1
|
Rustom NY, Reynolds JN. Developmental exposure to methylmercury alters GAD67 immunoreactivity and morphology of endothelial cells and capillaries of midbrain and hindbrain regions of adult rat offspring. Neurotoxicol Teratol 2024; 101:107320. [PMID: 38199312 DOI: 10.1016/j.ntt.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Methylmercury (MeHg) is an environmental contaminant that is of particular concern in Northern Arctic Canadian populations. Specifically, organic mercury compounds such as MeHg are potent toxicants that affect multiple bodily systems including the nervous system. Developmental exposure to MeHg is a major concern, as the developing fetus and neonate are thought to be especially vulnerable to the toxic effects of MeHg. The objective of this study was to examine developmental exposure to low doses of MeHg and effects upon the adult central nervous system (CNS). The doses of MeHg chosen were scaled to be proportional to the concentrations of MeHg that have been reported in human maternal blood samples in Northern Arctic Canadian populations. METHOD Offspring were exposed to MeHg maternally where pregnant Sprague Dawley rats were fed cookies that contained MeHg or vehicle (vehicle corn oil; MeHg 0.02 mg/kg/body weight or 2.0 mg/kg/body weight) daily, throughout gestation (21 days) and lactation (21 days). Offspring were not exposed to MeHg after the lactation period and were euthanized on postnatal day 450. Brains were extracted, fixed, frozen, and sectioned for immunohistochemical analysis. A battery of markers of brain structure and function were selected including neuronal GABAergic enzymatic marker glutamic acid decarboxylase-67 (GAD67), apoptotic/necrotic marker cleaved caspase-3 (CC3), catecholamine marker tyrosine hydroxylase (TH), immune inflammatory marker microglia (Cd11b), endothelial cell marker rat endothelial cell antigen-1 (RECA-1), doublecortin (DCX), Bergmann glia (glial fibrillary acidic protein (GFAP)), and general nucleic acid and cellular stains Hoechst, and cresyl violet, respectively. Oxidative stress marker lipofuscin (autofluorescence) was also assessed. Both male and female offspring were included in analysis. Two-way analysis of variance (ANOVA) was utilized where sex and treatment were considered as between-subject factors (p* <0.05). ImageJ was used to assess immunohistochemical results. RESULTS In comparison with controls, adult rat offspring exposed to both doses of MeHg were observed to have (1) increased GAD67 in the cerebellum; (2) decreased lipofuscin in the locus coeruleus; and (3) decreased GAD67 in the anterior CA1 region. Furthermore, in the substantia nigra and periaqueductal gray, adult male offspring consistently had a larger endothelial cell and capillary perimeter in comparison to females. The maternal high dose of MeHg influenced RECA-1 immunoreactivity in both the substantia nigra and periaqueductal gray of adult rat offspring, where the latter neuronal region also showed statistically significant decreases in RECA-1 immunoreactivity at the maternal low dose exposure level. Lastly, males exposed to high doses of MeHg during development exhibited a statistically significant increase in the perimeter of endothelial cells and capillaries (RECA-1) in the cerebellum, in comparison to male controls. CONCLUSION Findings suggest that in utero and early postnatal exposure to MeHg at environmentally relevant doses leads to long-lasting and selective changes in the CNS. Exposure to MeHg at low doses may affect GABAergic homeostasis and vascular integrity of the CNS. Such changes may contribute to neurological disturbances in learning, cognition, and memory that have been reported in epidemiological studies.
Collapse
Affiliation(s)
- Nazneen Y Rustom
- Centre for Neuroscience Studies and Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - James N Reynolds
- Centre for Neuroscience Studies and Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
2
|
Transport and Toxicity of Methylmercury-Cysteine in Cultured BeWo Cells. Int J Mol Sci 2021; 23:ijms23010394. [PMID: 35008820 PMCID: PMC8745507 DOI: 10.3390/ijms23010394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Mercury is a heavy metal toxicant that is prevalent throughout the environment. Organic forms of mercury, such as methylmercury (MeHg), can cross the placenta and can lead to lasting detrimental effects in the fetus. The toxicological effects of MeHg on the placenta itself have not been clearly defined. Therefore, the purpose of the current study was to assess the transport of MeHg into placental syncytiotrophoblasts and to characterize the mechanisms by which MeHg exerts its toxic effects. Cultured placental syncytiotrophoblasts (BeWo) were used for these studies. The transport of radioactive MeHg was measured to identify potential mechanisms involved in the uptake of this compound. The toxicological effects of MeHg on BeWo cells were determined by assessing visible pathological change, autophagy, mitochondrial viability, and oxidative stress. The findings of this study suggest that MeHg compounds are transported into BeWo cells primarily by sodium-independent amino acid carriers and organic anion transporters. The MeHg altered mitochondrial function and viability, decreased mitophagy and autophagy, and increased oxidative stress. Exposure to higher concentrations of MeHg inhibited the ability of cells to protect against MeHg-induced injury. The findings show that MeHg is directly toxic to syncytiotrophoblasts and may lead to disruptions in the fetal/maternal transfer of nutrients and wastes.
