1
|
Cuticular modified air sacs underlie white coloration in the olive fruit fly, Bactrocera oleae. Commun Biol 2021; 4:881. [PMID: 34272466 PMCID: PMC8285419 DOI: 10.1038/s42003-021-02396-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
Here, the ultrastructure and development of the white patches on thorax and head of Bactrocera oleae are analysed using scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy. Based on these analyses and measurements of patch reflectance spectra, we infer that white patches are due to modified air sacs under transparent cuticle. These air sacs show internal arborisations with beads in an empty space, constituting a three-dimensional photonic solid responsible for light scattering. The white patches also show UV-induced blue autofluorescence due to the air sac resilin content. To the best of our knowledge, this research describes a specialized function for air sacs and the first observation of structural color produced by tracheal structures located under transparent cuticles in insects. Sexual dimorphism in the spectral emission also lays a structural basis for further investigations on the biological role of white patches in B. oleae.
Collapse
|
2
|
Mason AC. Cues for Directional Hearing in the Fly Ormia ochracea. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.679064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insects are often small relative to the wavelengths of sounds they need to localize, which presents a fundamental biophysical problem. Understanding novel solutions to this limitation can provide insights for biomimetic technologies. Such an approach has been successful using the fly Ormia ochracea (Diptera: Tachinidae) as a model. O. ochracea is a parasitoid species whose larvae develop as internal parasites within crickets (Gryllidae). In nature, female flies find singing male crickets by phonotaxis, despite severe constraints on directional hearing due to their small size. A physical coupling between the two tympanal membranes allows the flies to obtain information about sound source direction with high accuracy because it generates interaural time-differences (ITD) and interaural level differences (ILD) in tympanal vibrations that are exaggerated relative to the small arrival-time difference at the two ears, that is the only cue available in the sound stimulus. In this study, I demonstrate that pure time-differences in the neural responses to sound stimuli are sufficient for auditory directionality in O. ochracea.
Collapse
|
3
|
Dobbs OL, Talavera JB, Rossi SM, Menjivar S, Gray DA. Signaler-receiver-eavesdropper: Risks and rewards of variation in the dominant frequency of male cricket calls. Ecol Evol 2020; 10:12364-12371. [PMID: 33209294 PMCID: PMC7663976 DOI: 10.1002/ece3.6866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Signals are important for communication and mating, and while they can benefit an individual, they can also be costly and dangerous. Male field crickets call in order to attract female crickets, but gravid females of a parasitoid fly species, Ormia ochracea, are also attracted to the call and use it to pinpoint male cricket hosts. Conspicuousness of the call can vary with frequency, amplitude, and temporal features. Previous work with this system has only considered temporal variation in cricket calls, both large scale, that is, amount of calling and at what time of evening, and small scale, that is, aspects of chirp rate, pulse rate, and numbers of pulses per chirp. Because auditory perception in both crickets and flies relies on the matching of the peak frequency of the call with the peripheral sensory system, peak frequency may be subject to selection both from female crickets and from female flies. Here, we used field playbacks of four different versions of the same male Gryllus lineaticeps calling song that only differed in peak frequency (3.3, 4.3, 5.3, and 6.3 kHz) to test the relative attractiveness of the calls to female crickets and female flies. Our results clearly show that lower frequency calls enhance male safety from fly parasitism, but that the enhanced safety would come at a cost of reduced attraction of female crickets as potential mates. The results imply that eavesdropper pressure can disrupt the matched coevolution of signalers and receivers such that the common concept of matched male-female signaler-receiver coevolution may actually be better described as male-female-predator signaler-receiver-eavesdropper coevolution.
