1
|
Suppression of the Escherichia coli dnaA46 mutation by changes in the activities of the pyruvate-acetate node links DNA replication regulation to central carbon metabolism. PLoS One 2017; 12:e0176050. [PMID: 28448512 PMCID: PMC5407757 DOI: 10.1371/journal.pone.0176050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
To ensure faithful transmission of genetic material to progeny cells, DNA replication is tightly regulated, mainly at the initiation step. Escherichia coli cells regulate the frequency of initiation according to growth conditions. Results of the classical, as well as the latest studies, suggest that the DNA replication in E. coli starts at a predefined, constant cell volume per chromosome but the mechanisms coordinating DNA replication with cell growth are still not fully understood. Results of recent investigations have revealed a role of metabolic pathway proteins in the control of cell division and a direct link between metabolism and DNA replication has also been suggested both in Bacillus subtilis and E. coli cells. In this work we show that defects in the acetate overflow pathway suppress the temperature-sensitivity of a defective replication initiator–DnaA under acetogenic growth conditions. Transcriptomic and metabolic analyses imply that this suppression is correlated with pyruvate accumulation, resulting from alterations in the pyruvate dehydrogenase (PDH) activity. Consequently, deletion of genes encoding the pyruvate dehydrogenase subunits likewise resulted in suppression of the thermal-sensitive growth of the dnaA46 strain. We propose that the suppressor effect may be directly related to the PDH complex activity, providing a link between an enzyme of the central carbon metabolism and DNA replication.
Collapse
|
2
|
Abstract
In recent years it has become clear that complex regulatory circuits control the initiation step of DNA replication by directing the assembly of a multicomponent molecular machine (the orisome) that separates DNA strands and loads replicative helicase at oriC, the unique chromosomal origin of replication. This chapter discusses recent efforts to understand the regulated protein-DNA interactions that are responsible for properly timed initiation of chromosome replication. It reviews information about newly identified nucleotide sequence features within Escherichia coli oriC and the new structural and biochemical attributes of the bacterial initiator protein DnaA. It also discusses the coordinated mechanisms that prevent improperly timed DNA replication. Identification of the genes that encoded the initiators came from studies on temperature-sensitive, conditional-lethal mutants of E. coli, in which two DNA replication-defective phenotypes, "immediate stop" mutants and "delayed stop" mutants, were identified. The kinetics of the delayed stop mutants suggested that the defective gene products were required specifically for the initiation step of DNA synthesis, and subsequently, two genes, dnaA and dnaC, were identified. The DnaA protein is the bacterial initiator, and in E. coli, the DnaC protein is required to load replicative helicase. Regulation of DnaA accessibility to oriC, the ordered assembly and disassembly of a multi-DnaA complex at oriC, and the means by which DnaA unwinds oriC remain important questions to be answered and the chapter discusses the current state of knowledge on these topics.
Collapse
|
3
|
Popov M, Petrov S, Nacheva G, Ivanov I, Reichl U. Effects of a recombinant gene expression on ColE1-like plasmid segregation in Escherichia coli. BMC Biotechnol 2011; 11:18. [PMID: 21362179 PMCID: PMC3061898 DOI: 10.1186/1472-6750-11-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 03/01/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Segregation of expression plasmids leads to loss of recombinant DNA from transformed bacterial cells due to the irregular distribution of plasmids between the daughter cells during cell division. Under non-selective conditions this segregational instability results in a heterogeneous population of cells, where the non-productive plasmid-free cells overgrow the plasmid-bearing cells thus decreasing the yield of recombinant protein. Amongst the factors affecting segregational plasmid instability are: the plasmid design, plasmid copy-number, host cell genotype, fermentation conditions etc. This study aims to investigate the influence of transcription and translation on the segregation of recombinant plasmids designed for constitutive gene expression in Escherichia coli LE392 at glucose-limited continuous cultivation. To this end a series of pBR322-based plasmids carrying a synthetic human interferon-gamma (hIFNγ) gene placed under the control of different regulatory elements (promoter and ribosome-binding sites) were used as a model. RESULTS Bacterial growth and product formation kinetics of transformed E. coli LE392 cells cultivated continuously were described by a structured kinetic model proposed by Lee et al. (1985). The obtained results demonstrated that both transcription and translation efficiency strongly affected plasmid segregation. The segregation of plasmid having a deleted promoter did not exceed 5% after 190 h of cultivation. The observed high plasmid stability was not related with an increase in the plasmid copy-number. A reverse correlation between the yield of recombinant protein (as modulated by using different ribosome binding sites) and segregational plasmid stability (determined by the above model) was also observed. CONCLUSIONS Switching-off transcription of the hIFNγ gene has a stabilising effect on ColE1-like plasmids against segregation, which is not associated with an increase in the plasmid copy-number. The increased constitutive gene expression has a negative effect on segregational plasmid stability. A kinetic model proposed by Lee et al. (1985) was appropriate for description of E. coli cell growth and recombinant product formation in chemostat cultivations.
