1
|
Krylova MI, Bogolyubov DS. An early post-traumatic reaction of lymph-heart striated muscle fibers in adult frog Rana temporaria during the first postoperative week: An electron microscopic and autoradiographic study. J Morphol 2015; 276:1525-34. [PMID: 26352460 DOI: 10.1002/jmor.20476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/05/2015] [Accepted: 08/20/2015] [Indexed: 11/10/2022]
Abstract
According to the current opinion, lymph-heart striated muscle represents a specialized type of skeletal muscles in frogs. Here, we studied muscle fibers in mechanically damaged lymph hearts during the first postoperative week using electron-microscopic autoradiography. We present evidence that both, the satellite cells and pre-existing muscle fibers bordering the site of injury, contribute directly to the lymph-heart muscle regeneration. Several muscle fibers located in the vicinity of the damaged area displayed features of nuclear and sarcoplasmic activation. We also observed ultrastructural changes indicating activation of a few satellite cells, namely decondensation of chromatin, enlargement of nuclei and nucleoli, appearance of free ribosomes and rough endoplasmic reticulum tubules in the cytoplasm. Electron-microscopic autoradiography showed that 4 h after single (3)H-thymidine administration on the seventh day after injury not only the activated satellite cells, but also some nuclei of myofibers bordering the injured zone are labeled. We showed that both, the myonuclei of fibers displaying the signs of degenerative/reparative processes in the sarcoplasm and the myonuclei of the fibers enriched with highly organized myofibrils, can re-enter into the S-phase. Our results indicate that the nuclei of lymph-heart myofibers can reactivate DNA synthesis during regenerative myogenesis, unlike the situation in regenerating frog skeletal muscle where myogenic cells do not synthesize DNA at the onset of myofibrillogenesis.
Collapse
Affiliation(s)
- Marina I Krylova
- Lab. of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Dmitry S Bogolyubov
- Lab. of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
2
|
Abstract
Regulation of organ growth is critical during embryogenesis. At the cellular level, mechanisms controlling the size of individual embryonic organs include cell proliferation, differentiation, migration, and attrition through cell death. All these mechanisms play a role in cardiac morphogenesis, but experimental studies have shown that the major determinant of cardiac size during prenatal development is myocyte proliferation. As this proliferative capacity becomes severely restricted after birth, the number of cell divisions that occur during embryogenesis limits the growth potential of the postnatal heart. We summarize here current knowledge concerning regional control of myocyte proliferation as related to cardiac morphogenesis and dysmorphogenesis. There are significant spatial and temporal differences in rates of cell division, peaking during the preseptation period and then gradually decreasing toward birth. Analysis of regional rates of proliferation helps to explain the mechanics of ventricular septation, chamber morphogenesis, and the development of the cardiac conduction system. Proliferation rates are influenced by hemodynamic loading, and transduced by autocrine and paracrine signaling by means of growth factors. Understanding the biological response of the developing heart to such factors and physical forces will further our progress in engineering artificial myocardial tissues for heart repair and designing optimal treatment strategies for congenital heart disease.
Collapse
Affiliation(s)
- David Sedmera
- Charles University in Prague, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic.
