1
|
Hashimoto K, Ohgushi T. Asymmetric interactions between two butterfly species mediated by food demand. Ecol Evol 2023; 13:e10164. [PMID: 37304371 PMCID: PMC10249040 DOI: 10.1002/ece3.10164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Recent studies on insect interactions on plants have revealed that herbivorous insects indirectly interact with each other through changes in plant traits following herbivory. However, less attention has been given to plant biomass relative to plant quality in relation to indirect interactions among herbivores. We explored the extent to which the larval food demand of two specialist butterflies (Sericinus montela and Atrophaneura alcinous) explains their interaction on a host plant, Aristolochia debilis. A laboratory experiment showed that plant mass consumption by A. alcinous larvae was 2.6 times greater than that by S. montela. We predicted that A. alcinous, which requires more food, is more vulnerable to food shortages than S. montela. In a cage experiment, an asymmetric interspecific interaction was detected between the two specialist butterflies; S. montela larval density significantly decreased the survival and prolonged the development time of A. alcinous, but A. alcinous density affected neither the survival nor the development time of S. montela. The prediction based on the food requirement was partly supported by the fact that increasing A. alcinous density likely caused a food shortage, which more negatively affected A. alcinous survival than S. montela survival. Conversely, increasing the density of S. montela did not reduce the remaining food quantity, suggesting that the negative effect of S. montela density on A. alcinous was unlikely to be due to food shortage. Although aristolochic acid I, a defensive chemical specific to Aristolochia plants, did not influence the food consumption or growth of either butterfly larva, unmeasured attributes of plant quality may have mediated an indirect interaction between the two butterflies. Consequently, our study suggests that not only the quality but also the quantity of plants should be considered to fully understand the characteristics, such as symmetry, of interspecific interactions among herbivorous insects on the same host plant.
Collapse
Affiliation(s)
- Koya Hashimoto
- Center for Ecological ResearchKyoto UniversityOtsuJapan
- Present address:
Department of Biology, Faculty of Agriculture and Life ScienceHirosaki UniversityHirosakiJapan
| | | |
Collapse
|
2
|
Lazarević J, Milanović S, Šešlija Jovanović D, Janković-Tomanić M. Temperature- and Diet-Induced Plasticity of Growth and Digestive Enzymes Activity in Spongy Moth Larvae. Biomolecules 2023; 13:biom13050821. [PMID: 37238690 DOI: 10.3390/biom13050821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Temperature and food quality are the most important environmental factors determining the performance of herbivorous insects. The objective of our study was to evaluate the responses of the spongy moth (formerly known as the gypsy moth) [Lymantria dispar L. (Lepidoptera: Erebidae)] to simultaneous variation in these two factors. From hatching to the fourth instar, larvae were exposed to three temperatures (19 °C, 23 °C, and 28 °C) and fed four artificial diets that differed in protein (P) and carbohydrate (C) content. Within each temperature regime, the effects of the nutrient content (P+C) and ratio (P:C) on development duration, larval mass, growth rate, and activities of digestive proteases, carbohydrases, and lipase were examined. It was found that temperature and food quality had a significant effect on the fitness-related traits and digestive physiology of the larvae. The greatest mass and highest growth rate were obtained at 28 °C on a high-protein low-carbohydrate diet. A homeostatic increase in activity was observed for total protease, trypsin, and amylase in response to low substrate levels in the diet. A significant modulation of overall enzyme activities in response to 28 °C was detected only with a low diet quality. A decrease in the nutrient content and P:C ratio only affected the coordination of enzyme activities at 28 °C, as indicated by the significantly altered correlation matrices. Multiple linear regression analysis showed that variation in fitness traits in response to different rearing conditions could be explained by variation in digestion. Our results contribute to the understanding of the role of digestive enzymes in post-ingestive nutrient balancing.
Collapse
Affiliation(s)
- Jelica Lazarević
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Slobodan Milanović
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemĕdĕlská 3, 613 00 Brno, Czech Republic
| | - Darka Šešlija Jovanović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Milena Janković-Tomanić
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
3
|
Nielsen ME, Papaj DR. Why study plasticity in multiple traits? New hypotheses for how phenotypically plastic traits interact during development and selection. Evolution 2022; 76:858-869. [PMID: 35274745 PMCID: PMC9313899 DOI: 10.1111/evo.14464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/12/2021] [Accepted: 12/29/2021] [Indexed: 01/21/2023]
Abstract
Organisms can often respond adaptively to a change in their environment through phenotypic plasticity in multiple traits, a phenomenon termed as multivariate plasticity. These different plastic responses could interact and affect each other's development as well as selection on each other, but the causes and consequences of these interactions have received relatively little attention. Here, we propose a new conceptual framework for understanding how different plastic responses can affect each other's development and why organisms should have multiple plastic responses. A plastic change in one trait could alter the phenotype of a second plastic trait by changing either the cue received by the organism (cue-mediated effect) or the response to that cue (response-mediated effect). Multivariate plasticity could benefit the organism either because the plastic responses work better when expressed together (synergy) or because each response is more effective under different environmental circumstances (complementarity). We illustrate these hypotheses with case studies, focusing on interactions between behavior and morphology, plastic traits that differ in their reversibility. Future empirical and theoretical research should investigate the consequences of these interactions for additional factors important for the evolution of plasticity, such as the limits and costs of plasticity.
Collapse
Affiliation(s)
- Matthew E. Nielsen
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721,Zoology DepartmentStockholm UniversityStockholm11419Sweden
| | - Daniel R. Papaj
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721
| |
Collapse
|
4
|
Zielonka MW, Pope TW, Leather SR. Effect of host plant on the life history of the carnation tortrix moth Cacoecimorpha pronubana (Lepidoptera: Tortricidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:44-50. [PMID: 34229772 DOI: 10.1017/s0007485321000493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The carnation tortrix moth, Cacoecimorpha pronubana (Hübner, [1799]) (Lepidoptera: Tortricidae), is one of the most economically important insect species affecting the horticultural industry in the UK. The larvae consume foliage, flowers or fruits, and/or rolls leaves together with silken threads, negatively affecting the growth and/or aesthetics of the crop. In order to understand the polyphagous behaviour of this species within an ornamental crop habitat, we hypothesized that different host plant species affect its life history traits differently. This study investigated the effects of the host plant species on larval and pupal durations and sizes, and fecundity (the number of eggs and the number and size of egg clutches). At 20°C, 60% RH and a 16L:8D photoperiod larvae developed 10, 14, 20 and 36 days faster when reared on Christmas berry, Photinia (Rosaceae), than on cherry laurel, Prunus laurocerasus (Rosaceae), New Zealand broadleaf, Griselinia littoralis (Griseliniaceae), Mexican orange, Choisya ternata (Rutaceae), and firethorn, Pyracantha angustifolia (Rosaceae), respectively. Female pupae were 23.8 mg heavier than male pupae, and pupal weight was significantly correlated with the duration of larval development. The lowest and the highest mean numbers of eggs were produced by females reared on Pyracantha (41) and Photinia (202), respectively. Clutch size differed significantly among moths reared on different host plants, although the total number of eggs did not differ. This study showed that different ornamental host plants affect the development of C. pronubana differently. Improved understanding of the influence of host plant on the moth's life history parameters measured here will help in determining the economic impact that this species may have within the ornamental plant production environment, and may be used in developing more accurate crop protection methodologies within integrated pest management of this insect.
