants conferred LSAP phenotypes. lsa(E) was located in a multiresistance gene cluster of a single human strain. This gene was transferred by a high-frequency recombination-type mechanism between GBS strains. Two lsa(C) variants are carried in six unrelated human strains by two similar elements specifically integrated in the oriT site of four different classes of integrative and conjugative elements (ICEs). Strikingly, the acquisition of the resistance gene always occurred by the integration of the element into a resident ICE. The third lsa(C) variant was located at the same site in the core genome of 11 genetically distant bovine strains and was likely propagated by horizontal transfer of the corresponding chromosomal region. CONCLUSIONS lsa genes in GBS show distinct host specificities and modes of transfer. In general, their dissemination is mediated by recombination rather than by the transfer of conjugative elements.
Collapse
Affiliation(s)
- Pierre-Emmanuel Douarre
- Unité de Biologie des Bactéries pathogènes à Gram-positif, Institut Pasteur, 28 Rue du Dr Roux, 75724, Paris, France CNRS, UMR3525, Paris, France
| | - Elisabeth Sauvage
- Unité de Biologie des Bactéries pathogènes à Gram-positif, Institut Pasteur, 28 Rue du Dr Roux, 75724, Paris, France CNRS, UMR3525, Paris, France
| | - Claire Poyart
- Unité de Biologie des Bactéries pathogènes à Gram-positif, Institut Pasteur, 28 Rue du Dr Roux, 75724, Paris, France Centre National de Référence des Streptocoques, Groupe Hospitalier Paris Centre Cochin-Hôtel Dieu-Broca, Paris, France Institut Cochin, Université Sorbonne Paris Descartes, Paris, France INSERM, U1016, Paris, France
| | - Philippe Glaser
- Unité de Biologie des Bactéries pathogènes à Gram-positif, Institut Pasteur, 28 Rue du Dr Roux, 75724, Paris, France CNRS, UMR3525, Paris, France
| |
Collapse
|
3
|
Liu H, Wang Y, Wu C, Schwarz S, Shen Z, Jeon B, Ding S, Zhang Q, Shen J. A novel phenicol exporter gene, fexB, found in enterococci of animal origin. J Antimicrob Chemother 2011; 67:322-5. [PMID: 22096043 DOI: 10.1093/jac/dkr481] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To investigate two porcine Enterococcus isolates for the genetic basis of phenicol resistance and to determine the location and the genetic environment of the novel resistance gene. METHODS A total of 391 isolates with reduced florfenicol susceptibility (MIC ≥ 16 mg/L), obtained from 557 nasal swabs of individual pigs, were screened by PCR for the known florfenicol resistance genes. Isolates that were negative in these PCRs were analysed for their species assignment and antimicrobial susceptibility. Plasmids were extracted and subjected to transformation and conjugation assays. Restriction fragments of the phenicol resistance plasmids were cloned and sequenced. The sequences obtained were analysed and compared with sequences deposited in the databases. RESULTS The two isolates, Enterococcus faecium EFM-1 and Enterococcus hirae EH-1, exhibited MICs of chloramphenicol and florfenicol of 64 mg/L and carried a new phenicol resistance gene, designated fexB. This gene codes for a phenicol exporter of 469 amino acids organized in 14 transmembrane domains. The fexB gene was located on the 35 kb pEFM-1 from E. faecium and on the 25.3 kb pEH-1 from E. hirae, respectively. Both plasmids were non-conjugative. The fexB gene was found to be embedded in virtually the same genetic environment of 14.8 kb in both plasmids. CONCLUSION To the best of our knowledge, this is the first report of the new florfenicol exporter gene fexB. Based on its plasmid location, horizontal transfer from the enterococci to other bacteria is possible.