| | | |
Collapse
|
3
|
Barni S, Bernini F, Fenoglio C, Reggiani C. Adaptations of the frog myocardium to conditions of natural hibernation: Morphofunctional changes. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/11250009409355901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sergio Barni
- a Dipartimento di Biologia Animale , Università di Pavia , piazza Botta 9/10, Pavia, I‐27100, Italy
| | - Franco Bernini
- a Dipartimento di Biologia Animale , Università di Pavia , piazza Botta 9/10, Pavia, I‐27100, Italy
| | - Carla Fenoglio
- a Dipartimento di Biologia Animale , Università di Pavia , piazza Botta 9/10, Pavia, I‐27100, Italy
| | - Carlo Reggiani
- b Istituto di Fisiologia Umana , Università di Pavia , via Forlanini 6, Pavia, I‐27100, Italy
| |
Collapse
|
4
|
van Amerongen MJ, Engel FB. Features of cardiomyocyte proliferation and its potential for cardiac regeneration. J Cell Mol Med 2008; 12:2233-44. [PMID: 18662194 PMCID: PMC4514102 DOI: 10.1111/j.1582-4934.2008.00439.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human heart does not regenerate. Instead, following injury, human hearts scar. The loss of contractile tissue contributes significantly to morbidity and mortality. In contrast to humans, zebrafish and newts faithfully regenerate their hearts. Interestingly, regeneration is in both cases based on cardiomyocyte proliferation. In addition, mammalian cardiomyocytes proliferate during foetal development. Their proliferation reaches its maximum around chamber formation, stops shortly after birth, and subsequent heart growth is mostly achieved by an increase in cardiomyocyte size (hypertrophy). The underlying mechanisms that regulate cell cycle arrest and the switch from proliferation to hypertrophy are unclear. In this review, we highlight features of dividing cardiomyocytes, summarize the attempts to induce mammalian cardiomyocyte proliferation, critically discuss methods commonly used for its detection, and explore the potential and problems of inducing cardiomyocyte proliferation to improve function in diseased hearts.
Collapse
Affiliation(s)
- Machteld J van Amerongen
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | |
Collapse
|
5
|
McMullen NM, Gaspard GJ, Pasumarthi KBS. Reactivation of cardiomyocyte cell cycle: A potential approach for myocardial regeneration. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/sita.200400050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
von Harsdorf R, Poole-Wilson PA, Dietz R. Regenerative capacity of the myocardium: implications for treatment of heart failure. Lancet 2004; 363:1306-13. [PMID: 15094278 DOI: 10.1016/s0140-6736(04)16006-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Research into myocardial regeneration has an exciting future, shown by the results of experimental and clinical work challenging the dogma that the heart is a postmitotic non-regenerating organ. Such studies have initiated a lively debate about the feasibility of novel treatment approaches leading to the recovery of damaged myocardial tissue. The possibility of reconstituting dead myocardium by endogenous cardiomyocyte replication, transplantation, or activation of stem cells--or even cloning of an artificial heart--is being advanced, and will be a major subject of future research. Although health expenditure for heart failure in the industrial world is high, we are still a long way from being able to treat the cause of reduced myocardial contractility. Despite the hopes of some people, conventional treatment for heart failure does not achieve myocardial regeneration. We present a virtual case report of a patient with acute myocardial infarction; we discuss treatment options, including strategies aimed at organ regeneration.
Collapse
Affiliation(s)
- Rüdiger von Harsdorf
- Department of Cardiology, Campus Virchow Clinic, Charité, Humboldt University Berlin, Berlin, Germany.
| | | | | |
Collapse
|
7
|
Abstract
Lower vertebrates such as newt and zebrafish are able to reactivate high levels of cardiomyocyte cell cycle activity in response to experimental injury resulting in apparent regeneration. In contrast, damaged myocardium is replaced by fibrotic scar tissue in higher vertebrates. This process compromises the contractile function of the surviving myocardium, ultimately leading to heart failure. Various strategies are being pursued to augment myocyte number in the diseased hearts. One approach entails the reactivation of cell cycle in surviving cardiomyocytes. Here, we provide a summary of methods to monitor cell cycle activity, and interventions demonstrating positive cell cycle effects in cardiomyocytes as well as discuss the potential utility of cell cycle regulation to augment myocyte number in diseased hearts.
Collapse
Affiliation(s)
- Joshua D Dowell
- Wells Center for Pediatric Research and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202-5225, USA
| | | | | |
Collapse
|
8
|
Abstract
Over the past several years many mechanisms by which myocardial replacement could be achieved have been described. These include resident cardiac stem cells or circulating stem cells that can either differentiate into, or fuse to cardiomyocytes, or mature cells that can transdifferentiate into cardiomyocytes. However, the fact remains that after injury to the heart, the overriding response is scar formation with little myocardial replacement. One exception to this response is the MRL mouse, which heals with little scarring and shows nearly full myocardial replacement after injury. Results obtained with this model will be discussed.