Collapse
Affiliation(s)
- Marcin W Zielonka
- Agriculture & Environment Department, Harper Adams University, Newport, ShropshireTF10 8NB, UK
| | - Tom W Pope
- Agriculture & Environment Department, Harper Adams University, Newport, ShropshireTF10 8NB, UK
| | - Simon R Leather
- Agriculture & Environment Department, Harper Adams University, Newport, ShropshireTF10 8NB, UK
| |
Collapse
|
5
|
Molina AI, Cerrato RM, Nye JA. Population level differences in overwintering survivorship of blue crabs (Callinectes sapidus): A caution on extrapolating climate sensitivities along latitudinal gradients. PLoS One 2021; 16:e0257569. [PMID: 34547045 PMCID: PMC8454986 DOI: 10.1371/journal.pone.0257569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/04/2021] [Indexed: 11/18/2022] Open
Abstract
Winter mortality can strongly affect the population dynamics of blue crabs (Callinectes sapidus) near poleward range limits. We simulated winter in the lab to test the effects of temperature, salinity, and estuary of origin on blue crab winter mortality over three years using a broad range of crab sizes from both Great South Bay and Chesapeake Bay. We fit accelerated failure time models to our data and to data from prior blue crab winter mortality experiments, illustrating that, in a widely distributed, commercially valuable marine decapod, temperature, salinity, size, estuary of origin, and winter duration were important predictors of winter mortality. Furthermore, our results suggest that extrapolation of a Chesapeake Bay based survivorship model to crabs from New York estuaries yielded poor fits. As such, the severity and duration of winter can impact northern blue crab populations differently along latitudinal gradients. In the context of climate change, future warming could possibility confer a benefit to crab populations near the range edge that are currently limited by temperature-induced winter mortality by shifting their range edge poleward, but care must be taken in generalizing from models that are developed based on populations from one part of the range to populations near the edges, especially for species that occupy large geographical areas.
Collapse
Affiliation(s)
- Adelle I. Molina
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| | - Robert M. Cerrato
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Janet A. Nye
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
6
|
Zeitler EF, Cecala KK, McGrath DA. Carryover effects minimized the positive effects of treated wastewater on anuran development. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112571. [PMID: 33866133 DOI: 10.1016/j.jenvman.2021.112571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetlands (CWs) are a potential solution for wastewater treatment due to their capacity to support native species and provide tertiary wastewater treatment. However, CWs can expose wildlife communities to excess nutrients and harmful contaminants, affecting their development, morphology, and behavior. To examine how wastewater CWs may affect wildlife, we raised Southern leopard frogs, Lithobates sphenocephalus, in wastewater from conventional secondary lagoon and tertiary CW treatments for comparison with pondwater along with the presence and absence of a common plant invader to these systems - common duckweed (Lemna minor) - and monitored their juvenile development for potential carryover effects into the terrestrial environment. The tertiary CW treatment did not change demographic or morphological outcomes relative to conventional wastewater treatment in our study. Individuals emerging from both wastewater treatments demonstrated lower terrestrial survival rates than those emerging from pondwater throughout the experiment though experiment-wide survival rates were equivalent among treatments. Individuals from wastewater treatments transformed at larger sizes relative to those in pondwater, but this advantage was minimized in the terrestrial environment. Individuals that developed with duckweed had consistent but marginally better performance in both environments. Our results suggest a potential trade-off between short-term benefits of development in treated effluent and long-term consequences on overall fitness. Overall, we demonstrate that CWs for the purpose of wastewater treatment may not be suitable replicates for wildlife habitat and could have consequences for local population dynamics.
Collapse
Affiliation(s)
- Emma F Zeitler
- Department of Biology, University of the South, Sewanee, TN, 37383, USA
| | - Kristen K Cecala
- Department of Biology, University of the South, Sewanee, TN, 37383, USA.
| | - Deborah A McGrath
- Department of Biology, University of the South, Sewanee, TN, 37383, USA
| |
Collapse
|
7
|
Tachibana SI, Matsuzaki S, Tanaka M, Shiota M, Motooka D, Nakamura S, Goto SG. The Autophagy-Related Protein GABARAP Is Induced during Overwintering in the Bean Bug (Hemiptera: Alydidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:427-434. [PMID: 31693096 DOI: 10.1093/jee/toz287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 06/10/2023]
Abstract
In most insects dependent on food resources that deplete seasonally, mechanisms exist to protect against starvation. Insects overcome periods of food depletion using diapause-associated physiological mechanisms, such as increased energy resources in fat bodies and suppression of metabolism. Because autophagy supplies energy resources through the degradation of intracellular components, we hypothesized that it might be an additional strategy to combat starvation during overwintering. In this study, we measured the abundance of the proteins involved in the signaling pathway of autophagy during overwintering in adults of the bean bug Riptortus pedestris (Fabricius) (Hemiptera: Alydidae), which must withstand the periodic depletion of its host plants from late fall to early spring. Although the levels of gamma-aminobutyric acid receptor-associated protein (GABARAP) markedly increased after the cessation of food supply, AMP-activated protein kinase (AMPK) and target of rapamycin (TOR) were not found to be associated with food depletion. Thus, food depletion appears to induce autophagy independent of AMPK and TOR. The GABARAP levels significantly increased universally when the food supply ceased, irrespective of the diapause status of adults and low-temperature conditions. In overwintering diapause adults under seminatural conditions, the GABARAP levels significantly increased during early spring. Thus, autophagy appears to assist the survival of the bean bugs under natural conditions of food deficiency.
Collapse
Affiliation(s)
- Shin-Ichiro Tachibana
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Matsuzaki
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Masako Tanaka
- Department of Pharmacology, Osaka City University, Graduate School of Medicine, Osaka, Japan
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Masayuki Shiota
- Department of Pharmacology, Osaka City University, Graduate School of Medicine, Osaka, Japan
- Research support platform, Osaka City University, Graduate School of Medicine, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shin G Goto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
8
|
Łukowski A, Adamczyk D, Karolewski P. Survival and Recovery of the Pine-Tree Lappet Dendrolimus pini When Subjected to Simulated Starvation. INSECTS 2020; 11:insects11010067. [PMID: 31968638 PMCID: PMC7022933 DOI: 10.3390/insects11010067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/29/2022]
Abstract
There are many reasons to study the survival and recovery of animals after starvation in simulated transport conditions or other passive dispersal methods. To do so, we chose Dendrolimus pini, an economically important pest of Scots pine with great potential in terms of passive dispersal outside its territory. In this work, we sought to answer the following questions: What is the maximum survival of different instar larvae after total starvation? Does access to dry tissues of the preferred host plant extend the lifespan of the larvae? Does the possibility of larvae recovery exist after starvation for various periods? We found that older larvae survived longer without food than younger larvae. Moreover, dry food did not extend the lifespan of the larvae. Our observations showed that insects were interested in food and tasted it at the beginning, but they did not feed on it for long. Furthermore, larvae recovery was indeed possible, and the time of starvation did not significantly affect this. We generally concluded that the D. pini larvae were characterized by the ability to survive without food for up to one month, which confirms that this species is able to survive long durations of transport to almost anywhere in the world.
Collapse
Affiliation(s)
- Adrian Łukowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (D.A.); (P.K.)