Collapse
Affiliation(s)
- Olivia L. Dobbs
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | | | - Sarina M. Rossi
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Stephanie Menjivar
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - David A. Gray
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| |
Collapse
|
4
|
Gray DA, Kunerth HD, Zuk M, Cade WH, Balenger SL. Molecular biogeography and host relations of a parasitoid fly. Ecol Evol 2019; 9:11476-11493. [PMID: 31641487 PMCID: PMC6802024 DOI: 10.1002/ece3.5649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
Successful geographic range expansion by parasites and parasitoids may also require host range expansion. Thus, the evolutionary advantages of host specialization may trade off against the ability to exploit new host species encountered in new geographic regions. Here, we use molecular techniques and confirmed host records to examine biogeography, population divergence, and host flexibility of the parasitoid fly, Ormia ochracea (Bigot). Gravid females of this fly find their cricket hosts acoustically by eavesdropping on male cricket calling songs; these songs vary greatly among the known host species of crickets. Using both nuclear and mitochondrial genetic markers, we (a) describe the geographical distribution and subdivision of genetic variation in O. ochracea from across the continental United States, the Mexican states of Sonora and Oaxaca, and populations introduced to Hawaii; (b) demonstrate that the distribution of genetic variation among fly populations is consistent with a single widespread species with regional host specialization, rather than locally differentiated cryptic species; (c) identify the more-probable source populations for the flies introduced to the Hawaiian islands; (d) examine genetic variation and substructure within Hawaii; (e) show that among-population geographic, genetic, and host song distances are all correlated; and (f) discuss specialization and lability in host-finding behavior in light of the diversity of cricket songs serving as host cues in different geographically separate populations.
Collapse
Affiliation(s)
- David A. Gray
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Henry D. Kunerth
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Marlene Zuk
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - William H. Cade
- Department of Biological SciencesUniversity of LethbridgeLethbridgeABCanada
| | | |
Collapse
|
5
|
Zhang Y, Reid A, Windmill JFC. Insect-inspired acoustic micro-sensors. CURRENT OPINION IN INSECT SCIENCE 2018; 30:33-38. [PMID: 30553482 DOI: 10.1016/j.cois.2018.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 06/09/2023]
Abstract
Micro-Electro Mechanical System (MEMS) microphones inspired by the remarkable phonotactic capability of Ormia ochracea offer the promise of microscale directional microphones with a greatly reduced need for post-processing of signals. Gravid O. ochracea females can locate their host cricket's 5 kHz mating calls to an accuracy of less than 2° despite having a distance of approximately 500 μm between the ears. MEMS devices base on the principles of operation of O. ochracea's hearing system have been well studied, however commercial implementation has proven challenging due to the system's reliance on carefully tailored ratios of stiffness and damping, which are difficult to realize in standard MEMS fabrication processes, necessitating a trade-off between wide-band operation and sensitivity. A survey of the variety of strategies that have been followed to address these inherent challenges is presented.
Collapse
Affiliation(s)
- Yansheng Zhang
- Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW, United Kingdom
| | - Andrew Reid
- Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW, United Kingdom
| | | |
Collapse
|
6
|
Tron N, Stölting H, Kampschulte M, Martels G, Stumpner A, Lakes-Harlan R. The Auditory System of the Dipteran Parasitoid Emblemasoma auditrix (Sarcophagidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:90. [PMID: 27538415 PMCID: PMC4989904 DOI: 10.1093/jisesa/iew062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Several taxa of insects evolved a tympanate ear at different body positions, whereby the ear is composed of common parts: a scolopidial sense organ, a tracheal air space, and a tympanal membrane. Here, we analyzed the anatomy and physiology of the ear at the ventral prothorax of the sarcophagid fly, Emblemasoma auditrix (Soper). We used micro-computed tomography to analyze the ear and its tracheal air space in relation to the body morphology. Both tympana are separated by a small cuticular bridge, face in the same frontal direction, and are backed by a single tracheal enlargement. This enlargement is connected to the anterior spiracles at the dorsofrontal thorax and is continuous with the tracheal network in the thorax and in the abdomen. Analyses of responses of auditory afferents and interneurons show that the ear is broadly tuned, with a sensitivity peak at 5 kHz. Single-cell recordings of auditory interneurons indicate a frequency- and intensity-dependent tuning, whereby some neurons react best to 9 kHz, the peak frequency of the host's calling song. The results are compared to the convergently evolved ear in Tachinidae (Diptera).