Collapse
|
3
|
Hagiwara T, Hagino H, Ueda K, Nakama M, Minami T. Maternal exposure to methylmercury causes an impairment in ependymal cilia motility in the third ventricle and dilation of lateral ventricles in mice offspring. Birth Defects Res 2020; 112:1253-1259. [PMID: 32648687 DOI: 10.1002/bdr2.1750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Although maternal MeHg-exposure causes hydrocephalus in the offspring of mice, its pathogenesis has not been fully explained. In the present study, we examined the issue of how maternal MeHg-exposure in mice affects ependymal ciliary movement in the offspring and whether the lateral ventricles in offspring show dilation. METHODS Pregnant mice were given drinking water containing 0, 10, or 20 mg/L MeHg, or a single dose of 2 mg/kg MeHg. Brain slices were prepared from the offspring and the ependymal ciliary movement of ependymal cells in the third ventricle were observed by a high-speed digital camera. The dilation of the lateral ventricles in the offspring was assessed by histological examination. RESULTS The administration of MeHg in the drinking water of pregnant mice at levels of 10 mg/L and 20 mg/L MeHg from GD10 to birth caused a significant decrease of ciliary beating frequency (CBF) in ependymal cells of the third ventricle in the weaned offspring. The ependymal ciliary movement of the weaned offspring was particularly sensitive in the case of the administration of MeHg at GD10. Moreover, there was a significant dilation of cross-sectional areas of lateral ventricles in weaned offspring from the pregnant mice that had been administered MeHg. The CBF and the cross-sectional areas of the lateral ventricles improved with time. CONCLUSIONS These results suggest that the impairment of ependymal ciliary movement by maternal MeHg-exposure contributes to the development of hydrocephalus in the offspring.
Collapse
Affiliation(s)
- Teruki Hagiwara
- Department of Life Science, School of Science & Engineering, Kindai University, Higashiosaka, Japan
| | - Hajime Hagino
- Department of Science, Interdisciplinary Graduate School of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Kaho Ueda
- Department of Science, Interdisciplinary Graduate School of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Mina Nakama
- Department of Science, Interdisciplinary Graduate School of Science and Engineering, Kindai University, Higashiosaka, Japan.,Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Takeshi Minami
- Department of Life Science, School of Science & Engineering, Kindai University, Higashiosaka, Japan.,Department of Science, Interdisciplinary Graduate School of Science and Engineering, Kindai University, Higashiosaka, Japan
| |
Collapse
|
4
|
The Relationship between Mercury Exposure Indices and Dietary Intake of Fish and Shellfish in Women of Childbearing Age. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134907. [PMID: 32646069 PMCID: PMC7370192 DOI: 10.3390/ijerph17134907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022]
Abstract
Women of childbearing age who are susceptible to mercury exposure were studied to understand the relation between mercury intake through fish and shellfish consumption and mercury exposure indices from blood, hair, and urine samples. A total of 711 women of childbearing age from coastal areas with a high concentration of mercury exposure in Korea were studied. Data were collected on demographic characteristics, dietary intake of fish and shellfish using the simple Food Frequency Questionnaire. Mercury concentration was estimated from the collected samples of blood, hair, and urine. The geometric mean of blood methyl mercury concentration of mercury exposure through seafood was 3.06 μg/L for the low tertile, 3.12 μg/L for the middle tertile, and 3.60 μg/L for the high tertile, indicating a clear tendency of blood methyl mercury to increase as the mercury exposure by fish and shellfish intake ascended. For total blood mercury and hair mercury, the middle and high tertiles had higher values than the low. Mercury exposure through fish and shellfish intake is a main factor for an increase of blood methyl mercury concentration in women of childbearing age. More attention needs to be paid to mercury exposure through seafood intake, considering the serious effect mercury concentration has on women of childbearing age.