- Faculty of Forestry, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland
- Correspondence:
| | - Dawid Adamczyk
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (D.A.); (P.K.)
| | - Piotr Karolewski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (D.A.); (P.K.)
| |
Collapse
|
9
|
Chen C, Yang H, Xue F, Xia Q. Geographical variation in life-history traits suggests an environmental-dependent trade-off between juvenile growth rate and adult lifespan in a moth. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:626-632. [PMID: 30670111 DOI: 10.1017/s0007485318001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Life-history theory predicts a trade-off between the juvenile growth rate and adult traits related to survival. However, this hypothesized negative correlation is difficult to test robustly because many trade-offs are mild, and environmental variables, such as changes in nutrient availability, can ameliorate the trade-off or make it more pronounced. Thus, it is reasonable to expect that the expression of the trade-off can be condition-dependent. In the present study, we first examined the pre-adult life-history traits of the cotton bollworm, Helicoverpa armigera, collected from northern, central, and southern China at different temperatures. We found that the northern China population has a significantly shorter pre-adult developmental time and higher growth rate than the southern China population as a result of adaptation to the decreased seasonal length. Then, we tested for a trade-off between the juvenile growth rate and adult lifespan in different temperature and nutrient conditions. We found a negative relationship between juvenile growth rate and adult lifespan under starvation or desiccation conditions; however, a continuous supply of sugar can diminish or obviate the apparent negative relationship, in which the adult lifespan did not show a significant difference in most of the comparisons. These results suggested a resource-mediated trade-off may exist between juvenile growth rate and adult lifespan. However, the adult size may have some positive effect on the lifespan under starvation and desiccation conditions, which may affect the expression of trade-off.
Collapse
Affiliation(s)
- C Chen
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330308, Jiangxi Province, China
- Department of Entomology and Nematology, University of Florida, Gainesville 32611, FL, USA
| | - H Yang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330308, Jiangxi Province, China
| | - F Xue
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330308, Jiangxi Province, China
| | - Q Xia
- Department of Entomology and Nematology, University of Florida, Gainesville 32611, FL, USA
| |
Collapse
|
10
|
Mir AH, Qamar A. Effects of Starvation and Thermal Stress on the Thermal Tolerance of Silkworm, Bombyx mori: Existence of Trade-offs and Cross-Tolerances. NEOTROPICAL ENTOMOLOGY 2018; 47:610-618. [PMID: 28956278 DOI: 10.1007/s13744-017-0559-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Organisms, in nature, are often subjected to multiple stressors, both biotic and abiotic. Temperature and starvation are among the main stressors experienced by organisms in their developmental cycle and the responses to these stressors may share signaling pathways, which affects the way these responses are manifested. Temperature is a major factor governing the performance of ectothermic organisms in ecosystems worldwide and, therefore, the thermal tolerance is a central issue in the thermobiology of these organisms. Here, we investigated the effects of starvation as well as mild heat and cold shocks on the thermal tolerance of the larvae of silkworm, Bombyx mori (Linnaeus). Starvation acted as a meaningful or positive stressor as it improved cold tolerance, measured as chill coma recovery time (CCRT), but, at the same time, it acted as a negative stressor and impaired the heat tolerance, measured as heat knockdown time (HKT). In the case of heat tolerance, starvation negated the positive effects of both mild cold as well as mild heat shocks and thus indicated the existence of trade-off between these stressors. Both mild heat and cold shocks improved the thermal tolerance, but the effects were more prominent when the indices were measured in response to a stressor of same type, i.e., a mild cold shock improved the cold tolerance more than the heat tolerance and vice versa. This improvement in thermal tolerance by both mild heat as well as cold shocks indicated the possibility of cross-tolerance between these stressors.
Collapse
Affiliation(s)
- A H Mir
- Section of Entomology, Dept of Zoology, Aligarh Muslim Univ, Aligarh, 202002, India.
| | - A Qamar
- Section of Entomology, Dept of Zoology, Aligarh Muslim Univ, Aligarh, 202002, India
| |
Collapse
|
11
|
Capodeanu-Nägler A, Prang MA, Trumbo ST, Vogel H, Eggert AK, Sakaluk SK, Steiger S. Offspring dependence on parental care and the role of parental transfer of oral fluids in burying beetles. Front Zool 2018; 15:33. [PMID: 30279721 PMCID: PMC6116493 DOI: 10.1186/s12983-018-0278-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/13/2018] [Indexed: 12/30/2022] Open
Abstract
Background Immature stages of many animals can forage and feed on their own, whereas others depend on their parents’ assistance to obtain or process food. But how does such dependency evolve, and which offspring and parental traits are involved? Burying beetles (Nicrophorus) provide extensive biparental care, including food provisioning to their offspring. Interestingly, there is substantial variation in the reliance of offspring on post-hatching care among species. Here, we examine the proximate mechanisms underlying offspring dependence, focusing on the larvae of N. orbicollis, which are not able to survive in the absence of parents. We specifically asked whether the high offspring dependence is caused by (1) a low starvation tolerance, (2) a low ability to self-feed or (3) the need to obtain parental oral fluids. Finally, we determined how much care (i.e. duration of care) they require to be able to survive. Results We demonstrate that N. orbicollis larvae are not characterized by a lower starvation tolerance than larvae of the more independent species. Hatchlings of N. orbicollis are generally able to self-feed, but the efficiency depends on the kind of food presented and differs from the more independent species. Further, we show that even when providing highly dependent N. orbicollis larvae with easy ingestible liquefied mice carrion, only few of them survived to pupation. However, adding parental oral fluids significantly increased their survival rate. Finally, we demonstrate that survival and growth of dependent N. orbicollis larvae is increased greatly by only a few hours of parental care. Conclusions Considering the fact that larvae of other burying beetle species are able to survive in the absence of care, the high dependence of N. orbicollis larvae is puzzling. Even though they have not lost the ability to self-feed, an easily digestible, liquefied carrion meal is not sufficient to ensure their survival. However, our results indicate that the transfer of parental oral fluids is an essential component of care. In the majority of mammals, offspring rely on the exchange of fluids (i.e. milk) to survive, and our findings suggest that even in subsocial insects, such as burying beetles, parental fluids can significantly affect offspring survival.
Collapse
Affiliation(s)
| | - Madlen A Prang
- 2Department of Evolutionary Animal Ecology, University of Bayreuth, Bayreuth, Germany
| | - Stephen T Trumbo
- 3Department of Ecology and Evolutionary Biology, University of Connecticut, Waterbury, CT USA
| | - Heiko Vogel
- 4Department of Entomology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Anne-Katrin Eggert
- 5Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL 61790-4120 USA
| | - Scott K Sakaluk
- 5Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL 61790-4120 USA
| | - Sandra Steiger
- 1Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.,2Department of Evolutionary Animal Ecology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
12
|
Bar-Ziv MA, Bega D, Subach A, Scharf I. Wormlions prefer both fine and deep sand but only deep sand leads to better performance. Curr Zool 2018; 65:393-400. [PMID: 31413712 PMCID: PMC6688573 DOI: 10.1093/cz/zoy065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/06/2018] [Indexed: 11/12/2022] Open
Abstract
Wormlions are small fly larvae that dig pits in loose soil to trap their prey. Similar to other trap-building predators, like spiders and antlions, they depend on the habitat structure for successful trap construction and prey catch. We examined whether sites at which wormlions are present differ in sand depth and particle size from nearby sites, at which wormlions are absent. Next, in the laboratory we manipulated both sand depth and type (fine vs. coarse) to determine their joint effect on microhabitat preference, the size of the constructed pit, wormlion movement, and their latency to respond to prey. We expected better performance by wormlions in fine and deep sand, and the sand in wormlions’ natural sites to be finer and deeper. However, in only partial agreement with our expectations, wormlion sites featured finer sand but not deeper sand. In the laboratory, wormlions preferred both fine and deep sand, and moved more in shallow and coarse sand, which we interpret as an attempt to relocate away from unfavorable conditions. However, only deep sand led to larger pits being constructed and to a faster response to prey. The preference for fine sand could, therefore, be related to other benefits that sand provides. Finally, body mass was a dominant factor, interacting with the preference for both deep and fine sand: deep over shallow sand was more favored by large wormlions and fine over coarse sand by smaller ones. Our results suggest that several factors should be incorporated when studying microhabitat selection.