Collapse
Affiliation(s)
- Nanina Tron
- Ag Integrative Sensory Physiology, Institute of Animal Physiology, Justus-Liebig-University, Heinrich-Buff Ring 26, Gießen 35392, Germany (; )
| | - Heiko Stölting
- Cellular Neurobiology, Georg-August University, Schwann-Schleiden-Forschungszentrum, Julia-Lermontowa-Weg 3, Göttingen 37077, Germany (, )
| | - Marian Kampschulte
- Department of Diagnostic and Interventional Radiology, University Hospital Gießen, Klinkstraße 33, Gießen 35392, Germany (; )
| | - Gunhild Martels
- Department of Diagnostic and Interventional Radiology, University Hospital Gießen, Klinkstraße 33, Gießen 35392, Germany (; )
| | - Andreas Stumpner
- Cellular Neurobiology, Georg-August University, Schwann-Schleiden-Forschungszentrum, Julia-Lermontowa-Weg 3, Göttingen 37077, Germany (, )
| | - Reinhard Lakes-Harlan
- Ag Integrative Sensory Physiology, Institute of Animal Physiology, Justus-Liebig-University, Heinrich-Buff Ring 26, Gießen 35392, Germany (; )
| |
Collapse
|
7
|
Lakes-Harlan R, Lehmann GUC. Parasitoid flies exploiting acoustic communication of insects-comparative aspects of independent functional adaptations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:123-32. [PMID: 25369901 DOI: 10.1007/s00359-014-0958-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 10/20/2014] [Accepted: 10/25/2014] [Indexed: 11/26/2022]
Abstract
Two taxa of parasitoid Diptera have independently evolved tympanal hearing organs to locate sound producing host insects. Here we review and compare functional adaptations in both groups of parasitoids, Ormiini and Emblemasomatini. Tympanal organs in both groups originate from a common precursor organ and are somewhat similar in morphology and physiology. In terms of functional adaptations, the hearing thresholds are largely adapted to the frequency spectra of the calling song of the hosts. The large host ranges of some parasitoids indicate that their neuronal filter for the temporal patterns of the calling songs are broader than those found in intraspecific communication. For host localization the night active Ormia ochracea and the day active E. auditrix are able to locate a sound source precisely in space. For phonotaxis flight and walking phases are used, whereby O. ochracea approaches hosts during flight while E. auditrix employs intermediate landings and re-orientation, apparently separating azimuthal and vertical angles. The consequences of the parasitoid pressure are discussed for signal evolution and intraspecific communication of the host species. This natural selection pressure might have led to different avoidance strategies in the hosts: silent males in crickets, shorter signals in tettigoniids and fluctuating population abundances in cicadas.
Collapse
Affiliation(s)
- Reinhard Lakes-Harlan
- Institute for Animal Physiology, AG Integrative Sensory Physiology, Justus-Liebig-Universität Gießen, IFZ, Heinrich-Buff-Ring 26, 35392, Giessen, Germany,
| | | |
Collapse
|
8
|
Auditory Parasitoid Flies Exploiting Acoustic Communication of Insects. ANIMAL SIGNALS AND COMMUNICATION 2014. [DOI: 10.1007/978-3-642-40462-7_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Tuck EJ, Windmill JFC, Robert D. Hearing in tsetse flies? Morphology and mechanics of a putative auditory organ. BULLETIN OF ENTOMOLOGICAL RESEARCH 2009; 99:107-119. [PMID: 18954491 DOI: 10.1017/s0007485308006160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tympanal hearing organs are widely used by insects to detect sound pressure. Such ears are relatively uncommon in the order Diptera, having only been reported in two families thus far. This study describes the general anatomical organization and experimentally examines the mechanical resonant properties of an unusual membranous structure situated on the ventral prothorax of the tsetse fly, Glossina morsitans (Diptera: Glossinidae). Anatomically, the prosternal membrane is backed by an air filled chamber and attaches to a pair of sensory chordotonal organs. Mechanically, the membrane shows a broad resonance around 5.3-7.2 kHz. Unlike previously reported dipteran tympana, a directional response to sound was not found in G. morsitans. Collectively, the morphology, the resonant properties and acoustic sensitivity of the tsetse prothorax are consistent with those of the tympanal hearing organs in Ormia sp. and Emblemasoma sp. (Tachinidae and Sarcophagidae). The production of sound by several species of tsetse flies has been repeatedly documented. Yet, clear behavioural evidence for acoustic behaviour is sparse and inconclusive. Together with sound production, the presence of an ear-like structure raises the enticing possibility of auditory communication in tsetse flies and renews interest in the sensory biology of these medically important insects.