Collapse
|
5
|
Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: Molecular evidence. CHEMOSPHERE 2020; 245:125586. [PMID: 31881386 DOI: 10.1016/j.chemosphere.2019.125586] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 05/25/2023]
Abstract
Minamata disease in Japan and the large-scale poisoning by methylmercury (MeHg) in Iraq caused wide public concerns about the risk emanating from mercury for human health. Nowadays, it is widely known that all forms of mercury induce toxic effects in mammals, and increasing evidence supports the concern that environmentally relevant levels of MeHg could impact normal biological functions in wildlife. The information of mechanism involved in mercurial toxicity is growing but knowledge gaps still exist between the adverse effects and mechanisms of action, especially at the molecular level. A body of data obtained from experimental studies on mechanisms of mercurial toxicity in vivo and in vitro points to that disruption of the antioxidant system may play an important role in the mercurial toxic effects. Moreover, the accumulating evidence indicates that signaling transduction, protein or/and enzyme activity, and gene regulation are involving in mediating toxic and adaptive response to mercury exposure. We conducted here a comprehensive review of mercurial toxic effects on wildlife and human, in particular synthesized key findings of molecular pathways involved in mercurial toxicity from the cells to human. We discuss the molecular evidence related mercurial toxicity to the adverse effects, with particular emphasis on the gene regulation. The further studies relying on Omic analysis connected to adverse effects and modes of action of mercury will aid in the evaluation and validation of causative relationship between health outcomes and gene expression.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| | - Yuanyuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Zidie Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Uwe Strähle
- Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Cambier S, Fujimura M, Bourdineaud JP. A likely placental barrier against methylmercury in pregnant rats exposed to fish-containing diets. Food Chem Toxicol 2018; 122:11-20. [PMID: 30273633 DOI: 10.1016/j.fct.2018.09.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 01/16/2023]
Abstract
Methylmercury (MeHg) taken up through fish consumption can be transferred from the mother to the fetus during pregnancy. In the present study, pregnant rat mothers were contaminated with environmentally relevant doses of 36 and 76 ng MeHg/g of food using diets containing naturally mercury-containing fish. Young female rats fed with fish-containing food after weaning showed decreased locomotion in Y maze for accumulated concentrations in brain as low as 75 ng Hg/g dry weight (15 ng Hg/g wet weight). Young female rats fed the control diet after weaning yet borne by mothers fed the diet containing 76 ng MeHg/g, presented a 58% reduced activity in the open-field labyrinth, meaning that the maternal exposure to fish-containing food exerted an effect in utero that lasted several weeks after birth. Newborns were protected against Hg exposure by the placental barrier since in newborns from mothers fed the diet containing 76 ng MeHg/g of food, the concentrations of Hg in brain, kidney, liver and skeletal muscles represented 12, 3, 21 and 18% of those of their mother's tissues, respectively. These results suggest the existence, at least in rats, of a threshold level in terms of MeHg exposure above which the placental barrier collapses.
Collapse
Affiliation(s)
- Sébastien Cambier
- Université de Bordeaux, CNRS UMR 5805, Station Marine d'Arcachon, place du Docteur Peyneau, Arcachon, 33120, France; Present address: Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Masatake Fujimura
- National Institute for Minamata Disease, Pathology Section, Department of Basic Medical Sciences, 4058-18 Hama, Minamata, Kumamoto, 867-0008, Japan
| | - Jean-Paul Bourdineaud
- Université de Bordeaux, CNRS UMR 5805, Station Marine d'Arcachon, place du Docteur Peyneau, Arcachon, 33120, France; Present address: Université de Bordeaux, CNRS MFP 5234, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France.
| |
Collapse
|
7
|
Mechanisms involved in the transport of mercuric ions in target tissues. Arch Toxicol 2016; 91:63-81. [PMID: 27422290 DOI: 10.1007/s00204-016-1803-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/07/2016] [Indexed: 01/16/2023]
Abstract
Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells.
Collapse
|
8
|
Ingber SZ, Pohl HR. Windows of sensitivity to toxic chemicals in the motor effects development. Regul Toxicol Pharmacol 2016; 74:93-104. [PMID: 26686904 PMCID: PMC5599107 DOI: 10.1016/j.yrtph.2015.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/26/2022]
Abstract
Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8-17 [rats], GD 12-14 and PND 3-10 [mice]) and motor function performance (insufficient data for rats, GD 12-17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review.
Collapse
Affiliation(s)
- Susan Z Ingber
- Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, USA
| | - Hana R Pohl
- Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, USA.
| |
Collapse
|
9
|
Noël M, Jeffries S, Lambourn DM, Telmer K, Macdonald R, Ross PS. Mercury Accumulation in Harbour Seals from the Northeastern Pacific Ocean: The Role of Transplacental Transfer, Lactation, Age and Location. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:56-66. [PMID: 26159879 DOI: 10.1007/s00244-015-0193-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
Mercury (Hg) bioaccumulates in the aquatic food chain in the form of methylmercury, a compound well known for its neurotoxicity. We analyzed total mercury (THg) in hair collected from 209 harbour seals captured at 10 sites in British Columbia (Canada) and Washington State (USA) between 2003 and 2010. In addition, laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) allowed for a highly refined analysis of THg accumulation over time by examining nine whiskers taken from 4- to 6-week-old pups. We estimate that THg concentrations in pups increased sharply at a point corresponding to mid- to late gestation of their time in utero (4.7 ± 0.8 and 6.6 ± 1.3 µg/g dry weight (dw), respectively), and then again at the onset of nursing (8.1 ± 1.3 µg/g dw). These abrupt changes highlight the importance of both pre- and post-natal THg transfer from the mother to the growing fetus and the newborn pup. While THg levels varied among sites, hair analyses from seals collected at the same site demonstrated the influence of age in THg accumulation with pups (5.3 ± 0.3 µg/g) and juveniles (4.5 ± 0.5 µg/g) having lower levels than those in adults (8.3 ± 0.8 µg/g). Our results revealed that 33 % of the pups sampled (n = 167) had THg levels that surpassed a mammalian hair threshold for neurochemical alterations. This study suggests that Hg could represent a health concern to marine wildlife, especially as atmospheric emissions of this toxic element from human activities in the Pacific Rim and worldwide continue.