Collapse
Affiliation(s)
- Michael A Bar-Ziv
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Darar Bega
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aziz Subach
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Nylin S, Gotthard K, Wiklund C. REACTION NORMS FOR AGE AND SIZE AT MATURITY IN LASIOMMATA BUTTERFLIES: PREDICTIONS AND TESTS. Evolution 2017; 50:1351-1358. [PMID: 28565269 DOI: 10.1111/j.1558-5646.1996.tb02377.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/1994] [Accepted: 08/03/1995] [Indexed: 11/27/2022]
Affiliation(s)
- Sören Nylin
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden
| | - Karl Gotthard
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden
| | - Christer Wiklund
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden
| |
Collapse
|
14
|
Nielsen ME, Papaj DR. Why Have Multiple Plastic Responses? Interactions between Color Change and Heat Avoidance Behavior in Battus philenor Larvae. Am Nat 2017; 189:657-666. [PMID: 28514633 DOI: 10.1086/691536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Having multiple plastic responses to a change in the environment, such as increased temperature, can be adaptive for two major reasons: synergy (the plastic responses perform better when expressed simultaneously) or complementarity (each plastic response provides a greater net benefit in a different environmental context). We investigated these hypotheses for two forms of temperature-induced plasticity of Battus philenor caterpillars in southern Arizona populations: color change (from black to red at high temperatures) and heat avoidance behavior (movement from host to elevated refuges at high host temperatures). Field assays using aluminum models showed that the cooling effect of the red color is greatly reduced in a refuge position relative to that on a host. Field assays with live caterpillars demonstrated that refuge seeking is much more important for survival under hot conditions than coloration; however, in those assays, red coloration reduced the need to seek refuges. Our results support the complementarity hypothesis: refuge seeking facilitates survival during daily temperature peaks, while color change reduces the need to leave the host over longer warm periods. We propose that combinations of rapid but costly short-term behavioral responses and slow but efficient long-term morphological responses may be common when coping with temperature change.
Collapse
|
15
|
Betini GS, McAdam AG, Griswold CK, Norris DR. A fitness trade-off between seasons causes multigenerational cycles in phenotype and population size. eLife 2017; 6:e18770. [PMID: 28164780 PMCID: PMC5340529 DOI: 10.7554/elife.18770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/06/2017] [Indexed: 11/17/2022] Open
Abstract
Although seasonality is widespread and can cause fluctuations in the intensity and direction of natural selection, we have little information about the consequences of seasonal fitness trade-offs for population dynamics. Here we exposed populations of Drosophila melanogaster to repeated seasonal changes in resources across 58 generations and used experimental and mathematical approaches to investigate how viability selection on body size in the non-breeding season could affect demography. We show that opposing seasonal episodes of natural selection on body size interacted with both direct and delayed density dependence to cause populations to undergo predictable multigenerational density cycles. Our results provide evidence that seasonality can set the conditions for life-history trade-offs and density dependence, which can, in turn, interact to cause multigenerational population cycles.
Collapse
Affiliation(s)
- Gustavo S Betini
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - Andrew G McAdam
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | | | - D Ryan Norris
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| |
Collapse
|
16
|
Jusup M, Sousa T, Domingos T, Labinac V, Marn N, Wang Z, Klanjšček T. Physics of metabolic organization. Phys Life Rev 2016; 20:1-39. [PMID: 27720138 DOI: 10.1016/j.plrev.2016.09.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 01/26/2023]
Abstract
We review the most comprehensive metabolic theory of life existing to date. A special focus is given to the thermodynamic roots of this theory and to implications that the laws of physics-such as the conservation of mass and energy-have on all life. Both the theoretical foundations and biological applications are covered. Hitherto, the foundations were more accessible to physicists or mathematicians, and the applications to biologists, causing a dichotomy in what always should have been a single body of work. To bridge the gap between the two aspects of the same theory, we (i) adhere to the theoretical formalism, (ii) try to minimize the amount of information that a reader needs to process, but also (iii) invoke examples from biology to motivate the introduction of new concepts and to justify the assumptions made, and (iv) show how the careful formalism of the general theory enables modular, self-consistent extensions that capture important features of the species and the problem in question. Perhaps the most difficult among the introduced concepts, the utilization (or mobilization) energy flow, is given particular attention in the form of an original and considerably simplified derivation. Specific examples illustrate a range of possible applications-from energy budgets of individual organisms, to population dynamics, to ecotoxicology.
Collapse
Affiliation(s)
- Marko Jusup
- Center of Mathematics for Social Creativity, Hokkaido University, 5-8 Kita Ward, Sapporo 060-0808, Japan.
| | - Tânia Sousa
- Maretec, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Tiago Domingos
- Maretec, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Velimir Labinac
- Department of Physics, University of Rijeka, R. Matejčić 2, 51000 Rijeka, Croatia
| | - Nina Marn
- Department for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Zhen Wang
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Tin Klanjšček
- Department for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
17
|
|
18
|
All quiet on the western front? Using phenological inference to detect the presence of a latent gypsy moth invasion in Northern Minnesota. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1248-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Augustyn WJ, Anderson B, Ellis AG. Experimental evidence for fundamental, and not realized, niche partitioning in a plant-herbivore community interaction network. J Anim Ecol 2016; 85:994-1003. [DOI: 10.1111/1365-2656.12536] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/04/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Willem J. Augustyn
- Department of Botany and Zoology; University of Stellenbosch; Private Bag X1 Matieland 7602 South Africa
| | - Bruce Anderson
- Department of Botany and Zoology; University of Stellenbosch; Private Bag X1 Matieland 7602 South Africa
| | - Allan G. Ellis
- Department of Botany and Zoology; University of Stellenbosch; Private Bag X1 Matieland 7602 South Africa
| |
Collapse
|
20
|
Jeschke V, Gershenzon J, Vassão DG. A mode of action of glucosinolate-derived isothiocyanates: Detoxification depletes glutathione and cysteine levels with ramifications on protein metabolism in Spodoptera littoralis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 71:37-48. [PMID: 26855197 DOI: 10.1016/j.ibmb.2016.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 05/13/2023]
Abstract
Glucosinolates are activated plant defenses common in the order Brassicales that release isothiocyanates (ITCs) and other hydrolysis products upon tissue damage. The reactive ITCs are toxic to insects resulting in reduced growth, delayed development and occasionally mortality. Generalist lepidopteran larvae often detoxify ingested ITCs via conjugation to glutathione (GSH) and survive on low glucosinolate diets, but it is not known how this process influences other aspects of metabolism. We investigated the impact of the aliphatic 4-methylsulfinylbutyl-ITC (4msob-ITC, sulforaphane) on the metabolism of Spodoptera littoralis larvae, which suffer a significant growth decline on 4msob-ITC-containing diets while excreting ITC-glutathione conjugates and their derivatives in the frass. The most striking effects were a decrease of GSH in midgut tissue and hemolymph due to losses by conjugation to ITC during detoxification, and a decline of the GSH biosynthetic precursor cysteine. Protein content was likewise reduced by ITC treatment suggesting that protein is actively catabolized in an attempt to supply cysteine for GSH biosynthesis. The negative growth and protein effects were relieved by dietary supplementation with cystine. Other consequences of protein breakdown included deamination of amino acids with increased excretion of uric acid and elevated lipid content. Thus metabolic detoxification of ITCs provokes a cascade of negative effects on insects that result in reduced fitness.