Collapse
Affiliation(s)
- E J Tuck
- School of Biological Sciences, Woodland Road, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
10
|
The evolutionary origin of auditory receptors in Tettigonioidea: the complex tibial organ of Schizodactylidae. Naturwissenschaften 2008; 96:143-6. [DOI: 10.1007/s00114-008-0450-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/25/2008] [Accepted: 09/14/2008] [Indexed: 10/21/2022]
|
11
|
YAGER DAVIDD, SVENSON GAVINJ. Patterns of praying mantis auditory system evolution based on morphological, molecular, neurophysiological, and behavioural data. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2008.00996.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Farris HE, Oshinsky ML, Forrest TG, Hoy RR. Auditory sensitivity of an acoustic parasitoid (Emblemasoma sp., Sarcophagidae, Diptera) and the calling behavior of potential hosts. BRAIN, BEHAVIOR AND EVOLUTION 2008; 72:16-26. [PMID: 18560209 PMCID: PMC2644656 DOI: 10.1159/000139458] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/04/2008] [Indexed: 11/19/2022]
Abstract
Using field broadcasts of model male calling songs, we tested whether Tibicen pruinosa and T. chloromera (Hemiptera: Cicadidae) are candidate hosts for acoustic parasitoid flies. The model calling song of T. pruinosa attracted 90% of the flies (Sarcophagidae: Emblemasoma sp.; all larvapositing females) when broadcast simultaneously with the model T. chloromera song, a phonotactic bias reconfirmed in single song playbacks. In paired broadcasts of model T. pruinosa songs with different relative amplitudes (3 dB or 6 dB), significantly more flies were attracted to the more powerful song, a result consistent with the responses predicted by a model proposed by Forrest and Raspet [1994]. Using intracellular recordings and dye injections, we characterized the sensitivity of auditory units in sound-trapped flies. Intracellular recordings from six auditory units (5 interneurons, 1 afferent) revealed best sensitivity for frequencies near 3-4 kHz, matching the predominant spectral components of the calling songs of both species of cicada. Interestingly, although flies could be attracted to T. pruinosa broadcasts throughout the day, hourly censuses of singing males revealed that calling occurred exclusively at dusk. Furthermore, the duration of the dusk chorus in T. pruinosa was significantly shorter than the midday chorus of the less attractive song of T. chloromera. We propose that the tight temporal aggregation of the dusk chorus time could function to reduce risk from attracted parasitoids.
Collapse
Affiliation(s)
- H E Farris
- National Center for Physical Acoustics, University of Mississippi, Oxford, Miss, USA.
| | | | | | | |
Collapse
|
13
|
Lakes-Harlan R, Jacobs K, Allen GR. Comparison of auditory sense organs in parasitoid Tachinidae (Diptera) hosted by Tettigoniidae (Orthoptera) and homologous structures in a non-hearing Phoridae (Diptera). ZOOMORPHOLOGY 2007. [DOI: 10.1007/s00435-007-0043-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Stölting H, Stumpner A, Lakes-Harlan R. Morphology and physiology of the prosternal chordotonal organ of the sarcophagid fly Sarcophaga bullata (Parker). JOURNAL OF INSECT PHYSIOLOGY 2007; 53:444-54. [PMID: 17362981 DOI: 10.1016/j.jinsphys.2007.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/18/2007] [Accepted: 01/18/2007] [Indexed: 05/14/2023]
Abstract
The anatomy and the physiology of the prosternal chordotonal organ (pCO) within the prothorax of Sarcophaga bullata is analysed. Neuroanatomical studies illustrate that the approximately 35 sensory axons terminate within the median ventral association centre of the different neuromeres of the thoracico-abdominal ganglion. At the single-cell level two classes of receptor cells can be discriminated physiologically and morphologically: receptor cells with dorso-lateral branches in the mesothoracic neuromere are insensitive to frequencies below approximately 1 kHz. Receptor cells without such branches respond most sensitive at lower frequencies. Absolute thresholds vary between 0.2 and 8m/s(2) for different frequencies. The sensory information is transmitted to the brain via ascending interneurons. Functional analyses reveal a mechanical transmission of forced head rotations and of foreleg vibrations to the attachment site of the pCO. In summed action potential recordings a physiological correlate was found to stimuli with parameters of leg vibrations, rather than to those of head rotation. The data represent a first physiological study of a putative predecessor organ of an insect ear.