Collapse
Affiliation(s)
- Marie Noël
- School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, V8W 3P6, Canada
- Ocean Pollution Research Program, Coastal Ocean Research Institute, Vancouver Aquarium Marine Science Center, P.O. Box 3232, Vancouver, BC, V6B 3X8, Canada
| | - Steven Jeffries
- Washington Department of Fish and Wildlife, 7801 Philips Road, Lakewood, WA, 98498, USA
| | - Dyanna M Lambourn
- Washington Department of Fish and Wildlife, 7801 Philips Road, Lakewood, WA, 98498, USA
| | - Kevin Telmer
- School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, V8W 3P6, Canada
- Artisanal Gold Council, 101-732 Cormorant St., Victoria, BC, V8W 4A5, Canada
| | - Robie Macdonald
- Institute of Ocean Sciences, Fisheries and Oceans Canada, P.O. Box 6000, Sidney, BC, V8L 4B2, Canada
| | - Peter S Ross
- Ocean Pollution Research Program, Coastal Ocean Research Institute, Vancouver Aquarium Marine Science Center, P.O. Box 3232, Vancouver, BC, V6B 3X8, Canada.
| |
Collapse
|
10
|
Bridges CC, Joshee L, Zalups RK. Placental and fetal disposition of mercuric ions in rats exposed to methylmercury: role of Mrp2. Reprod Toxicol 2012; 34:628-34. [PMID: 23059061 DOI: 10.1016/j.reprotox.2012.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/14/2012] [Accepted: 10/01/2012] [Indexed: 12/24/2022]
Abstract
Methylmercury is a prevalent environmental toxicant that can have deleterious effects on a developing fetus. Previous studies indicate that the multidrug resistance-associated protein 2 (Mrp2) is involved in renal and hepatic export of mercuric ions. Therefore, we hypothesize that Mrp2 is also involved in export of mercuric ions from placental trophoblasts and fetal tissues. To test this hypothesis, we assessed the disposition of mercuric ions in pregnant Wistar and TR(-) (Mrp2-deficient) rats exposed to a single dose of methylmercury. The amount of mercury in renal tissues (cortex and outer stripe of outer medulla), liver, blood, amniotic fluid, uterus, placentas and fetuses was significantly greater in TR(-) rats than in Wistar rats. Urinary and fecal elimination of mercury was greater in Wistar dams than in TR(-) dams. Thus, our findings suggest that Mrp2 may be involved in the export of mercuric ions from maternal and fetal organs following exposure to methylmercury.
Collapse
Affiliation(s)
- Christy C Bridges
- Mercer University School of Medicine, Division of Basic Medical Sciences, Macon, GA 31207, United States.
| | | | | |
Collapse
|
11
|
Bridges CC, Zalups RK. Transport of inorganic mercury and methylmercury in target tissues and organs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2010; 13:385-410. [PMID: 20582853 PMCID: PMC6943924 DOI: 10.1080/10937401003673750] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Owing to the prevalence of mercury in the environment, the risk of human exposure to this toxic metal continues to increase. Following exposure to mercury, this metal accumulates in numerous organs, including brain, intestine, kidneys, liver, and placenta. Although a number of mechanisms for the transport of mercuric ions into target organs were proposed in recent years, these mechanisms have not been characterized completely. This review summarizes the current literature related to the transport of inorganic and organic forms of mercury in various tissues and organs. This review identifies known mechanisms of mercury transport and provides information on additional mechanisms that may potentially play a role in the transport of mercuric ions into target cells.
Collapse
Affiliation(s)
- Christy C Bridges
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207, USA.
| | | |
Collapse
|
12
|
Effect of DMPS and DMSA on the placental and fetal disposition of methylmercury. Placenta 2009; 30:800-5. [PMID: 19615742 DOI: 10.1016/j.placenta.2009.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 11/22/2022]
Abstract
Methylmercury (CH3Hg+) is a serious environmental toxicant. Exposure to this metal during pregnancy can cause serious neurological and developmental defects in a developing fetus. Surprisingly, little is known about the mechanisms by which mercuric ions are transported across the placenta. Although it has been shown that 2,3-dimercaptopropane-1-sulfonate (DMPS) and 2,3-dimercaptosuccinic acid (DMSA) are capable of extracting mercuric ions from various organs and cells, there is no evidence that they are able to extract mercury from placental or fetal tissues following maternal exposure to CH3Hg+. Therefore, the purpose of the current study was to evaluate the ability of DMPS and DMSA to extract mercuric ions from placental and fetal tissues following maternal exposure to CH3Hg+. Pregnant Wistar rats were exposed to CH3HgCl, containing [203Hg], on day 11 or day 17 of pregnancy and treated 24 h later with saline, DMPS or DMSA. Maternal organs, fetuses, and placentas were harvested 48 h after exposure to CH3HgCl. The disposition of mercuric ions in maternal organs and tissues was similar to that reported previously by our laboratory. The disposition of mercuric ions in placentas and fetuses appeared to be dependent upon the gestational age of the fetus. The fetal and placental burden of mercury increased as fetal age increased and was reduced by DMPS and DMSA, with DMPS being more effective. The disposition of mercury was examined in liver, total renal mass, and brain of fetuses harvested on gestational day 19. On a per gram tissue basis, the greatest amount of mercury was detected in the total renal mass of the fetus, followed by brain and liver. DMPS and DMSA reduced the burden of mercury in liver and brain while only DMPS was effective in the total renal mass. The results of the current study are the first to show that DMPS and DMSA are capable of extracting mercuric ions, not only from maternal tissues, but also from placental and fetal tissues following maternal exposure to CH3Hg+.