Collapse
Affiliation(s)
- Verena Jeschke
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Daniel Giddings Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| |
Collapse
|
21
|
The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, Tribolium castaneum. Naturwissenschaften 2016; 103:20. [DOI: 10.1007/s00114-016-1344-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 11/26/2022]
|
22
|
Esperk T, Kjaersgaard A, Walters RJ, Berger D, Blanckenhorn WU. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance? J Evol Biol 2016; 29:900-15. [PMID: 26801318 DOI: 10.1111/jeb.12832] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 01/15/2023]
Abstract
Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to non-acclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness-related traits.
Collapse
Affiliation(s)
- T Esperk
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - A Kjaersgaard
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - R J Walters
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,School of Biological Sciences, University of Reading, Reading, UK
| | - D Berger
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - W U Blanckenhorn
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Lea EV, Mee JA, Post JR, Rogers SM, Mogensen S. Rainbow trout in seasonal environments: phenotypic trade-offs across a gradient in winter duration. Ecol Evol 2015; 5:4778-94. [PMID: 26640659 PMCID: PMC4662309 DOI: 10.1002/ece3.1636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/13/2015] [Indexed: 11/09/2022] Open
Abstract
Survival through periods of resource scarcity depends on the balance between metabolic demands and energy storage. The opposing effects of predation and starvation mortality are predicted to result in trade-offs between traits that optimize fitness during periods of resource plenty (e.g., during the growing season) and those that optimize fitness during periods of resource scarcity (e.g., during the winter). We conducted a common environment experiment with two genetically distinct strains of rainbow trout to investigate trade-offs due to (1) the balance of growth and predation risk related to foraging rate during the growing season and (2) the allocation of energy to body size prior to the winter. Fry (age 0) from both strains were stocked into replicate natural lakes at low and high elevation that differed in winter duration (i.e., ice cover) by 59 days. Overwinter survival was lowest in the high-elevation lakes for both strains. Activity rate and growth rate were highest at high elevation, but growing season survival did not differ between strains or between environments. Hence, we did not observe a trade-off between growth and predation risk related to foraging rate. Growth rate also differed significantly between the strains across both environments, which suggests that growth rate is involved in local adaptation. There was not, however, a difference between strains or between environments in energy storage. Hence, we did not observe a trade-off between growth and storage. Our findings suggest that intrinsic metabolic rate, which affects a trade-off between growth rate and overwinter survival, may influence local adaptation in organisms that experience particularly harsh winter conditions (e.g., extended periods trapped beneath the ice in high-elevation lakes) in some parts of their range.
Collapse
Affiliation(s)
- Ellen V Lea
- Department of Biological Sciences University of Calgary 2500 University Dr. NW Calgary Alberta Canada T2N 1N4
| | - Jonathan A Mee
- Department of Biological Sciences University of Calgary 2500 University Dr. NW Calgary Alberta Canada T2N 1N4
| | - John R Post
- Department of Biological Sciences University of Calgary 2500 University Dr. NW Calgary Alberta Canada T2N 1N4
| | - Sean M Rogers
- Department of Biological Sciences University of Calgary 2500 University Dr. NW Calgary Alberta Canada T2N 1N4
| | - Stephanie Mogensen
- Department of Biological Sciences University of Calgary 2500 University Dr. NW Calgary Alberta Canada T2N 1N4
| |
Collapse
|
24
|
Abarca M, Lill JT. Warming affects hatching time and early season survival of eastern tent caterpillars. Oecologia 2015; 179:901-12. [DOI: 10.1007/s00442-015-3371-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
|
25
|
Halle S, Nowizki A, Scharf I. The consequences of parental age for development, body mass and resistance to stress in the red flour beetle. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Snir Halle
- Department of Zoology; Faculty of Life Sciences; Tel Aviv University; POB 39040 Tel Aviv 6997801 Israel
| | - Anastasia Nowizki
- Department of Zoology; Faculty of Life Sciences; Tel Aviv University; POB 39040 Tel Aviv 6997801 Israel
| | - Inon Scharf
- Department of Zoology; Faculty of Life Sciences; Tel Aviv University; POB 39040 Tel Aviv 6997801 Israel
| |
Collapse
|
26
|
Aalberg Haugen IM, Gotthard K. Diapause induction and relaxed selection on alternative developmental pathways in a butterfly. J Anim Ecol 2014; 84:464-72. [PMID: 25267557 DOI: 10.1111/1365-2656.12291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/21/2014] [Indexed: 11/29/2022]
Abstract
Seasonal phenotypic plasticity entails differential trait expression depending on the time of season. The facultative induction of winter diapause in temperate insects is a developmental switch mechanism often leading to differential expression in life-history traits. However, when there is a latitudinal shift from a bivoltine to univoltine life cycle, selection for pathway-specific expression is disrupted, which may allow drift towards less optimal trait values within the non-selected pathway. We use field- and experimental data from five Swedish populations of Pararge aegeria to investigate latitudinal variation in voltinism, local adaptation in the diapause switch and footprints of selection on pathway-specific regulation of life-history traits and sexual dimorphism in larval development. Field data clearly illustrated how natural populations gradually shift from bivoltinism to univoltinism as latitude increases. This was supported experimentally as the decrease in direct development at higher latitudes was accompanied by increasing critical daylengths, suggesting local adaptation in the diapause switch. The differential expression among developmental pathways in development time and growth rate was significantly less pronounced in univoltine populations. Univoltine populations showed no significant signs of protandry during larval development, suggesting that erosion of the direct development pathway under relaxed selection has led to the loss of its sex-specific modifications.
Collapse
Affiliation(s)
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm, SE-10691, Sweden
| |
Collapse
|
27
|
Murrell EG, Cullen EM. Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera: Crambidae) larval performance. ENVIRONMENTAL ENTOMOLOGY 2014; 43:1264-1274. [PMID: 25203485 DOI: 10.1603/en14008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Few studies compare how different soil fertilization practices affect plant mineral content and insect performance in organic systems. This study examined: 1) The European corn borer, Ostrinia nubilalis (Hübner), larval response on corn (Zea mays L.) grown in field soils with different soil management histories; and 2) resilience of these plants to O. nubilalis herbivory. Treatments included: 1) standard organic--organically managed soil fertilized with dairy manure and 2 yr of alfalfa (Medicago sativa L.) in the rotation; 2) basic cation saturation ratio--organically managed soil fertilized with dairy manure and alfalfa nitrogen credits, plus addition of gypsum (CaSO4·2H2O) according to the soil balance hypothesis; and 3) conventional--conventionally managed soil fertilized with synthetic fertilizers. Corn plants were reared to maturity in a greenhouse, and then infested with 0-40 O. nubilalis larvae for 17 d. O. nubilalis exhibited negative competitive response to increasing larval densities. Mean development time was significantly faster for larvae consuming basic cation saturation ratio plants than those on standard organic plants, with intermediate development time on conventional plants. Neither total yield (number of kernels) nor proportion kernels damaged differed among soil fertility treatments. Soil nutrients differed significantly in S and in Ca:Mg and Ca:K ratios, but principal components analysis of plant tissue samples taken before O. nubilalis infestation showed that S, Fe, and Cu contributed most to differences in plant nutrient profiles among soil fertility treatments. Results demonstrate that different fertilization regimens can significantly affect insect performance within the context of organic systems, but the effects in this study were relatively minor compared with effects of intraspecific competition.