Collapse
Affiliation(s)
- Heiko Stölting
- Universität Göttingen, Institut für Zoologie und Anthropologie, Berliner Strasse 28, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
15
|
Mason AC, Lee N, Oshinsky ML. The start of phonotactic walking in the flyOrmia ochracea: a kinematic study. J Exp Biol 2005; 208:4699-708. [PMID: 16326951 DOI: 10.1242/jeb.01926] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYOrmia ochracea (Diptera, Tachinidae) are acoustic parasitoids of crickets that have one of the most directionally sensitive auditory systems known. We studied dynamic characteristics of walking phonotaxis in these flies in response to variations in sound source azimuth, and compared phonotaxis of flies in freely walking conditions to tethered flies walking on a treadmill. Motor patterns at the initiation of phonotaxis are not stereotyped even for similar stimulus conditions. Flies respond to directional sound sources by walking in a tight curve that combines rotation and forward translation until they are oriented towards the source direction, then continue on a straight path. Translational velocity accelerates throughout the duration of the stimulus then decelerates following stimulus offset. In contrast, rotational velocity accelerates and then decelerates within the duration of the stimulus such that flies have completed the rotational component of the response and reached their final heading before the end of the stimulus. Rotational velocity is the only response parameter that varies systematically with sound source direction (azimuth). Differences in the amplitude of rotational velocity as a function of source azimuth determine the directional orientation of phonotactic responses. The relationship between rotational velocity and source azimuth is similar to a neural measure of auditory directionality(interaural latency). There were some differences between freely walking and tethered conditions, although both showed qualitatively similar responses. Flies accelerated more slowly and attained lower maximum velocities on the treadmill, consistent with the greater inertia of the treadmill sphere relative to the flies. Also, flies tended to continue walking longer on the treadmill following cessation of the stimulus.
Collapse
Affiliation(s)
- Andrew C Mason
- Integrative Behaviour and Neuroscience Group, Department of Life Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4.
| | | | | |
Collapse
|
16
|
Abstract
This study identifies the cuticular metathoracic structures in earless cockroaches that are the homologs to the peripheral auditory components in their sister taxon, praying mantids, and defines the nature of the cuticular transition from earless to eared in the Dictyoptera. The single, midline ear of mantids comprises an auditory chamber with complex walls that contain the tympana and chordotonal transduction elements. The corresponding area in cockroaches, between the furcasternum and coxae, has many socketed hairs arranged in discrete fields and the Nerve 7 chordotonal organ, the homolog of the mantis tympanal organ. The Nerve 7 chordotonal organ attaches at the apex of the lateral ventropleurite (LVp), which has the same shape and general structure as an auditory chamber wall. High-speed video shows that when the coxa moves toward the midline, the LVp rotates medially to stimulate socketed hairs, and also moves like a triangular hinge giving the chordotonal organ maximal in-out stimulation. Formation of the mantis auditory chamber from the LVp and adjacent structures would involve only enlargement, a shift toward the midline, and a mild rotation. Almost all proprioceptive function would be lost, which may constitute the major cost of building and maintaining the mantis ear. Isolation from leg movement dictates the position of the mantis ear in the midline and the rigid frame, formed by the cuticular knobs, which protects the chordotonal organs.