Collapse
Affiliation(s)
- Mladen Popov
- Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Acad, G, Bonchev Str,, 21, 1113 Sofia, Bulgaria.
| | | | | | | | | |
Collapse
|
4
|
Szambowska A, Pierechod M, Wegrzyn G, Glinkowska M. Coupling of transcription and replication machineries in λ DNA replication initiation: evidence for direct interaction of Escherichia coli RNA polymerase and the λO protein. Nucleic Acids Res 2010; 39:168-77. [PMID: 20833633 PMCID: PMC3017604 DOI: 10.1093/nar/gkq752] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcription proceeding downstream of the λ phage replication origin was previously shown to support initial steps of the λ primosome assembly in vitro and to regulate frequency and directionality of λ DNA replication in vivo. In this report, the data are presented indicating that the RNA polymerase β subunit makes a direct contact with the λO protein, a replication initiator of λ phage. These results suggest that the role of RNA polymerase during the initiation of λ phage DNA replication may be more complex than solely influencing DNA topology. Results demonstrated in this study also show that gyrase supercoiling activity stimulates the formation of a complex between λO and RNA polymerase, suggesting that the introduction of negative supercoils by DNA gyrase, besides lowering the energy required for DNA strand separation, may play an additional role in modeling protein–protein interactions at early steps of DNA replication initiation.
Collapse
Affiliation(s)
- Anna Szambowska
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdańsk, Poland
| | | | | | | |
Collapse
|
5
|
Flåtten I, Morigen, Skarstad K. DnaA protein interacts with RNA polymerase and partially protects it from the effect of rifampicin. Mol Microbiol 2008; 71:1018-30. [PMID: 19170875 DOI: 10.1111/j.1365-2958.2008.06585.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Escherichia coli DnaA protein forms an oligomer at the origin and initiates chromosome replication with the aid of architectural elements and transcription by RNA polymerase. Rifampicin inhibits initiation of transcription by RNA polymerase and thus also initiation of replication. Here, we report that wild-type cells undergo rifampicin-resistant initiation of replication during slow growth in acetate medium. The rifampicin-resistant initiation was prevented by reducing the availability of DnaA. In vitro experiments showed that the DnaA protein interacted with RNA polymerase and that it afforded a partial protection from the negative effect of rifampicin. It is possible that rifampicin-resistant rounds of replication occur when a surplus of DnaA is available at the origin. In rich medium wild-type cells do not exhibit rifampicin-resistant rounds of replication, possibly indicating that there is no surplus DnaA, and that DnaA activity is the factor limiting the process of initiation. During growth in acetate medium, on the contrary, DnaA activity is not limiting in the same way because an initiation potential is present and can be turned into extra rounds of replication when rifampicin is added. The result suggests that regulation of replication initiation may differ at different growth rates.
Collapse
Affiliation(s)
- Ingvild Flåtten
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Rikshospitalet, University of Oslo, 0310 Oslo, Norway
| | | | | |
Collapse
|
6
|
Ederth J, Mooney RA, Isaksson LA, Landick R. Functional Interplay between the Jaw Domain of Bacterial RNA Polymerase and Allele-specific Residues in the Product RNA-binding Pocket. J Mol Biol 2006; 356:1163-79. [PMID: 16405998 DOI: 10.1016/j.jmb.2005.11.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 11/23/2022]
Abstract
Bacterial RNA polymerase (RNAP) is a complex molecular machine in which the network of interacting parts and their movements, including contacts to nascent RNA and the DNA template, are at best partially understood. The jaw domain is a part of RNAP that makes a key contact to duplex DNA as it enters the enzyme from downstream and also contacts two other parts of RNAP, the trigger loop, which lies in the RNAP secondary channel, and a sequence insertion in the Escherichia coli RNAP trigger loop that forms an external domain and also contacts downstream DNA. Deletion of the jaw domain causes defects in transcriptional pausing and in bacterial growth. We report here that these defects can be partially corrected by a limited set of substitutions in a distant part of RNAP, the product RNA-binding pocket. The product RNA-binding pocket binds nascent RNA upstream of the active site and is the binding site for the RNAP inhibitor rifampicin when RNA is absent. These substitutions have little effect on transcript elongation between pause sites and actually exacerbate jaw-deletion defects in transcription initiation, suggesting that the pausing defects may be principally responsible for the in vivo phenotype of the jaw deletion. We suggest that the counteracting effects on pausing of the alterations in the jaw and the product RNA binding site may be mediated either by effects on translocation or via allosteric communication to the RNAP active site.
