Abstract
This review describes the transformation systems including vectors, replicons, genetic markers, transformation methods, vector stability, and copy numbers of 13 genera and 31 species of non-Saccharomyces yeasts. Schizosaccharomyces pombe was the first non-Saccharomyces yeast studied for transformation and genetics. The replicons of non-Saccharomyces yeast vectors are from native plasmids, chromosomal DNA, and mitochondrial DNA of Saccharomyces cerevisiae, non-Saccharomyces yeasts, protozoan, plant, and animal. Vectors such as YAC, YCp, YEp, YIp, and YRp were developed for non-Saccharomyces yeasts. Forty-two types of genes from bacteria, yeasts, fungi, and plant were used as genetic markers that could be classified into biosynthetic, dominant, and colored groups to construct non-Saccharomyces yeasts vectors. The LEU2 gene and G418 resistance gene are the two most popular markers used in the yeast transformation. All known transformation methods such as spheroplast-mediating method, alkaline ion treatment method, electroporation, trans-kingdom conjugation, and biolistics have been developed successfully for non-Saccharomyces yeasts, among which the first three are most widely used. The highest copy number detected from non-Saccharomyces yeasts is 60 copies in Kluyveromyces lactis. No general rule is known to illustrate the transformation efficiency, vector stability, and copy number, although factors such as vector composition, host strain, transformation method, and selective pressure might influence them.
Collapse