Collapse
Affiliation(s)
- John M Leferovich
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
9
|
Abstract
Although rapid progress is being made in many areas of molecular cardiology, issues pertaining to the origins of heart-forming cells, the mechanisms responsible for cardiogenic induction, and the pathways that regulate cardiomyocyte proliferation during embryonic and adult life remain unanswered. In the present study, we review approaches and studies that have shed some light on cardiomyocyte cell cycle regulation. For reference, an initial description of cardiomyogenic induction and morphogenesis is provided, which is followed by a summary of published cell cycle analyses during these stages of cardiac ontology. A review of studies examining cardiomyocyte cell cycle analysis and de novo cardiomyogenic induction in the adult heart is then presented. Finally, studies in which cardiomyocyte cell cycle activity was experimentally manipulated in vitro and in vivo are reviewed. It is hoped that this compilation will serve to stimulate thought and experimentation in this intriguing area of cardiomyocyte cell biology.
Collapse
Affiliation(s)
- Kishore B S Pasumarthi
- Wells Center for Pediatric Research and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
10
|
Abstract
Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.
Collapse
Affiliation(s)
- W R MacLellan
- Department of Medicine, UCLA School of Medicine 90076, USA
| | | |
Collapse
|
11
|
Kessler PD, Byrne BJ. Myoblast cell grafting into heart muscle: cellular biology and potential applications. Annu Rev Physiol 1999; 61:219-42. [PMID: 10099688 DOI: 10.1146/annurev.physiol.61.1.219] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review surveys a wide range of cellular and molecular approaches to strengthening the injured or weakened heart, focusing on strategies to replace dysfunctional, necrotic, or apoptotic cardiomyocytes with new cells of mesodermal origin. A variety of cell types, including myogenic cell lines, adult skeletal myoblasts, immoratalized atrial cells, embryonic and adult cardiomyocytes, embryonic stem cells, tetratoma cells, genetically altered fibroblasts, smooth muscle cells, and bone marrow-derived cells have all been proposed as useful cells in cardiac repair and may have the capacity to perform cardiac work. We focus on the implantation of mesodermally derived cells, the best developed of the options. We review the developmental and cell biology that have stimulated these studies, examine the limitations of current knowledge, and identify challenges for the future, which we believe are considerable.
Collapse
Affiliation(s)
- P D Kessler
- Peter Belfer Cardiac Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
12
|
Bick RJ, Snuggs MB, Poindexter BJ, Buja LM, Van Winkle WB. Physical, contractile and calcium handling properties of neonatal cardiac myocytes cultured on different matrices. CELL ADHESION AND COMMUNICATION 1998; 6:301-10. [PMID: 9865464 DOI: 10.3109/15419069809010789] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Extracellular matrix components play a vital role in the determination of heart cell growth, development of spontaneous contractile activity and morphologic differentiation. In this work we studied the physical and contractile changes in neonatal rat cardiac myocytes over the first four days of growth on three different extracellular matrices. We compared commercial laminin and fibronectin, plus a fibroblast-derived extracellular matrix, which we have termed cardiogel. Myocytes cultured on cardiogel were characterized by greater cellular area and volume when compared to cells cultured on the other single-component matrices. Spontaneous contractile activity appeared first in the cells grown on cardiogel, sometimes as early as the first day post-plating, in contrast to day three in the cells cultured on laminin. Measurements of cardiac myocyte contractility i.e. percent shortening and time to peak contraction, were made on each of the first four days in each culture. Myocytes cultured on cardiogel developed maximum shortening more rapidly than the other cultures, and an earlier response to electrical pacing. Histochemical staining for myocyte mitochondrial content, revealed that the cardiogel-supported cells exhibited the earliest development of this organelle and, after four days, the greatest abundance. This reflects both a greater cell size, as well as response to increasing energy demands. Due to the increase in volume and contractile activity exhibited by the cardiogel grown myocytes, we employed calcium binding and uptake experiments to determine the comparative cellular capacities for calcium and as an indicator of sarcoplasmic reticulum development. Also whole cell phosphorylation in the presence of low detergent was assayed, to correlate calcium uptake with phosphorylation, in an attempt to examine possible increases in calcium pump number and other phosphorylatable proteins. In agreement with our physical and contractile data, we found that the cells grown on cardiogel showed a greater calcium uptake over the first four days of culture, and increased phosphorylation. However, calcium binding was not dramatically different comparing the three culture matrices. Based on our data, the fibroblast-derived cardiogel is the matrix of choice supporting earliest maturation of neonatal cardiomyocytes, in terms of spontaneous contractions, calcium handling efficiency, cell size and development of a subcellular organelle, the mitochondrion.