Collapse
|
13
|
Abstract
Mercury is a metal that is a liquid at room temperature. Mercury has a long and interesting history deriving from its use in medicine and industry, with the resultant toxicity produced. In high enough doses, all forms of mercury can produce toxicity. The most devastating tragedies related to mercury toxicity in recent history include Minamata Bay and Niagata, Japan in the 1950s, and Iraq in the 1970s. More recent mercury toxicity issues include the extreme toxicity of the dimethylmercury compound noted in 1998, the possible toxicity related to dental amalgams, and the disproved relationship between vaccines and autism related to the presence of the mercury-containing preservative, thimerosal.
Collapse
Affiliation(s)
- Jack C Clifton
- Great Lakes Center for Children's Environmental Health, John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, USA.
| |
Collapse
|
14
|
Bridges CC, Zalups RK. Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 2005; 204:274-308. [PMID: 15845419 PMCID: PMC2409291 DOI: 10.1016/j.taap.2004.09.007] [Citation(s) in RCA: 514] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 09/08/2004] [Indexed: 01/11/2023]
Abstract
Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport of selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues.
Collapse
Affiliation(s)
- Christy C Bridges
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA.
| | | |
Collapse
|
15
|
Risher JF, Murray HE, Prince GR. Organic mercury compounds: human exposure and its relevance to public health. Toxicol Ind Health 2002; 18:109-60. [PMID: 12974562 DOI: 10.1191/0748233702th138oa] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Humans may be exposed to organic forms of mercury by either inhalation, oral, or dermal routes, and the effects of such exposure depend upon both the type of mercury to which exposed and the magnitude of the exposure. In general, the effects of exposure to organic mercury are primarily neurologic, while a host of other organ systems may also be involved, including gastrointestinal, respiratory, hepatic, immune, dermal, and renal. While the primary source of exposure to organic mercury for most populations is the consumption of methylmercury-contaminated fish and shellfish, there are a number of other organomercurials to which humans might be exposed. The antibacterial and antifungal properties of organomercurials have resulted in their long use as topical disinfectants (thimerosal and merbromin) and preservatives in medical preparations (thimerosal) and grain products (both methyl and ethyl mercurials). Phenylmercury has been used in the past in paints, and dialkyl mercurials are still used in some industrial processes and in the calibration of certain analytical laboratory equipment. The effects of exposure to different organic mercurials by different routes of exposure are summarized in this article.
Collapse
Affiliation(s)
- John F Risher
- Agency for Toxic Substances and Disease Registry, Division of Toxicology, Toxicology Information Branch, Clifton Road, Atlanta, Georgia 30333, USA
| | | | | |
Collapse
|
16
|
Rodgers JS, Hocker JR, Hanas RJ, Nwosu EC, Hanas JS. Mercuric ion inhibition of eukaryotic transcription factor binding to DNA. Biochem Pharmacol 2001; 61:1543-50. [PMID: 11377384 DOI: 10.1016/s0006-2952(01)00629-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mercury has harmful effects in both rodents and humans. In rodent tissue culture cells exposed to HgCl(2), the metal ions were observed to concentrate in cell nuclei and to associate with chromatin. Thus, transcription factors and other proteins associated with chromatin are possible targets of mercuric ion toxicity. In this study, mercuric ions were found to inhibit the DNA binding activity of the Cys(2)His(2) zinc finger proteins transcription factor IIIA (TFIIIA) and Sp1. These factors are prototypes of the largest eukaryotic protein superfamily. Neither the presence of excess zinc ions nor beta-mercaptoethanol prevented inhibition by mercuric ions. Mercuric ions also inhibited DNA binding by the non-zinc finger protein AP2. Zinc finger-DNA binding was inhibited when both TFIIIA/5S RNA complex and TFIIIA alone were preincubated with concentrations as low as 15 microM mercuric ion. Inhibition occurred in less than 1 min and was not readily reversible. Mercuric ions also inhibited the digestion of DNA by the restriction enzymes BamHI or EcoRI. Inhibition of transcription factors as well as potentially other DNA binding proteins by micromolar concentrations of mercuric ion suggests additional biochemical mechanisms for mercury toxicity in promoting disease via alterations in gene transcription patterns.