Collapse
Affiliation(s)
- Josefine Ederth
- Department of Genetics Microbiology & Toxicology, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
7
|
Molina F, Skarstad K. Deletion of the datA site does not affect once-per-cell-cycle timing but induces rifampin-resistant replication. J Bacteriol 2005; 187:3913-20. [PMID: 15939703 PMCID: PMC1151742 DOI: 10.1128/jb.187.12.3913-3920.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, three mechanisms have been proposed to maintain proper regulation of replication so that initiation occurs once, and only once, per cell cycle. First, newly formed origins are inactivated by sequestration; second, the initiator, DnaA, is inactivated by the Hda protein at active replication forks; and third, the level of free DnaA protein is reduced by replication of the datA site. The datA site titrates unusually large amounts of DnaA and it has been reported that reinitiation, and thus asynchrony of replication, occurs in cells lacking this site. Here, we show that reinitiation in deltadatA cells does not occur during exponential growth and that an apparent asynchrony phenotype results from the occurrence of rifampin-resistant initiations. This shows that the datA site is not required to prevent reinitiation and limit initiation of replication to once per generation. The datA site may, however, play a role in timing of initiation relative to cell growth. Inactivation of active ATP-DnaA by the Hda protein and the sliding clamp of the polymerase was found to be required to prevent reinitiation and asynchrony of replication.
Collapse
|
8
|
Affiliation(s)
- Walter Messer
- Max-Planck-Institute for Molecular Genitics, D-14195 Berlin, Germany
| | | |
Collapse
|
9
|
Lee LF, Yeh SH, Chen CW. Construction and synchronization of dnaA temperature-sensitive mutants of Streptomyces. J Bacteriol 2002; 184:1214-8. [PMID: 11807086 PMCID: PMC134811 DOI: 10.1128/jb.184.4.1214-1218.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperature-sensitive mutants of Streptomyces defective in initiation of chromosome replication were created by in vitro site-directed mutagenesis in the dnaA gene followed by gene replacement. When they were shifted to 39 degrees C replication in the mutants ceased in about 90 min but resumed on return to 30 degrees C. This allowed manipulations to achieve replication synchronization.
Collapse
Affiliation(s)
- Li-Fong Lee
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan
| | | | | |
Collapse
|
10
|
Bahloul A, Boubrik F, Rouviere-Yaniv J. Roles of Escherichia coli histone-like protein HU in DNA replication: HU-beta suppresses the thermosensitivity of dnaA46ts. Biochimie 2001; 83:219-29. [PMID: 11278072 DOI: 10.1016/s0300-9084(01)01246-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The HU protein is a small, basic, heat-stable DNA-binding protein that is well-conserved in prokaryotes and is associated with the bacterial nucleoid. In enterobacteria, including Escherichia coli, HU is a heterotypic dimer, HUalphabeta, composed of two closely related sub-units encoded by the hupA and hupB genes, respectively. HU was shown to participate in vitro in the initiation of DNA replication as an accessory factor to assist the action of DnaA protein in the unwinding of oriC DNA. To further elucidate the role of HU in the regulation of the DNA replication initiation process, we tested the synchrony phenotype in the absence of either one or both HU sub-units. The hupAB mutant exhibits an asynchronous initiation, the hupA mutant shows a similar reduced synchrony, whereas the hupB mutant shows a normal phenotype. Using a thermosensitive dnaA46 strain (dnaA46ts), an initiation mutant, we reveal a special role of HUbeta. The presence of a plasmid overproducing HUbeta in a dnaA46ts lacking HU (hupAB background) compensates for the thermosensitivity of this initiation mutant. Moreover, the overproduction of HUbeta confers to dnaA46ts a pattern of asynchrony similar to that of a dnaAcos, the intragenic suppressor of dnaA46ts. We show that the relative ratio of HUalpha versus HUbeta is greatly perturbed in dnaA46ts which accumulates little, if any, HUbeta. Therefore, the suppression of thermosensitivity in dnaA46hupAB by HUbeta may be caused by an unexpected absence of HUbeta in the dnaA46ts mutant. Visibly the HU composition is sensitive to the different states of DnaA, and may play a role during the regulation of the initiation process of the DNA replication by affecting subsequent events along the cell cycle.