Collapse
Affiliation(s)
- David D Yager
- Department of Psychology and Neuroscience, Cognitive Science Program, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
17
|
Mainz T, Schmitz A, Schmitz H. Variation in number and differentiation of the abdominal infrared receptors in the Australian 'fire-beetle' Merimna atrata (Coleoptera, Buprestidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2004; 33:419-430. [PMID: 18089048 DOI: 10.1016/j.asd.2004.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 06/23/2004] [Indexed: 05/25/2023]
Abstract
Most individuals of the Australian 'fire-beetle' Merimna atrata have two pairs of IR receptors which are located ventrolaterally on the second and third abdominal sternite. An IR receptor consists of a specialized IR absorbing area, which is innervated by a neural complex. This complex contains one thermoreceptive multipolar neuron with a unique terminal dendritic mass (TDM) and two scolopidia and was termed 'sensory complex'. However, also individuals with one pair of IR receptors on the second sternite and beetles with three pairs on the second, third, and fourth sternites were found. Additionally, beetles having one or two pairs of IR receptors may have preliminary stages of IR receptors on the third and fourth sternite, respectively. We found two kinds of preliminary stages, both of which are characterized by a much less pronounced absorbing area. In all five abdominal sternites segmental nerves are attached to the cuticle with a neural complex. Investigation of complexes of non-IR sternites suggests that the sensory cells inside the sensory complex of an IR receptor have developed from common internal stretch receptors. From our results it can be hypothesized that the IR sensory system in Merimna atrata has not yet reached a stage, which can be regarded as evolutionary stable.
Collapse
Affiliation(s)
- Tobias Mainz
- Institute for Zoology, University at Bonn, Poppelsdorfer Schloss, D-53115 Bonn, Germany
| | | | | |
Collapse
|
18
|
Abstract
This review presents an overview of the physiology of primary receptors serving tympanal hearing in insects. Auditory receptor responses vary with frequency, intensity, and temporal characteristics of sound stimuli. Various insect species exploit each of these parameters to differing degrees in the neural coding of auditory information, depending on the nature of the relevant stimuli. Frequency analysis depends on selective tuning in individual auditory receptors. In those insect groups that have individually tuned receptors, differences in physiology are correlated with structural differences among receptors and with the anatomical arrangement of receptors within the ear. Intensity coding is through the rate-level characteristics of tonically active auditory receptors and through variation in the absolute sensitivities of individual receptors (range fractionation). Temporal features of acoustic stimuli may be copied directly in the timing of afferent responses. Salient signal characteristics may also be represented by variation in the timing of afferent responses on a finer temporal scale, or by the synchrony of responses across a population of receptors.
Collapse
Affiliation(s)
- Andrew C Mason
- Department of Life Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.
| | | |
Collapse
|
19
|
Abstract
Insects are capable of detecting a broad range of acoustic signals transmitted through air, water, or solids. Auditory sensory organs are morphologically diverse with respect to their body location, accessory structures, and number of sensilla, but remarkably uniform in that most are innervated by chordotonal organs. Chordotonal organs are structurally complex Type I mechanoreceptors that are distributed throughout the insect body and function to detect a wide range of mechanical stimuli, from gross motor movements to air-borne sounds. At present, little is known about how chordotonal organs in general function to convert mechanical stimuli to nerve impulses, and our limited understanding of this process represents one of the major challenges to the study of insect auditory systems today. This report reviews the literature on chordotonal organs innervating insect ears, with the broad intention of uncovering some common structural specializations of peripheral auditory systems, and identifying new avenues for research. A general overview of chordotonal organ ultrastructure is presented, followed by a summary of the current theories on mechanical coupling and transduction in monodynal, mononematic, Type 1 scolopidia, which characteristically innervate insect ears. Auditory organs of different insect taxa are reviewed, focusing primarily on tympanal organs, and with some consideration to Johnston's and subgenual organs. It is widely accepted that insect hearing organs evolved from pre-existing proprioceptive chordotonal organs. In addition to certain non-neural adaptations for hearing, such as tracheal expansion and cuticular thinning, the chordotonal organs themselves may have intrinsic specializations for sound reception and transduction, and these are discussed. In the future, an integrated approach, using traditional anatomical and physiological techniques in combination with new methodologies in immunohistochemistry, genetics, and biophysics, will assist in refining hypotheses on how chordotonal organs function, and, ultimately, lead to new insights into the peripheral mechanisms underlying hearing in insects.