Collapse
Affiliation(s)
- J S Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma College of Medicine, 800 Research Parkway, Room 448, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
17
|
Shipp AM, Gentry PR, Lawrence G, Van Landingham C, Covington T, Clewell HJ, Gribben K, Crump K. Determination of a site-specific reference dose for methylmercury for fish-eating populations. Toxicol Ind Health 2000; 16:335-438. [PMID: 11762928 DOI: 10.1177/074823370001600901] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Environmental risk-management decisions in the U.S. involving potential exposures to methylmercury currently use a reference dose (RfD) developed by the U.S. Environmental Protection Agency (USEPA). This RfD is based on retrospective studies of an acute poisoning incident in Iraq in which grain contaminated with a methylmercury fungicide was inadvertently used in the baking of bread. The exposures, which were relatively high but lasted only a few months, were associated with neurological effects in both adults (primarily paresthesia) and infants (late walking, late talking, etc.). It is generally believed that the developing fetus represents a particularly sensitive subpopulation for the neurological effects of methylmercury. The USEPA derived an RfD of 0.1 microg/kg/day based on benchmark dose (BMD) modeling of the combined neurological endpoints reported for children exposed in utero. This RfD included an uncertainty factor of 10 to consider human pharmacokinetic variability and database limitations (lack of data on multigeneration effects or possible long-term sequelae of perinatal exposure). Alcoa signed an Administrative Order of Consent for the conduct of a remedial investigation/feasibility study (RI/FS) at their Point Comfort Operations and the adjacent Lavaca Bay in Texas to address the effects of historical discharges of mercury-containing wastewater. In cooperation with the Texas Natural Resource Conservation Commission and USEPA Region VI, Alcoa conducted a baseline risk assessment to assess potential risk to human health and the environment. As a part of this assessment. Alcoa pursued the development of a site-specific RfD for methylmercury to specifically address the potential human health effects associated with the ingestion of contaminated finfish and shellfish from Lavaca Bay. Application of the published USEPA RfD to this site is problematic; while the study underlying the RfD represented acute exposure to relatively high concentrations of methylmercury, the exposures of concern for the Point Comfort site are from the chronic consumption of relatively low concentrations of methylmercury in fish. Since the publication of the USEPA RfD, several analyses of chronic exposure to methylmercury in fish-eating populations have been reported. The purpose of the analysis reported here was to evaluate the possibility of deriving an RfD for methylmercury, specifically for the case of fish ingestion, on the basis of these new studies. In order to better support the risk-management decisions associated with developing a remediation approach for the site in question, the analysis was designed to provide information on the distribution of acceptable ingestion rates across a population, which could reasonably be expected to be consistent with the results of the epidemiological studies of other fish-eating populations. Based on a review of the available literature on the effects of methylmercury, a study conducted with a population in the Seychelles Islands was selected as the critical study for this analysis. The exposures to methylmercury in this population result from chronic, multigenerational ingestion of contaminated fish. This prospective study was carefully conducted and analyzed, included a large cohort of mother-infant pairs, and was relatively free of confounding factors. The results of this study are essentially negative, and a no-observed-adverse-effect level (NOAEL) derived from the estimated exposures has recently been used by the Agency for Toxic Substances and Disease Registry (ATSDR) as the basis for a chronic oral minimal risk level (MRL) for methylmercury. In spite of the fact that no statistically significant effects were observed in this study, the data as reported are suitable for dose-response analysis using the BMD method. Evaluation of the BMD method used in this analysis, as well as in the current USEPA RfD, has demonstrated that the resulting 95% lower bound on the 10% benchmark dose (BMDL) represents a conservative estimate of the traditional NOAEL, and that it is superior to the use of "average" or "grouped" exposure estimates when dose-response information is available, as is the case for the Seychelles study. A more recent study in the Faroe Islands, which did report statistically significant associations between methylmercury exposure and neurological effects, could not be used for dose-response modeling due to inadequate reporting of the data and confounding from co-exposure to polychlorinated biphenyls (PCBs). BMD modeling over the wide range of neurological endpoints reported in the Seychelles study yielded a lowest BMDL for methylmercury in maternal hair of 21 ppm. This BMDL was then converted to an expected distribution of daily ingestion rates across a population using Monte Carlo analysis with a physiologically based pharmacokinetic (PBPK) model to evaluate the impact of interindividual variability. The resulting distribution of ingestion rates at the BMDL had a geometric mean of 1.60 microg/kg/day with a geometric standard deviation of 1.33; the 1st, 5th, and 10th percentiles of the distribution were 0.86, 1.04, and 1.15 microg/kg/day. In place of the use of an uncertainty factor of 3 for pharmacokinetic variability, as is done in the current RfD, one of these lower percentiles of the daily ingestion rate distribution provides a scientifically based, conservative basis for taking into consideration the impact of pharmacokinetic variability across the population. On the other hand, it was felt that an uncertainty factor of 3 for database limitations should be used in the current analysis. Although there can be high confidence in the benchmark-estimated NOAEL of 21 ppm in the Seychelles study, some results in the New Zealand and Faroe Islands studies could be construed to suggest the possibility of effects at maternal hair concentrations below 10 ppm. In addition, while concerns regarding the possibility of chronic sequelae are not supported by the available data, neither can they be absolutely ruled out. The use of an uncertainty factor of 3 is equivalent to using a NOAEL of 7 ppm in maternal hair, which provides additional protection against the possibility that effects could occur at lower concentrations in some populations. Based on the analysis described above, the distribution of acceptable daily ingestion rates (RfDs) recommended to serve as the basis for site-specific risk-management decisions at Alcoa's Point Comfort Operations ranges from approximately 0.3 to 1.1 microg/kg/day, with a population median (50th percentile) of 0.5 microg/kg/day. By analogy with USEPA guidelines for the use of percentiles in applications of distributions in exposure assessments, the 10th percentile provides a reasonably conservative measure. On this basis, a site-specific RfD of 0.4 microg/kg/day is recommended.