Collapse
Affiliation(s)
- Ebony G Murrell
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
28
|
Dietary mechanism behind the costs associated with resistance to Bacillus thuringiensis in the cabbage looper, Trichoplusia ni. PLoS One 2014; 9:e105864. [PMID: 25171126 PMCID: PMC4149471 DOI: 10.1371/journal.pone.0105864] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 07/28/2014] [Indexed: 12/23/2022] Open
Abstract
Beneficial alleles that spread rapidly as an adaptation to a new environment are often associated with costs that reduce the fitness of the population in the original environment. Several species of insect pests have evolved resistance to Bacillus thuringiensis (Bt) toxins in the field, jeopardizing its future use. This has most commonly occurred through the alteration of insect midgut binding sites specific for Bt toxins. While fitness costs related to Bt resistance alleles have often been recorded, the mechanisms behind them have remained obscure. We asked whether evolved resistance to Bt alters dietary nutrient intake, and if reduced efficiency of converting ingested nutrients to body growth are associated with fitness costs and variation in susceptibility to Bt. We fed the cabbage looper Trichoplusia ni artificial diets differing in levels of dietary imbalance in two major macronutrients, protein and digestible carbohydrate. By comparing a Bt-resistant T. ni strain with a susceptible strain we found that the mechanism behind reduced pupal weights and growth rates associated with Bt-resistance in T. ni was reduced consumption rather than impaired conversion of ingested nutrients to growth. In fact, Bt-resistant T. ni showed more efficient conversion of nutrients than the susceptible strain under certain dietary conditions. Although increasing levels of dietary protein prior to Bt challenge had a positive effect on larval survival, the LC50 of the resistant strain decreased when fed high levels of excess protein, whereas the LC50 of the susceptible strain continued to rise. Our study demonstrates that examining the nutritional basis of fitness costs may help elucidate the mechanisms underpinning them.
Collapse
|
29
|
Betini GS, Griswold CK, Prodan L, Norris DR. Body size, carry-over effects and survival in a seasonal environment: consequences for population dynamics. J Anim Ecol 2014; 83:1313-21. [DOI: 10.1111/1365-2656.12225] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/21/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Gustavo S. Betini
- Department of Integrative Biology; University of Guelph; Guelph ON N1G 2W1 Canada
| | - Cortland K. Griswold
- Department of Integrative Biology; University of Guelph; Guelph ON N1G 2W1 Canada
| | - Livia Prodan
- Department of Integrative Biology; University of Guelph; Guelph ON N1G 2W1 Canada
| | - D. Ryan Norris
- Department of Integrative Biology; University of Guelph; Guelph ON N1G 2W1 Canada
| |
Collapse
|
30
|
Gergs A, Jager T. Body size-mediated starvation resistance in an insect predator. J Anim Ecol 2014; 83:758-68. [DOI: 10.1111/1365-2656.12195] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/14/2013] [Indexed: 11/27/2022]
Affiliation(s)
- André Gergs
- Department of Environmental, Social and Spatial Change; Roskilde University; Universitetsvej 3 DK-4000 Roskilde Denmark
- Institute for Environmental Research; RWTH Aachen University; Worringer Weg 1 D-52074 Aachen Germany
| | - Tjalling Jager
- Department of Theoretical Biology; VU University; de Boelelaan 1085 NL-1081 HV Amsterdam the Netherlands
| |
Collapse
|
31
|
Huang F, Wang F, Lu Y, Zhang P, Zhang J, Zhang Z, Li W, Lin W, Bei Y. Effect of honey solution and water acquisition on survival of starved solenopsis mealybug, Phenacoccus solenopsis. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:1. [PMID: 25373148 PMCID: PMC4199356 DOI: 10.1093/jis/14.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 11/21/2013] [Indexed: 05/29/2023]
Abstract
The current study examined the effects of honey solution and water access on feeding behavior and survival of starving solenopsis mealybugs, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). The electrical penetration graph technique and an artificial membrane system were used to check whether P. solenopsis could imbibe free water or other liquid, such as the honey solution used here, in its natural environment. The recorded electrical penetration graph waveforms revealed that P. solenopsis could continuously imbibe water-honey solution for several hours, which indicated that honey solution and water acquisition could possibly occur when P. solenopsis had access to such liquids in its natural environment. Waveforms of water-honey solution feeding alternated between two distinct feeding phases in a regular pattern, which was assumed to reflect inherent habits of feeding attempts. The effects of honey solution and water acquisition on survival of P. solenopsis was also examined. Comparison between P. solenopsis in different treatments (starved, water feeding, honey solution feeding, and cotton plant feeding) suggested that 1) P. solenopsis could accept but did not favor feeding on water or the honey solution, and 2) this feeding could prolong its survival, but had no effect on body size.
Collapse
Affiliation(s)
- Fang Huang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Feifei Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yaobin Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Pengjun Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Jinming Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Zhijun Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Weidi Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Wencai Lin
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yawei Bei
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| |
Collapse
|
32
|
Pegram KV, Nahm AC, Rutowski RL. Warning color changes in response to food deprivation in the pipevine swallowtail butterfly, Battus philenor. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:110. [PMID: 24735188 PMCID: PMC4011348 DOI: 10.1673/031.013.11001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/04/2012] [Indexed: 06/03/2023]
Abstract
Predation on distasteful animals should favor warning coloration that is relatively conspicuous and phenotypically invariable. However, even among similarly colored individuals there can be variation in their warning signals. In butterflies, individual differences in larval feeding history could cause this variation. The warning signal of the pipevine swallowtail butterfly, Battus philenor L. (Lepidoptera: Papilionidae) consists of both a blue iridescent patch and pigmentbased orange spots on the ventral hindwing. B. philenor males also display a dorsal surface iridescent patch that functions as a sexual indicator signal. A previous study of iridescence in B. philenor found that the iridescent blue on both the dorsal and ventral hind wings is variable and significantly different between lab-reared and field-caught individuals. These differences could be the result of larval food deprivation in the field. Through experimental manipulation of larval diet, larval food deprivation was evaluated as a potential cause of the differences observed between lab and field individuals, and if food deprivation is a source of inter-individual variation in warning signals. B. philenor larvae were food restricted starting at two points in the last larval instar, and one group was fed through pupation. Adult coloration was then compared. Food deprivation led to poorer adult condition, as indicated by lower adult body mass, forewing length, and fat content of stressed individuals. As the level of food deprivation increased, the hue of the iridescent patches on both the dorsal and ventral hind wing shifted to shorter wavelengths, and the chroma of the orange spots decreased. The shifts in iridescent color did not match the differences previously found between lab and field individuals. However, the treatment differences indicate that food deprivation may be a significant source of warning color variation. The differences between the treatment groups are likely detectable by predators, but the effect of the variation on signal effectiveness and function remains to be empirically explored.
Collapse
Affiliation(s)
| | - Alexandra C. Nahm
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4601
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | | |
Collapse
|
33
|
Lee KP, Kwon ST, Roh C. Caterpillars use developmental plasticity and diet choice to overcome the early life experience of nutritional imbalance. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.06.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Vitikainen E, Haag-Liautard C, Sundström L. INBREEDING AND REPRODUCTIVE INVESTMENT IN THE ANT FORMICA EXSECTA. Evolution 2011; 65:2026-37. [DOI: 10.1111/j.1558-5646.2011.01273.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Peric-Mataruga V, Mrdakovic M, Vlahovic M, Ilijin L, Tomanic J, Mircic D, Nenadovic V. Biogenic amines in protocerebral A2 neurosecretory neurons of Lymantria dispar L. (Lepidoptera:Lymantriidae): Response to trophic stress. ARCH BIOL SCI 2011. [DOI: 10.2298/abs1103571p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The number, morphometric parameters and amount of aminergic neurosecretory
product of protocerebral A2 neurosecretory neurons were investigated in the
fifth instar of Lymantria dispar caterpillars, following a suitable or
unsuitable trophic regime. Caterpillars originated from two populations
(Quercus rubra or Robinia pseudoacacia forest) and were differently adapted
to trophic stress, i.e. feeding on locust tree leaves - unsuitable host
plant. The number of neurosecretory neurons was higher in the caterpillars
originated from Robinia population than in Quercus population, regardless of
feeding. A2 neurosecretory neurons, nuclei and their nucleoli were larger in
caterpillars fed with unsuitable leaves in both populations. There was more
aminergic product in the A2 neurosecretory neurons of the caterpillars fed
with unsuitable leaves independently of population origin.