Collapse
Affiliation(s)
- A Bahloul
- Laboratoire de Physiologie Bactérienne, CNRS, UPR 9073, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, 75005, Paris, France
| | | | | |
Collapse
|
11
|
Szalewska-Pałasz A, Wegrzyn A, Błaszczak A, Taylor K, Wegrzyn G. DnaA-stimulated transcriptional activation of orilambda: Escherichia coli RNA polymerase beta subunit as a transcriptional activator contact site. Proc Natl Acad Sci U S A 1998; 95:4241-6. [PMID: 9539721 PMCID: PMC22473 DOI: 10.1073/pnas.95.8.4241] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We present evidence that Escherichia coli RNA polymerase beta subunit may be a transcriptional activator contact site. Stimulation of the activity of the pR promoter by DnaA protein is necessary for replication of plasmids derived from bacteriophage lambda. We found that DnaA activates the pR promoter in vitro. Particular mutations in the rpoB gene were able to suppress negative effects that certain dnaA mutations had on the replication of lambda plasmids; this suppression was allele-specific. When a potential DnaA-binding sequence located several base pairs downstream of the pR promoter was scrambled by in vitro mutagenesis, the pR promoter was no longer activated by DnaA both in vivo and in vitro. Therefore, we conclude that DnaA may contact the beta subunit of RNA polymerase during activation of the pR promoter. A new classification of prokaryotic transcriptional activators is proposed.
Collapse
Affiliation(s)
- A Szalewska-Pałasz
- Department of Molecular Biology, Polish Academy of Sciences, Laboratory of Molecular Biology (affiliated with), University of Gdańsk, Kladki 24, 80-822 Gdańsk, Poland
| | | | | | | | | |
Collapse
|
12
|
Bates DB, Boye E, Asai T, Kogoma T. The absence of effect of gid or mioC transcription on the initiation of chromosomal replication in Escherichia coli. Proc Natl Acad Sci U S A 1997; 94:12497-502. [PMID: 9356478 PMCID: PMC25015 DOI: 10.1073/pnas.94.23.12497] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Despite the widely accepted view that transcription of gid and mioC is required for efficient initiation of cloned oriC, we show that these transcriptions have very little effect on initiation of chromosome replication at wild-type chromosomal oriC. Furthermore, neither gid nor mioC transcription is required in cells deficient in the histone-like proteins Fis or IHF. However, oriC that is sufficiently impaired for initiation by deletion of DnaA box R4 requires transcription of at least one of these genes. We conclude that transcription of mioC and especially gid is needed to activate oriC only under suboptimal conditions. We suggest that either the rifampicin-sensitive step of initiation is some other transcription occurring from promoter(s) within oriC, or the original inference of transcriptional activation derived from the rifampicin experiments is incorrect.
Collapse
Affiliation(s)
- D B Bates
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
13
|
Lee YS, Hwang DS. Occlusion of RNA Polymerase by Oligomerization of DnaA Protein over the dnaA Promoter of Escherichia coli. J Biol Chem 1997. [DOI: 10.1074/jbc.272.1.83] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Sakakibara Y. Rifampin-induced initiation of chromosome replication in dnaR-deficient Escherichia coli cells. J Bacteriol 1996; 178:1242-7. [PMID: 8631698 PMCID: PMC177795 DOI: 10.1128/jb.178.5.1242-1247.1996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The dnaR130 mutant of Escherichia coli, which was thermosensitive in initiation of chromosome replication, was capable of thermoresistant DNA synthesis in the presence of rifampin at a low concentration that allowed almost normal RNA synthesis. The DNA synthesis in the presence of the drug depended on protein synthesis at the high temperature. The protein synthesis in the dnaR-deficient cells provided a potential for thermoresistant DNA synthesis to be induced at a high dose of the drug that almost completely prevented RNA synthesis. The induced synthesis was synchronously initiated from oriC and proceeded semiconservatively toward terC. The replication depended on the dnaA function, which was essential for normal initiation of replication from oriC. The capability for drug-induced replication was abolished by certain rifampin resistance mutations in the beta subunit of RNA polymerase. Thus, the drug can induce the dnaA-dependent initiation of replication in the dnaR-deficient cells through its effect on RNA polymerase. This result implies that the dnaR product is involved in the transcription obligatory for the initiation of replication of the bacterial chromosome.