Collapse
Affiliation(s)
- Jayne E Yack
- Department of Biology, College of Natural Sciences, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
20
|
Lehmann GU. Review of Biogeography, Host Range and Evolution of Acoustic Hunting in Ormiini (Insecta, Diptera, Tachinidae), Parasitoids of Night-calling Bushcrickets and Crickets (Insecta, Orthoptera, Ensifera). ZOOL ANZ 2003. [DOI: 10.1078/0044-5231-00091] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Abstract
The fly, Ormia ochracea, possess a novel auditory organ, which allows it to detect airborne sounds. The mechanical coupling of its pair of tympanal membranes provides the basis for a unique means of sensing the direction of a sound source. In this study, we characterized the neuroanatomy, frequency tuning, and neurophysiological response properties of the acoustic afferents. Our experiments demonstrate that the fly's nervous system is able to encode and localize the direction of a sound source, although the binaural auditory cues available in the acoustic sound field are miniscule. Almost all of the acoustic afferents recorded in this study responded to short and long sound pulses with a phasic burst of one to four action potentials. A few afferents responded tonically for the duration of the sound stimulus. A prominent class of afferents responds to suprathreshold stimuli with only a single spike discharge, independent of stimulus level, frequency, or duration. We also tested the response of the afferents to speakers separated by 180 degrees along the azimuth of the fly. We found that the afferent responses have a shorter latency because of ipsilateral stimulation. This could be a temporal code of the direction of a sound source. The threshold frequency tuning for the afferents revealed a range of sensitivities to the frequency of the cricket host's calling song frequency. The difference in the number of afferents above threshold on either side of the animal is a population code, which can also be used for sound localization.
Collapse
|
22
|
Abstract
To reproduce, females of the parasitoid fly Ormia ochracea detect and localise a calling male cricket upon which they deposit their endoparasitic larvae. Calling male crickets are therefore subject to both sexual and natural selection by simultaneously attracting mates and phonotactic parasitoids. The possible strategy of song interruption employed by the cricket host to reduce his attractiveness to acoustic parasitoids was tested in the laboratory by examining the fly's phonotactic quest in response to synthetic cricket songs. Phonotactic flight trajectories were recorded in three dimensions with a stereo infrared video tracking system while the sound stimulus was controlled on-line as a function of the fly's position in space. Within a single flight, three distinct phases could be observed: a take-off phase, a cruising phase, during which course and altitude were rather constant, and a landing phase characterised by a spiralling descent towards the sound source. The flies showed remarkable phonotactic accuracy in darkness; they landed at a mean distance of 8.2 cm from the centre of the loudspeaker after a flight distance of approximately 4 m. The present data illustrate the fly's surprising ability to gauge the direction and distance of a sound source in three dimensions and, subsequently, to find it in darkness and silence.
Collapse
Affiliation(s)
- P Müller
- Laboratory for Bioacoustics, Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | |
Collapse
|
23
|
Abstract
This paper provides an overview of insect peripheral auditory systems focusing on tympanate ears (pressure detectors) and emphasizing research during the last 15 years. The theme throughout is the evolution of hearing in insects. Ears have appeared independently no fewer than 19 times in the class Insecta and are located on various thoracic and abdominal body segments, on legs, on wings, and on mouth parts. All have fundamentally similar structures-a tympanum backed by a tracheal sac and a tympanal chordotonal organ-though they vary widely in size, ancillary structures, and number of chordotonal sensilla. Novel ears have recently been discovered in praying mantids, two families of beetles, and two families of flies. The tachinid flies are especially notable because they use a previously unknown mechanism for sound localization. Developmental and comparative studies have identified the evolutionary precursors of the tympanal chordotonal organs in several insects; they are uniformly chordotonal proprioceptors. Tympanate species fall into clusters determined by which of the embryologically defined chordotonal organ groups in each body segment served as precursor for the tympanal organ. This suggests that the many appearances of hearing could arise from changes in a small number of developmental modules. The nature of those developmental changes that lead to a functional insect ear is not yet known.