Collapse
Affiliation(s)
- Vesna Peric-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research “Siniša Stanković”, Belgrade
| | - Marija Mrdakovic
- Department of Insect Physiology and Biochemistry, Institute for Biological Research “Siniša Stanković”, Belgrade
| | - Milena Vlahovic
- Department of Insect Physiology and Biochemistry, Institute for Biological Research “Siniša Stanković”, Belgrade
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research “Siniša Stanković”, Belgrade
| | - Jankovic Tomanic
- Department of Insect Physiology and Biochemistry, Institute for Biological Research “Siniša Stanković”, Belgrade
| | - D. Mircic
- State University of Novi Pazar, Department of Biochemical and Medical Sciences, Novi Pazar
| | - Vera Nenadovic
- Department of Insect Physiology and Biochemistry, Institute for Biological Research “Siniša Stanković”, Belgrade
| |
Collapse
|
36
|
|
37
|
Sousa T, Domingos T, Poggiale JC, Kooijman SALM. Dynamic energy budget theory restores coherence in biology. Philos Trans R Soc Lond B Biol Sci 2010; 365:3413-28. [PMID: 20921042 PMCID: PMC2981977 DOI: 10.1098/rstb.2010.0166] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We present the state of the art of the development of dynamic energy budget theory, and its expected developments in the near future within the molecular, physiological and ecological domains. The degree of formalization in the set-up of the theory, with its roots in chemistry, physics, thermodynamics, evolution and the consistent application of Occam's razor, is discussed. We place the various contributions in the theme issue within this theoretical setting, and sketch the scope of actual and potential applications.
Collapse
Affiliation(s)
- Tânia Sousa
- Environment and Energy Section, DEM, Instituto Superior Técnico. Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal.
| | | | | | | |
Collapse
|
38
|
Kim SY, Noguera JC, Morales J, Velando A. Quantitative genetic evidence for trade-off between growth and resistance to oxidative stress in a wild bird. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9426-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
O'Neil ST, Dzurisin JDK, Carmichael RD, Lobo NF, Emrich SJ, Hellmann JJ. Population-level transcriptome sequencing of nonmodel organisms Erynnis propertius and Papilio zelicaon. BMC Genomics 2010; 11:310. [PMID: 20478048 PMCID: PMC2887415 DOI: 10.1186/1471-2164-11-310] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 05/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several recent studies have demonstrated the use of Roche 454 sequencing technology for de novo transcriptome analysis. Low error rates and high coverage also allow for effective SNP discovery and genetic diversity estimates. However, genetically diverse datasets, such as those sourced from natural populations, pose challenges for assembly programs and subsequent analysis. Further, estimating the effectiveness of transcript discovery using Roche 454 transcriptome data is still a difficult task. RESULTS Using the Roche 454 FLX Titanium platform, we sequenced and assembled larval transcriptomes for two butterfly species: the Propertius duskywing, Erynnis propertius (Lepidoptera: Hesperiidae) and the Anise swallowtail, Papilio zelicaon (Lepidoptera: Papilionidae). The Expressed Sequence Tags (ESTs) generated represent a diverse sample drawn from multiple populations, developmental stages, and stress treatments. Despite this diversity, > 95% of the ESTs assembled into long (> 714 bp on average) and highly covered (> 9.6x on average) contigs. To estimate the effectiveness of transcript discovery, we compared the number of bases in the hit region of unigenes (contigs and singletons) to the length of the best match silkworm (Bombyx mori) protein--this "ortholog hit ratio" gives a close estimate on the amount of the transcript discovered relative to a model lepidopteran genome. For each species, we tested two assembly programs and two parameter sets; although CAP3 is commonly used for such data, the assemblies produced by Celera Assembler with modified parameters were chosen over those produced by CAP3 based on contig and singleton counts as well as ortholog hit ratio analysis. In the final assemblies, 1,413 E. propertius and 1,940 P. zelicaon unigenes had a ratio > 0.8; 2,866 E. propertius and 4,015 P. zelicaon unigenes had a ratio > 0.5. CONCLUSIONS Ultimately, these assemblies and SNP data will be used to generate microarrays for ecoinformatics examining climate change tolerance of different natural populations. These studies will benefit from high quality assemblies with few singletons (less than 26% of bases for each assembled transcriptome are present in unassembled singleton ESTs) and effective transcript discovery (over 6,500 of our putative orthologs cover at least 50% of the corresponding model silkworm gene).
Collapse
Affiliation(s)
- Shawn T O'Neil
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | | | | | |
Collapse
|
40
|
Välimäki P, Kaitala A. Properties of male ejaculates do not generate geographical variation in female mating tactics in a butterfly Pieris napi. Anim Behav 2010. [DOI: 10.1016/j.anbehav.2010.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
The influence of increased rearing density on medial protocerebral neurosecretory neurons of Lymantria dispar L. caterpillars. ARCH BIOL SCI 2010. [DOI: 10.2298/abs1001027i] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Morphometric changes of A1, A1' and A2 protocerebral dorsomedial neurosecretory neurons, total brain protein content and brain protein profiles were analyzed in 4th instar Lymantria dispar larvae under elevated rearing density, i.e. under intense stress when 5 larvae were kept in a petri dish (V = 80 ml), less intense stress when 5 larvae were kept in a plastic cup (V = 300 ml). In the control samples the larvae were reared in isolated conditions. Protein pattern changes in the brain were observed. Proteins with the following molecular masses: 30, 14, 10 and 3.4-2.5 kD were detected in the experimental groups. The size and cytological characteristics of protocerebral dorsomedial neurosecretory neurons were changed under elevated rearing density.
Collapse
|
42
|
Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change. Proc Natl Acad Sci U S A 2009; 106:11160-5. [PMID: 19549861 DOI: 10.1073/pnas.0900284106] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is a pressing need to predict how species will change their geographic ranges under climate change. Projections typically assume that temperature is a primary fitness determinant and that populations near the poleward (and upward) range boundary are preadapted to warming. Thus, poleward, peripheral populations will increase with warming, and these increases facilitate poleward range expansions. We tested the assumption that poleward, peripheral populations are enhanced by warming using 2 butterflies (Erynnis propertius and Papilio zelicaon) that co-occur and have contrasting degrees of host specialization and interpopulation genetic differentiation. We performed a reciprocal translocation experiment between central and poleward, peripheral populations in the field and simulated a translocation experiment that included alternate host plants. We found that the performance of both central and peripheral populations of E. propertius were enhanced during the summer months by temperatures characteristic of the range center but that local adaptation of peripheral populations to winter conditions near the range edge could counteract that enhancement. Further, poleward range expansion in this species is prevented by a lack of host plants. In P. zelicaon, the fitness of central and peripheral populations decreased under extreme summer temperatures that occurred in the field at the range center. Performance in this species also was affected by an interaction of temperature and host plant such that host species strongly mediated the fitness of peripheral individuals under differing simulated temperatures. Altogether we have evidence that facilitation of poleward range shifts through enhancement of peripheral populations is unlikely in either study species.