Collapse
Affiliation(s)
- Y Sakakibara
- Department of Biochemistry and Cellular Biology, National Institute of Health, Tokyo, Japan
| |
Collapse
|
15
|
Mizushima T, Ishikawa Y, Obana E, Hase M, Kubota T, Katayama T, Kunitake T, Watanabe E, Sekimizu K. Influence of cluster formation of acidic phospholipids on decrease in the affinity for ATP of DnaA protein. J Biol Chem 1996; 271:3633-8. [PMID: 8631973 DOI: 10.1074/jbc.271.7.3633] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DnaA protein is the initiator of chromosomal DNA replication in Escherichia coli. We examined the influence of artificial mixed membrane composed of synthetic acidic (phosphate) lipid and basic (ammonium) lipid on the affinity of DnaA protein for ATP. Two sets of acidic and basic lipids with distinguishable numbers of hydrophobic alkyl chains were devised. Synthetic membranes made of the sole acidic lipid but not the basic bilayers inhibited the ATP binding to DnaA protein and stimulated the release of ATP from the ATP-DnaA complex. The basic bilayer-forming compounds served as the matrix for the guest acidic lipids. Acidic lipids dispersed in the basic matrix membrane had little effect on ATP binding and on ATP release. Conversely, acidic lipids forming cluster structures in the mixed artificial membranes inhibited the ATP binding and stimulated the release of ATP. These observations suggest that in mixed lipid bilayers, a cluster structure of acidic lipids seems to be an important parameter to decrease the affinity of DnaA protein for ATP.
Collapse
Affiliation(s)
- T Mizushima
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-82, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sakakibara Y. Suppression of thermosensitive initiation of DNA replication in a dnaR mutant of Escherichia coli by a rifampin resistance mutation in the rpoB gene. J Bacteriol 1995; 177:733-7. [PMID: 7836308 PMCID: PMC176650 DOI: 10.1128/jb.177.3.733-737.1995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The thermosensitivity of the Escherichia coli dnaR130 mutant in initiation of DNA replication was suppressed by a spontaneous rifampin resistance mutation in rpoB, the gene for the beta subunit of RNA polymerase. Among the dnaR-suppressing rpoB alleles obtained was rpoB22, which was able to suppress the thermosensitivity of the dnaA46 or dnaA167 mutant, but not that of the dnaA5 mutant, in initiation of replication. Some dnaA-suppressing rpoB alleles obtained from rifampin-resistant derivatives of the dnaA mutants were able to suppress the dnaR defect. The dnaR mutant with the rpoB22 allele was deprived of thermoresistance by the dnaA5 mutation and of viability at low and high temperatures by the dnaA46 but not the dnaA167 mutation. The results show that the rpoB-mediated suppression of the dnaA or dnaR defect depends on the functions of both dnaA and dnaR products. I propose that the dnaR product has a key role in transcriptional activation of the replication origin for the dnaA-dependent initiation of DNA replication.
Collapse
Affiliation(s)
- Y Sakakibara
- Department of Biochemistry and Cellular Biology, National Institute of Health, Tokyo, Japan
| |
Collapse
|
17
|
Hansen FG. Reinitiation kinetics in eight dnaA(Ts) mutants of Escherichia coli: rifampicin-resistant initiation of chromosome replication. Mol Microbiol 1995; 15:133-40. [PMID: 7752888 DOI: 10.1111/j.1365-2958.1995.tb02227.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The kinetics of reinitiation of chromosome replication of eight dnaA(Ts) mutants was investigated in an isogenic set of strains. Five mutants (167, 46, 601, 606 and 5) are classified as reversible, since they can reinitiate at 30 degrees C without protein synthesis, whereas the other three (508, 205, 204) require protein synthesis. In the presence of protein synthesis, reversible mutants initiate one round of replication rapidly after a shift to 30 degrees C, indicating that they contain active or renaturable DnaA protein. The dnaA508 and dnaA204 mutants also reinitiate chromosome replication rapidly, whereas reinitiation is delayed 15-20 min in dnaA205. The dnaA508 and dnaA204 mutants might contain active DnaA protein just below the threshold level at 42 degrees C and only require synthesis of small amounts of new DnaA protein before initiation at 30 degrees C, whereas dnaA205 accumulates DnaA protein for some time at 30 degrees C before reaching the initiation threshold. Three of the reversible mutants (5, 601, and 606) exhibited, in addition to the protein synthesis-independent initiation capacity, an RNA synthesis-independent initiation capacity. The thermal stability of these initiation capacities is the same as for mutant DnaA protein, strongly suggesting that mutant DnaA protein is responsible for both.