Collapse
Affiliation(s)
- A M Shipp
- The K.S. Crump Group, Inc., ICF Consulting, Ruston, Louisiana 71270, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nordenhäll K, Dock L, Vahter M. Transplacental and lactational exposure to mercury in hamster pups after maternal administration of methyl mercury in late gestation. PHARMACOLOGY & TOXICOLOGY 1995; 77:130-5. [PMID: 8584503 DOI: 10.1111/j.1600-0773.1995.tb01001.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pregnant Syrian golden hamsters were given a single oral dose of 203Hg-labelled methyl mercury (MeHg), 1.6 mumol/kg body weight, on day 12 of gestation. The uptake, retention and tissue distribution of 203Hg in the dams and pups was studied by gamma-counting during the following three weeks. The average transplacental transfer of 203Hg was 1.1% of the administered dose per pup, corresponding to 11% of the administered dose to a whole litter. This was considerably more than in our previous studies when the dams were treated on gestational day 2 (1.3%) or 9 (4.6%). The amount of 203Hg transferred to each pup in utero was independent of the litter size. The average additional transfer of 203Hg to a litter via milk was 1.7% of the administered dose. In the pups, the content of 203Hg in the liver and brain decreased, while the content in the kidneys and pelt increased during the second and third week. The highest amount of 203Hg was generally found in the pelt, which indicated that unweaned hamster pups primarily excrete MeHg by binding to hair. The chemical form of mercury in the liver and kidneys of the pups was determined by ion-exchange separation of inorganic Hg and MeHg followed by gamma-counting. The amount of inorganic Hg in the liver of the pups remained constant throughout the experiment, while it increased in the kidneys after one week due to the demethylation of MeHg. The inorganic Hg in the liver of newborn pups was probably due to maternal demethylation of MeHg and transplacental transfer of inorganic Hg.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Nordenhäll
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Dock L, Rissanen RL, Vahter M. Demethylation and placental transfer of methyl mercury in the pregnant hamster. Toxicology 1994; 94:131-42. [PMID: 7801317 DOI: 10.1016/0300-483x(94)90033-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The demethylation and placental transfer of methylmercury (MeHg) was studied in Syrian Golden hamsters administered a single oral dose of 203Hg-labeled MeHgCl, 1.6 mumol/kg body weight, on day 2 or 9 of gestation and sacrificed 1 day before expected parturition. In order to evaluate the role of demethylation for transplacental transport of MeHg, four hamsters were administered 203Hg-labeled HgCl2 intravenously on day 9 of gestation. The mean biological halftime of 203Hg in animals administered radiolabeled MeHg was 7.7 days and the fecal route was the main excretory pathway. The fetal content of 203Hg in hamsters administered radiolabeled MeHg on gestational day 2 or 9 corresponded to 1.3% and 4.6% of the administered dose, respectively. The distribution of 203Hg in the fetus was more even than in the dam and the concentration of 203Hg in the fetal brain, liver and kidney was similar to that of the placenta. Inorganic Hg was found in maternal liver (18% of total Hg), kidney (31%) and placenta (21%) and fetal liver (3%). The amount of inorganic 203Hg in fetal liver corresponded to about 0.015% of the dose administered to the dam as MeHg. When hamsters were administered 203HgCl2 by intravenous injection on day 9 of gestation, the concentration of 203Hg in fetal liver corresponded to 0.03% of the administered dose. The inorganic 203Hg detected in fetal liver after maternal exposure to MeHg was probably due to demethylation of MeHg in the dam and transplacental transfer of inorganic Hg.
Collapse
Affiliation(s)
- L Dock
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
20
|
Katz SA. Concentrations of trace elements in the hair of the guinea pig. A review. Biol Trace Elem Res 1993; 36:1-5. [PMID: 7681677 DOI: 10.1007/bf02783774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Various animal models have been employed for research on the significance of measuring trace element concentrations in the human scalp hair. The objects of such research were the establishment of relationships between the concentrations of trace elements in human scalp hair and (1) their concentrations in other compartments of the human body or (2) specific pathophysiological conditions. The guinea pig appears to be the animal of choice for such studies because the elemental composition and growth pattern of its hair parallel those of the human scalp hair.