Collapse
|
43
|
Scharf I, Filin I, Ovadia O. A trade-off between growth and starvation endurance in a pit-building antlion. Oecologia 2009; 160:453-60. [DOI: 10.1007/s00442-009-1316-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
|
44
|
Marczak LB, Richardson JS. Growth and development rates in a riparian spider are altered by asynchrony between the timing and amount of a resource subsidy. Oecologia 2008; 156:249-58. [PMID: 18286305 DOI: 10.1007/s00442-008-0989-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Rapid growth in response to increased prey abundance may be induced by environmental variability associated with resource subsidies. Spiders living in riparian areas are subject to frequent, episodic bursts of aquatic prey (subsidies). These periods of high resource abundance may occur at different points in recipient consumers' development through variation in emergence patterns of prey between years or across a landscape. We examine how variable timing of subsidy abundance intersects with life history scheduling to produce different growth and development outcomes for individuals within a population. Through a series of controlled feeding experiments, we tested the hypotheses that the spider Tetragnatha versicolor: (1) exhibits compensatory growth in response to subsidy variability, (2) that rapid increases in mass may result in a greater risk of mortality, and (3) that the timing of subsidy resources relative to the development schedule of this spider may produce different outcomes for individual growth patterns and adult condition. Spiders fed at very high rates grew fastest but also showed evidence of increased mortality risk during moulting. T. versicolor is capable of exhibiting strong growth compensation-individuals suffering initial growth restriction were able to catch up completely with animals on a constant diet utilising the same amount of food. Spiders that received an early pulse of resources (simulating an early arrival of an aquatic insect subsidy to riparian forests) did worse on all measures of development and fitness than spiders that received either a constant supply of food or a late pulse of resources. Importantly, receiving large amounts of food early in life appears to actually confer relative disadvantages in terms of later performance compared with receiving subsidies later in development. Subsidies may provide greater benefits to individuals or age cohorts encountering this resource abundance closer to the onset of reproductive efforts than subsidies arriving early in development.
Collapse
Affiliation(s)
- Laurie B Marczak
- Department of Forest Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | | |
Collapse
|
45
|
Hahn DA, Martin AR, Porter SD. Body size, but not cooling rate, affects supercooling points in the red imported fire ant, Solenopsis invicta. ENVIRONMENTAL ENTOMOLOGY 2008; 37:1074-1080. [PMID: 19036184 DOI: 10.1603/0046-225x(2008)37[1074:bsbncr]2.0.co;2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The level of an animal's stress resistance is set by multiple intrinsic physiological and extrinsic environmental parameters. Body size is a critical intrinsic parameter that affects numerous fitness-related organismal traits including fecundity, survival, mating success, and stress resistance. The rate of cooling is a critical extrinsic environmental factor that can affect thermal stress resistance. Workers of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), display considerable variation in adult body size. Therefore, developing ecologically realistic models of thermotolerance in this species requires a consideration of body size. We tested the hypothesis that body size and cooling rate would interact to set the supercooling point in fire ant workers by exposing workers of a range of body sizes to three different cooling regimens: a very fast ramp of -10 degrees C/min, an intermediate ramp of -1 degrees C/min, and an ecologically relevant slow ramp of -0.1 degrees C/min. Specifically, we asked whether large workers were more susceptible to differences in cooling rate than smaller workers. We found that body size had a considerable effect on supercooling point with the largest workers freezing at a temperature approximately 3 degrees C higher than the smallest workers. Cooling rate had a very small effect on supercooling point, and there was no interaction between the two factors. Therefore, the allometry of supercooling points across the range of worker body sizes does not change with cooling rate.
Collapse
Affiliation(s)
- Daniel A Hahn
- Department of Entomology and Nematology, The University of Florida, PO Box 110620, Gainesville, FL 32611-0620, USA.
| | | | | |
Collapse
|
46
|
Sousa T, Domingos T, Kooijman S. From empirical patterns to theory: a formal metabolic theory of life. Philos Trans R Soc Lond B Biol Sci 2008; 363:2453-64. [PMID: 18331988 PMCID: PMC2606805 DOI: 10.1098/rstb.2007.2230] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 11/20/2007] [Indexed: 11/12/2022] Open
Abstract
The diversity of life on Earth raises the question of whether it is possible to have a single theoretical description of the quantitative aspects of the organization of metabolism for all organisms. However, similarities between organisms, such as von Bertalanffy's growth curve and Kleiber's law on metabolic rate, suggest that mechanisms that control the uptake and use of metabolites are common to all organisms. These and other widespread empirical patterns in biology should be the ultimate test for any metabolic theory that hopes for generality. The present study (i) collects empirical evidence on growth, stoichiometry, feeding, respiration and energy dissipation and exhibits it as stylized biological facts; (ii) formalizes assumptions and propositions in a metabolic theory that is fully consistent with the Dynamic Energy Budget theory; and (iii) proves that these assumptions and propositions are consistent with the stylized facts.
Collapse
Affiliation(s)
- Tânia Sousa
- Environment and Energy Section, Instituto Superior Técnico1049-001 Lisboa, Portugal
| | - Tiago Domingos
- Environment and Energy Section, Instituto Superior Técnico1049-001 Lisboa, Portugal
| | - S.A.L.M Kooijman
- Department of Theoretical Biology, Vrije Universiteit1081 HV Amsterdam, The Netherlands
| |
Collapse
|
47
|
Kivelä SM, Välimäki P. Competition between larvae in a butterfly Pieris napi and maintenance of different life-history strategies. J Anim Ecol 2008; 77:529-39. [DOI: 10.1111/j.1365-2656.2008.01371.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
|
49
|
Fielding DJ, Defoliart LS. Growth, development, and nutritional physiology of grasshoppers from subarctic and temperate regions. Physiol Biochem Zool 2007; 80:607-18. [PMID: 17909997 DOI: 10.1086/521801] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2007] [Indexed: 11/03/2022]
Abstract
Despite the importance of developmental rate, growth rate, and size at maturity in the life history of poikliotherms, the trade-offs among these traits and selection pressures involved in the evolution of these traits are not well understood. This study compared these traits in a grasshopper, Melanoplus sanguinipes F. (Orthoptera: Acrididae), from two contrasting geographical regions, subarctic Alaska and temperate Idaho. The growing season in the interior of Alaska is about 80 d shorter than at low-elevation sites in Idaho. We hypothesized that the Alaskan grasshoppers would show more rapid growth and development than grasshoppers from Idaho, at the cost of greater sensitivity to food quality. On a diet of lettuce and wheat bran, grasshoppers from Alaska developed from egg hatch to adult more rapidly than those from Idaho at each of three different temperature regimes. Averaged over all temperature treatments, the weight of the Alaskan grasshoppers was about 5% less than that of the Idaho grasshoppers at the adult molt. Feeding and digestive efficiencies were determined for the final two instars using two meridic diets: one with a high concentration of nutrients and the other with the same formulation but diluted with cellulose. Alaskan grasshoppers again developed more rapidly, weighed less, and had faster growth rates than those from Idaho. Alaskan grasshoppers supported their more rapid growth by increasing postingestive efficiencies; that is, they had higher conversion rates of digested matter to biomass on the high-quality diet, greater assimilation of food on the low-quality diet, and greater efficiency of nitrogen assimilation or retention on both diets. There was no evidence that performance of Alaskan grasshoppers suffered any more than that of the Idaho grasshoppers on the low-quality diet.
Collapse
Affiliation(s)
- Dennis J Fielding
- Agricultural Research Service, U.S. Department of Agriculture, Fairbanks, Alaska 99775, USA.
| | | |
Collapse
|
50
|
Välimäki P, Kaitala A. Life history tradeoffs in relation to the degree of polyandry and developmental pathway inPieris napi(Lepidoptera, Pieridae). OIKOS 2007. [DOI: 10.1111/j.0030-1299.2007.15733.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|