Collapse
Affiliation(s)
- F G Hansen
- Department of Microbiology, Technical University of Denmark, Lyngby
| |
Collapse
|
18
|
Skarstad K, Boye E. The initiator protein DnaA: evolution, properties and function. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1217:111-30. [PMID: 8110826 DOI: 10.1016/0167-4781(94)90025-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K Skarstad
- Department of Biophysics, Institute for Cancer Research, Montebello, Oslo, Norway
| | | |
Collapse
|
19
|
Hansen FG, Koefoed S, Atlung T. Cloning and nucleotide sequence determination of twelve mutant dnaA genes of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1992; 234:14-21. [PMID: 1495477 DOI: 10.1007/bf00272340] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Plasmids carrying different regions of the wild-type dnaA gene were used for marker rescue analysis of the temperature sensitivity of twelve strains carrying dnaA mutations. The different dnaA(Ts) mutations could be unambiguously located within specific regions of the dnaA gene. The mutant dnaA genes were cloned on pBR322-derived plasmids and on nucleotide sequencing by dideoxy chain termination the respective mutations were determined using M13 clones carrying the relevant parts of the mutant dnaA gene. Several of the mutant dnaA genes were found to have two mutations. The dnaA5, dnaA46, dnaA601, dnaA602, dnaA604, and dnaA606 genes all had identical mutations corresponding to an amino acid change from alanine to valine at amino acid 184 in the DnaA protein, close to the proposed ATP binding site, but all carried one further mutation giving rise to an amino acid substitution. The dnaA508 gene also had two mutations, whereas dnaA167, dnaA203, dnaA204, dnaA205, and dnaA211 each had only one. The pairs dnaA601/602, dnaA604/606, and dnaA203/204 were each found to have identical mutations. Plasmids carrying the different dnaA mutant genes intact were introduced into the respective dnaA mutant strains. Surprisingly, these homopolyploid mutant strains were found to be temperature resistant in most cases, indicating that a high intracellular concentration of the mutant DnaA protein can compensate for the decreased activity of the protein.
Collapse
Affiliation(s)
- F G Hansen
- Department of Microbiology, Technical University of Denmark, Lyngby
| | | | | |
Collapse
|
20
|
Asai T, Chen CP, Nagata T, Takanami M, Imai M. Transcription in vivo within the replication origin of the Escherichia coli chromosome: a mechanism for activating initiation of replication. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:169-78. [PMID: 1736090 DOI: 10.1007/bf00279788] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Within the replication origin, oriC, of the Escherichia coli chromosome, novel in vivo transcripts were detected which proceeded rightward and whose production was activated by DnaA protein. In contrast, DnaA protein repressed the previously described ori-L leftward transcription. The former should introduce negative supercoiling, and the latter positive supercoiling, into the 13-mers. The effects of transcription on the initiation of replication were also investigated by making constructs with promoters placed near oriC. Transcription was found to enhance the origin activity only when it was oriented in such a way as to introduce negative supercoiling into the 13-mers. From these results, we propose that transcription within oriC regulates replication initiation by altering the topology of the 13-mer region.
Collapse
Affiliation(s)
- T Asai
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
21
|
Ogawa T, Okazaki T. Concurrent transcription from the gid and mioC promoters activates replication of an Escherichia coli minichromosome. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:193-200. [PMID: 1745229 DOI: 10.1007/bf00290668] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The origin of replication of the Escherichia coli chromosome (oriC) is located in an intercistronic region between the gidA and the mioC genes. The possibility that transcription from the promoters of these two genes is involved in minichromosome replication was examined. Inactivation of the gid promoter led to a reduction in transformation frequency with an oriC plasmid but inactivation of the mioC promoter did not. The decrease in transformation frequency was most pronounced when both promoters were inactive. Under conditions that selected for plasmid-harboring cells, mutation of the gid promoter caused efficient multimerization or integration of oriC plasmids into the chromosomal oriC region and loss of free plasmid molecules. These changes in plasmid structure were also observed, albeit less frequently, with some plasmids defective in mioC promoter activity. In an in vitro DNA replication system for oriC DNA, plasmids with a defective gid promoter had greatly reduced template activity and essentially no replication occurred when both promoters were inactive. These results suggest that coupled transcription starting from the gid as well as the mioC promoter activates initiation of plasmid replication, the major contribution being made by gid transcription. These two promoters are suggested to be under stringent control.