Collapse
Affiliation(s)
- S A Katz
- Department of Chemistry, Rutgers University, Camden, NJ 08102
| |
Collapse
|
21
|
Katz SA, Katz RB. Use of hair analysis for evaluating mercury intoxication of the human body: a review. J Appl Toxicol 1992; 12:79-84. [PMID: 1556385 DOI: 10.1002/jat.2550120203] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Relationships have been established between the concentrations of mercury in human scalp hair and environmental or dietary mercury exposures. For chronic exposures, the hair/blood ratio for mercury is in the range 200:1-300:1, and scalp hair mercury concentrations of greater than 5 ppm are indicative of mercury intoxication. These observations, coupled with the ease by which samples may be collected, transported and stored, support the use of hair analysis for evaluating mercury intoxication of the human body.
Collapse
Affiliation(s)
- S A Katz
- Department of Chemistry, Rutgers University, Camden, NJ 08102
| | | |
Collapse
|
22
|
Shimojo N, Homma S, Nakai I, Iida A. Nondestructive Synchrotron Radiation X-Ray Fluorescence Imaging of Trace Elements on Methylmercury and Selenium Administered Guinea Pigs. ANAL LETT 1991. [DOI: 10.1080/00032719108053010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Choi BH. Effects of methylmercury on neuroepithelial germinal cells in the developing telencephalic vesicles of mice. Acta Neuropathol 1991; 81:359-65. [PMID: 2028740 DOI: 10.1007/bf00293454] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methylmercury (MeHg) poisoning (20 mg/kg body weight) in embryonic mice resulted in significant reductions of mitotic indices in the neuroepithelial germinal cells of the telencephalon at the ventricular surface 4 to 12 h following intoxication. After 24 h, no significant difference in the mitotic indices was observed as compared to controls. However, after 48 h there was an increase in mitotic indices of MeHg group as compared to controls. Analysis of the mitotic figures revealed features suggestive of early-phase mitotic arrest in MeHg-exposed animals. Radioautographic studies suggest a disturbance in the interkinetic nuclear migration of proliferating ventricular cells in the MeHg group. Acute degenerative changes in scattered ventricular cells characterized by edema and spongy changes of cytoplasm associated with dissolution of ribosomes, clearing of the cytoplasmic matrix and loss of organelles including microtubules were observed by electron microscopy. Loss of microtubules was also evident within mitotic figures in MeHg-poisoned animals. It is suggested that reduction and arrest of mitotic activity and disturbances in the interkinetic nuclear migration of neuroepithelial germinal cells are related to cytotoxic effects of MeHg on ventricular cells, including effects on microtubules. These findings suggest in that MeHg severely affects proliferating neuroepithelial germinal cells during the acute phases of MeHg poisoning, and that these changes may eventually affect the architectonic makeup of the cortical plate as the brain matures.
Collapse
Affiliation(s)
- B H Choi
- Department of Pathology, University of California, Irvine 92717
| |
Collapse
|
24
|
Burbacher TM, Rodier PM, Weiss B. Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol 1990; 12:191-202. [PMID: 2196419 DOI: 10.1016/0892-0362(90)90091-p] [Citation(s) in RCA: 209] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A qualitative and quantitative comparison of the neuropathological and neurobehavioral effects of early methylmercury (MeHg) exposure is presented. The focus of the qualitative comparison is the examination of how specific end-points (and categories of behavioral functions) compare across species. The focus of the quantitative comparison is the investigation of the relationship between MeHg exposure, target-organ dose and effects in humans and animals. The results of the comparisons are discussed in the context of the adequacy of the proposed EPA neurotoxicity battery to characterize the risk of MeHg to humans. The comparisons reveal several qualitative and quantitative similarities in the neuropathological effects of MeHg on humans and animals at high levels of exposure. Reports of neuropathological effects at lower levels are available for animals only, precluding any comparison. At high levels of exposure, specific neurobehavioral end-points affected across species are also similar. Effects at lower levels of exposure are similar if categories of neurobehavioral functioning are compared. Changes in the EPA test battery consistent with the results of the comparisons are discussed.
Collapse
Affiliation(s)
- T M Burbacher
- Department of Environmental Health, University of Washington, Seattle 98195
| | | | | |
Collapse
|
25
|
Abstract
Some injuries to the developing nervous system can be detected with traditional evaluation for morphologic pathology, but many early injuries differ in character from those that are produced later in life. Such injuries arise from interference with developmental processes, rather than destruction of tissue. For example, an injury which kills neurons in the mature CNS leads to gliosis and a reduction in neuronal density, but a reduction in the number of neurons produced during development is not likely to lead to gliosis, and typically affects tissue volume rather than cell density. Some effects of developmental insults, such as misplaced and misoriented neurons, are never seen after adult injury. Functional effects reflect the role of the CNS in physiological regulation as well as in behavior. To evaluate CNS for developmental injury, it is necessary to know something about the structural and functional outcomes already recognized to result from teratogens and how these effects are related to time of exposure and time of testing.
Collapse
Affiliation(s)
- P M Rodier
- Department of Obstetrics and Gynecology, University of Rochester, School of Medicine and Dentistry, New York 14642
| |
Collapse
|