Collapse
Affiliation(s)
- D D Yager
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
24
|
Robert D, Miles RN, Hoy RR. Tympanal hearing in the sarcophagid parasitoid fly Emblemasoma sp.: the biomechanics of directional hearing. J Exp Biol 1999; 202:1865-76. [PMID: 10377268 DOI: 10.1242/jeb.202.14.1865] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Diptera, tympanal hearing has evolved at least twice in flies that belong to two different families, the tachinids and the sarcophagids. Common to these flies is their parasitoid reproductive strategy, both relying on the acoustic detection and localization of their hosts, singing insects, by means of tympanal hearing organs. In the present study, the external anatomy of the unusual hearing organs of the sarcophagid fly Emblemasoma sp. is described. The sarcophagid ears bear numerous anatomical similarities with those of ormiine tachinids: they are located on the ventral prosternum and possess a pair of scolopidial mechanoreceptive sense organs. A striking difference, however, resides in the lack of a well-defined presternum in the sarcophagid tympanal system. Instead, a deep longitudinal fold, the tympanal fold, spans both hemilateral tympanal membranes across the midline of the animal. Measured using laser Doppler vibrometry, the tympanal mechanical response in the sound field reveals asymmetrical deflection shapes that differ from those of tachinids. Lacking a central fulcrum, the sarcophagid tympanal complex presents different vibrational modes that also result in interaural coupling. The evolutionarily convergent, yet distinct, solutions used by these two small auditory systems to extract directional cues from the sound field and the role of tympanal coupling in this process are discussed.
Collapse
Affiliation(s)
- D Robert
- Zoologisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
25
|
Lakes-Harlan R, Stölting H, Stumpner A. Convergent evolution of insect hearing organs from a preadaptive structure. Proc Biol Sci 1999. [DOI: 10.1098/rspb.1999.0758] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Reinhard Lakes-Harlan
- Georg-August-Universität Göttingen, Abt. Neurobiologie, Institut för Zoologie und Anthropologie, Berliner Strasse 28, 37073 Göttingen, Germany
| | - Heiko Stölting
- Georg-August-Universität Göttingen, Abt. Neurobiologie, Institut för Zoologie und Anthropologie, Berliner Strasse 28, 37073 Göttingen, Germany
| | - Andreas Stumpner
- Georg-August-Universität Göttingen, Abt. Neurobiologie, Institut för Zoologie und Anthropologie, Berliner Strasse 28, 37073 Göttingen, Germany
| |
Collapse
|
26
|
|
27
|
|
28
|
Robert D, Miles RN, Hoy RR. Directional hearing by mechanical coupling in the parasitoid fly Ormia ochracea. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1996; 179:29-44. [PMID: 8965258 DOI: 10.1007/bf00193432] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sound localization is a basic processing task of the auditory system. The directional detection of an incident sound impinging on the ears relies on two acoustic cues: interaural amplitude and interaural time differences. In small animals, with short interaural distances both amplitude and time cues can become very small, challenging the directional sensitivity of the auditory system. The ears of a parasitoid fly Ormia ochracea, are unusual in that both acoustic sensors are separated by only 520 microns and are contained within an undivided air-filled chamber. This anatomy results in minuscule differences in interaural time cues (ca. 2 microseconds) and no measurable difference in interaural intensity cues generated from an incident sound wave. The tympana of both ears are anatomically coupled by a cuticular bridge. This bridge also mechanically couples the tympanana, providing a basis for directional sensitivity. Using laser vibrometry, it is shown that the mechanical response of the tympanal membranes has a pronounced directional sensitivity. Interaural time and intensity differences in the mechanical response of the ears are significantly larger than those available in the acoustic field. The tympanal membranes vibrate with amplitude differences of about 12 dB and time differences on the order of 50 microseconds to sounds at 90 degrees off the longitudinal body axis. The analysis of the deflection shapes of the tympanal vibrations shows that the interaural differences in the mechanical response are due to the dynamic properties of the tympanal system and reflect its intrinsic sensitivity to the direction of a sound source. Using probe microphones and extracellular recording techniques, we show that the primary auditory afferents encode sound direction with a time delay of about 300 microseconds. Our data point to a novel mechanism for directional hearing in O. ochracea based on intertympanal mechanical coupling, a process that amplifies small acoustic cues into interaural time and amplitude differences that can be reliably processed at the neural level. An intuitive description of the mechanism is proposed using a simple mechanical model in which the ears are coupled through a flexible lever.
Collapse
Affiliation(s)
- D Robert
- Section of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-2702, USA
| | | | | |
Collapse
|