Collapse
Affiliation(s)
- T Ogawa
- Department of Molecular Biology, School of Science, Nagoya University, Japan
| | | |
Collapse
|
22
|
Rasmussen LJ, Møller PL, Atlung T. Carbon metabolism regulates expression of the pfl (pyruvate formate-lyase) gene in Escherichia coli. J Bacteriol 1991; 173:6390-7. [PMID: 1917868 PMCID: PMC208971 DOI: 10.1128/jb.173.20.6390-6397.1991] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The anaerobic expression of pfl is reduced both in a strain mutated in the pgi gene and in a pfkA pfkB double mutant strain when cells are grown in medium supplemented with glucose. When cells are grown in medium supplemented with either fructose or pyruvate, no reduction is observed in these strains. The amount of pyruvate in the cells may be responsible for the reduced expression of pfl in the strains mutated in the genes encoding the glycolytic enzymes. Because of the lowered oxygen concentration in the medium, the expression of pfl is induced when an exponentially growing culture enters the stationary phase. This induction is increased when the Casamino Acid concentration is raised 10-fold or when the medium is supplemented with NaCl. Superhelicity of DNA is decreased in a pgi mutant strain grown in medium supplemented with glucose. The superhelicity is also changed, but the opposite way, in a wild-type strain grown in medium supplemented with Casamino Acids at a high concentration or 0.3 M sodium chloride. Our data show that changes in superhelicity do not affect the aerobic expression of pfl but might be important for the anaerobic induction of pfl.
Collapse
Affiliation(s)
- L J Rasmussen
- Department of Microbiology, Technical University of Denmark, Copenhagen
| | | | | |
Collapse
|
23
|
Petersen SK, Hansen FG. A missense mutation in the rpoC gene affects chromosomal replication control in Escherichia coli. J Bacteriol 1991; 173:5200-6. [PMID: 1860830 PMCID: PMC208214 DOI: 10.1128/jb.173.16.5200-5206.1991] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
An RNA polymerase mutant with a single-base-pair change in the rpoC gene affects chromosome initiation control. The mutation, which is recessive, is a G to A transition leading to the substitution of aspartate for glycine at amino acid residue 1033 in the RNA polymerase beta' subunit. The chromosome copy number is increased twofold in the mutant at semipermissive growth temperatures (39 degrees C). In a delta oriC strain, in which chromosome initiation is governed by an F replicon, chromosome copy number is not affected. Plasmid pBR322 copy number is also increased in the mutant at 39 degrees C. The mutation causes a more than fivefold increased expression of the dnaA gene at 39 degrees C. It is conceivable that it is this high DnaA concentration which causes the high chromosome copy number and that the mutant RNA polymerase beta' subunit exerts its effect by altering the expression of the dnaA gene. However, other factors must be affected as well to explain why the RNA polymerase mutant can grow in a balanced fashion with a high chromosome concentration. This is in contrast to wild-type cells, which exhibit higher origin concentrations when DnaA protein is overproduced, but in which the overall DNA concentration is only moderately affected.
Collapse
Affiliation(s)
- S K Petersen
- Department of Microbiology, Technical University of Denmark, Lyngby-Copenhagen
| | | |
Collapse
|
24
|
Abstract
The role of the protein DnaA as the principal control of replication initiation is investigated by a mathematical model. Data showing that DnaA is growth rate regulated suggest that its concentration alone is not the only factor determining the timing of initiation. A mathematical model with stochastic and deterministic components is constructed from known experimental evidence and subdivides the total pool of DnaA protein into four forms. The active form, DnaA.ATP, can be bound to the origin of replication, oriC, where it is assumed that a critical level of these bound molecules is needed to initiate replication. The active form can also exist in a reserve pool bound to the chromosome or a free pool in the cytoplasm. Finally, a large inactive pool of DnaA protein completes the state variables and provides an explanation for how the DnaA.ATP form could be the principal controlling element in the timing of initiation. The fact that DnaA protein is an autorepressor is used to derive its synthesis rate. The model studies a single exponentially growing cell through a series of cell divisions. Computer simulations are performed, and the results compare favorably to data for different cell cycle times. The model shows synchrony of initiation events in agreement with experimental results.