Collapse
Affiliation(s)
- Hebing Liu
- Key Laboratory of Development and Evaluation of Chemical and Herbal Drugs for Animal Use, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Galimand M, Schmitt E, Panvert M, Desmolaize B, Douthwaite S, Mechulam Y, Courvalin P. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM. RNA (NEW YORK, N.Y.) 2011; 17:251-262. [PMID: 21159796 PMCID: PMC3022275 DOI: 10.1261/rna.2233511] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 11/04/2010] [Indexed: 05/29/2023]
Abstract
Aminoglycosides are ribosome-targeting antibiotics and a major drug group of choice in the treatment of serious enterococcal infections. Here we show that aminoglycoside resistance in Enterococcus faecium strain CIP 54-32 is conferred by the chromosomal gene efmM, encoding the E. faecium methyltransferase, as well as by the previously characterized aac(6')-Ii that encodes a 6'-N-aminoglycoside acetyltransferase. Inactivation of efmM in E. faecium increases susceptibility to the aminoglycosides kanamycin and tobramycin, and, conversely, expression of a recombinant version of efmM in Escherichia coli confers resistance to these drugs. The EfmM protein shows significant sequence similarity to E. coli RsmF (previously called YebU), which is a 5-methylcytidine (m⁵C) methyltransferase modifying 16S rRNA nucleotide C1407. The target for EfmM is shown by mass spectrometry to be a neighboring 16S rRNA nucleotide at C1404. EfmM uses the methyl group donor S-adenosyl-L-methionine to catalyze formation of m⁵C1404 on the 30S ribosomal subunit, whereas naked 16S rRNA and the 70S ribosome are not substrates. Addition of the 5-methyl to C1404 sterically hinders aminoglycoside binding. Crystallographic structure determination of EfmM at 2.28 Å resolution reveals an N-terminal domain connected to a central methyltransferase domain that is linked by a flexible lysine-rich region to two C-terminal subdomains. Mutagenesis of the methyltransferase domain established that two cysteines at specific tertiary locations are required for catalysis. The tertiary structure of EfmM is highly similar to that of RsmF, consistent with m⁵C formation at adjacent sites on the 30S subunit, while distinctive structural features account for the enzymes' respective specificities for nucleotides C1404 and C1407.
Collapse
Affiliation(s)
- Marc Galimand
- Unité des Agents Antibactériens, Institut Pasteur, F-75724 Paris Cedex 15, France.
| | | | | | | | | | | | | |
Collapse
|
5
|
Henneke P, Dramsi S, Mancuso G, Chraibi K, Pellegrini E, Theilacker C, Hübner J, Santos-Sierra S, Teti G, Golenbock DT, Poyart C, Trieu-Cuot P. Lipoproteins are critical TLR2 activating toxins in group B streptococcal sepsis. THE JOURNAL OF IMMUNOLOGY 2008; 180:6149-58. [PMID: 18424736 DOI: 10.4049/jimmunol.180.9.6149] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Group B streptococcus (GBS) is the most important cause of neonatal sepsis, which is mediated in part by TLR2. However, GBS components that potently induce cytokines via TLR2 are largely unknown. We found that GBS strains of the same serotype differ in released factors that activate TLR2. Several lines of genetic and biochemical evidence indicated that lipoteichoic acid (LTA), the most widely studied TLR2 agonist in Gram-positive bacteria, was not essential for TLR2 activation. We thus examined the role of GBS lipoproteins in this process by inactivating two genes essential for bacterial lipoprotein (BLP) maturation: the prolipoprotein diacylglyceryl transferase gene (lgt) and the lipoprotein signal peptidase gene (lsp). We found that Lgt modification of the N-terminal sequence called lipobox was not critical for Lsp cleavage of BLPs. In the absence of lgt and lsp, lipoprotein signal peptides were processed by the type I signal peptidase. Importantly, both the Deltalgt and the Deltalsp mutant were impaired in TLR2 activation. In contrast to released factors, fixed Deltalgt and Deltalsp GBS cells exhibited normal inflammatory activity indicating that extracellular toxins and cell wall components activate phagocytes through independent pathways. In addition, the Deltalgt mutant exhibited increased lethality in a model of neonatal GBS sepsis. Notably, LTA comprised little, if any, inflammatory potency when extracted from Deltalgt GBS. In conclusion, mature BLPs, and not LTA, are the major TLR2 activating factors from GBS and significantly contribute to GBS sepsis.
Collapse
Affiliation(s)
- Philipp Henneke
- Center for Pediatrics and Adolescent Medicine, University Medical Centre Freiburg, Mathildenstrasse 1, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|