Collapse
Affiliation(s)
- R J Bick
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, UTHMS, 77030, USA.
| | | | | | | | | |
Collapse
|
13
|
Abstract
BACKGROUND The cultured adult newt ventricular myocyte has been shown to undergo mitosis and cytokinesis in a fully differentiated state. Insight into its proliferation and cellular changes during the repair process involves obtaining a better understanding of the nuclear pattern (mononucleated, binucleated, or multinucleated) resulting from mitotic events. Mitosis is easily observable in cultured newt cardiac myocytes using phase-contrast microscopy. METHODS From days 8-19 in culture, the process of mitosis in mononucleated and binucleated newt ventricular myocytes was recorded and timed by using time-lapse video microscopy. Cultured cardiac myocytes were double-stained for myosin and F-actin by using fluorescein isothiocyanate (FITC)-labeled MF20 and rhodamine phalloidin. RESULTS Mitotic, mononucleated myocytes produced mononucleated daughter cells in 80% of the cases, whereas 20% were single, binucleated myocytes, In binucleated myocytes, only 32% underwent complete cytokinesis to produce two binucleated daughter cells, whereas 68% resulted in variably nucleated myocytes. Mononucleated and binucleated myocytes undergoing mitosis had similar time intervals for the period from nuclear breakdown (prometaphase) to the start of anaphase (108.7 minutes and 94.5 minutes, respectively), but the period between anaphase and midbody formation was significantly shorter in binucleated than in mononucleated myocytes (43.5 minutes and 69.3 minutes, respectively). The myofibrillae were not as well organized in binucleated myocytes as those observed in mononucleated myocytes. CONCLUSIONS Mitosis in vitro appears to proceed more rapidly in binucleated newt cardiac myocytes, which have more poorly organized myofibrillae than mononucleated myocytes. Mitosis of cultured binucleated myocytes commonly results in variably nucleated daughter cells, whereas mononucleated myocytes produce predominantly mononucleated daughter cells.
Collapse
Affiliation(s)
- D G Matz
- Department of Anatomy, University of Osteopathic Medicine and Health Sciences, Des Moines, Iowa 50312-4198, USA
| | | | | |
Collapse
|
14
|
Zajdel RW, Zhu Y, Fransen ME, Lemanski LF. A primary cell culture model for defective cardiac myofibrillogenesis in Mexican axolotl embryos. In Vitro Cell Dev Biol Anim 1997; 33:677-80. [PMID: 9358282 DOI: 10.1007/s11626-997-0124-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Abstract
The ability to regenerate complex structures is widespread in metazoan phylogeny, but among vertebrates the urodele amphibians are exceptional. Adult urodeles can regenerate their limbs by local formation of a mesenchymal growth zone or blastema. The generation of blastemal cells depends not only on the local extracellular environment after amputation or wounding but also on the ability to reenter the cell cycle from the differentiated state. The blastema replaces structures appropriate to its proximodistal position. Axial identity is probably encoded as a graded property that controls cellular growth and movement through local cell interactions. The molecular basis is not understood, but proximodistal identity in newt blastemal cells may be respecified by signaling through a retinoic acid receptor isoform. The possibility of inducing a blastema on a mammalian limb cannot be discounted, although the molecular constraints are becoming clearer as we understand more about the mechanisms of urodele regeneration.
Collapse
Affiliation(s)
- J P Brockes
- Ludwig Institute for Cancer Research and Department of Biochemistry and Molecular Biology, University College London, 91 Riding House Street, London W1P 8BT, UK.
| |
Collapse
|
16
|
Liu Q, Yan H, Dawes NJ, Mottino GA, Frank JS, Zhu H. Insulin-like growth factor II induces DNA synthesis in fetal ventricular myocytes in vitro. Circ Res 1996; 79:716-26. [PMID: 8831495 DOI: 10.1161/01.res.79.4.716] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Insulin-like growth factor II (IGF2) belongs to a family of growth factors that includes insulin and insulin-like growth factor I (IGF1). Although the accumulating evidence indicates that IGF1 is involved in regulating proliferation of ventricular myocytes, the role of IGF2 is less clear. To gain more insight into the functions of IGF2, rat ventricular expression of IGF2 mRNA at four developmental stages was examined by Northern analysis. An abundant IGF2 mRNA of approximately 3.8 kb was detected in fetal ventricles. It was dramatically decreased in neonatal ventricles and became undetectable in juvenile and adult ventricles. Similar expression patterns of the mRNA encoding IGF1 receptor and IGF2 receptor were observed. Since the results of Northern analysis strongly suggest the importance of IGF2 in regulating proliferation of fetal rat ventricular myocytes, the effects of an exogenous IGF2 on DNA synthesis in cultured rat ventricular myocytes were determined. DNA synthesis, which was monitored by measuring 5-bromo-2'-deoxyuridine (BrdU) and [3H]thymidine incorporation, was increased by twofold to threefold in IGF2-stimulated fetal ventricular myocytes, whereas no change in BrdU or [3H]thymidine incorporation was observed in neonatal ventricular myocytes. Instead, IGF2 seemed to induce hypertrophy in neonatal ventricular myocytes. An antisense oligonucleotide against rat IGF2 mRNA was able to significantly reduce BrdU incorporation, and this effect was quantitatively reversed by the addition of exogenous IGF2. Reversion by exogenous IGF2 was abolished by a monoclonal antibody against IGF1 receptor. In conclusion, our results suggest that IGF2 directly regulates proliferation of fetal rat ventricular myocytes in a paracrine/autocrine fashion.
Collapse
Affiliation(s)
- Q Liu
- Department of Physiology, UCLA School of Medicine, USA
| | | | | | | | | | | |
Collapse
|
17
|
Garcia MC, Sanchez JA, Sharma VK, Sheu SS. Extracellular heparin inhibits Ca2+ transients and contraction in mammalian cardiac myocytes. Pflugers Arch 1995; 431:84-90. [PMID: 8584421 DOI: 10.1007/bf00374380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of heparin on Ca2+ transients and cell shortening was studied in isolated cardiac myocytes from rat and guinea-pig ventricles. Ca2+ signals were measured with the fluorescent indicator fura-2. Heparin reversibly decreased Ca2+ transients and cell shortening in a dose-dependent manner. Half and complete blockade were obtained with 50microg/ml and 200microg/ml heparin, respectively. The dihydropyridine agonist BAY K 8644 (50nM) antagonized the effects of heparin. However, Ca2+ release elicited by caffeine (10mM) was not affected by heparin. The actions of heparin were also studied in multicellular preparations. In papillary muscle, heparin (5mg/ml) reversibly reduced the amplitude of the plateau of the action potential and the associated peak tension. BAY K 8644 (500nM) also antagonized these effects. It is proposed that heparin interacts with dihydropyridine-sensitive Ca2+ channels to cause a decrease of Ca2+ transients and contractility in heart.
Collapse
Affiliation(s)
- M C Garcia
- Department of Pharmacology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
18
|
Oberpriller JO, Oberpriller JC, Matz DG, Soonpaa MH. Stimulation of proliferative events in the adult amphibian cardiac myocyte. Ann N Y Acad Sci 1995; 752:30-46. [PMID: 7755274 DOI: 10.1111/j.1749-6632.1995.tb17404.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J O Oberpriller
- Department of Anatomy and Cell Biology, University of North Dakota School of Medicine, Grand Forks 58202, USA
| | | | | | | |
Collapse
|