Collapse
Affiliation(s)
- J M Mahaffy
- Department of Mathematical Sciences, San Diego State University, CA 92182
| | | |
Collapse
|
25
|
Katayama T, Murakami Y, Wada C, Ohmori H, Yura T, Nagata T. Genetic suppression of a dnaG mutation in Escherichia coli. J Bacteriol 1989; 171:1485-91. [PMID: 2646283 PMCID: PMC209770 DOI: 10.1128/jb.171.3.1485-1491.1989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Escherichia coli strains with a temperature-sensitive mutation, dnaG2903, in the primase-encoding gene spontaneously reverted to the temperature-insensitive phenotype at a high frequency. Many of the reversions were caused by extragenic sdg suppressors. About 100 independently isolated sdg suppressors were analyzed. They fall into two classes. The sdgA mutations were genetically mapped very close to and upstream of the dnaG gene and were found to be cis dominant. DNA sequencing of two of them revealed that G----A and C----A base substitutions had occurred 43 and 62 bases, respectively, upstream of the dnaG start codon. This region represents a transcriptional terminator thought to contribute to control of dnaG gene expression. The other class of suppressor, sdgB, seemed to comprise mutant alleles in the rpoB gene coding for the beta subunit of RNA polymerase core enzyme. Some of them were initially isolated as rifampin-resistant mutants. Both the sdgA and sdgB suppressors were found to increase the transcriptional activity of dnaG. This finding and other observations led to the proposition that sdgA and sdgB suppress the phenotype caused by dnaG2903 by overproducing the mutated primase; the quantitative oversupply may compensate for the qualitative defect of the dnaG2903 primase. An alternative mechanism of suppression by sdgB is discussed.
Collapse
Affiliation(s)
- T Katayama
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Boye E, Løbner-Olesen A, Skarstad K. Timing of chromosomal replication in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 951:359-64. [PMID: 2850013 DOI: 10.1016/0167-4781(88)90107-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have previously shown that certain mutations in the dnaA and recA genes of Escherichia coli perturb initiation of chromosomal replication so that all origins present are not initiated simultaneously. In this work, several genes whose protein products are involved in initiation of replication have been investigated for their effects on the synchrony of initiation. Some of the mutants (dnaC2, rpoC907, dam3) were found to have the asynchrony phenotype. Also, dnaA(Ts) mutations were shown to be dominant over dnaA+ in terms of initiation synchrony. The mechanism leading to the asynchronous phenotype is discussed.
Collapse
Affiliation(s)
- E Boye
- Department of Biophysics, Institute of Cancer Research, Montebello, Oslo, Norway
| | | | | |
Collapse
|
27
|
Baker TA, Kornberg A. Transcriptional activation of initiation of replication from the E. coli chromosomal origin: an RNA-DNA hybrid near oriC. Cell 1988; 55:113-23. [PMID: 2458841 DOI: 10.1016/0092-8674(88)90014-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transcription by RNA polymerase preceding the initiation of replication from the E. coli chromosomal origin (oriC) in vitro enables dnaA protein to open the DNA duplex under conditions when its action alone is insufficient. The RNA polymerases of phages T7 and T3 are as effective as the E. coli enzyme in activating initiation. The persistent RNA transcript hybridized to the template creates an R-loop that is responsible for activation. The activating RNA need not cross oriC, but must be less then 500 bp away. Transcripts lacking a 3' OH group are effective, proving that priming of DNA synthesis is not involved in the activation. Thus, transcription activates the origin of an otherwise inert plasmid by altering the local DNA structure, facilitating its opening by dnaA protein during the assembly of replication forks.
Collapse
Affiliation(s)
- T A Baker
- Department of Biochemistry, Stanford University Medical School, California 94305
| | | |
Collapse
|
28
|
Nozaki N, Okazaki T, Ogawa T. In vitro transcription of the origin region of replication of the Escherichia coli chromosome. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68202-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Ma D, Campbell JL. The effect of dnaA protein and n′ sites on the replication of plasmid ColE1. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68139-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
30
|
Skarstad K, von Meyenburg K, Hansen FG, Boye E. Coordination of chromosome replication initiation in Escherichia coli: effects of different dnaA alleles. J Bacteriol 1988; 170:852-8. [PMID: 2828328 PMCID: PMC210732 DOI: 10.1128/jb.170.2.852-858.1988] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The synchrony of initiation of chromosomal replication in single cells was determined in ten different dnaA(Ts) mutants. After inhibiting the initiation of replication but allowing initiated rounds of replication to terminate, we measured the number of fully replicated chromosomes per individual cell by flow cytometry. Synchronous initiation at the several independent origins (oriC) in single rapidly growing cells would give 2'' (n = 0,1,2,3,...) chromosomes per cell, whereas asynchronous initiation was indicated by the presence of a different number of chromosomes. Mutations mapping in the central part of the dnaA gene (dnaA5, dnaA46, dnaA601, dnaA602, and dnaA604) lead to a high degree of asynchrony (class I mutants), whereas mutations mapping in either of the distal parts of the gene (dnaA508, dnaA167, dnaA203, and dnaA204) yielded a low degree of asynchrony at the permissive temperature (class 2 mutants). The dnaA205 mutant exhibited an intermediate degree of asynchrony. Mutants dnaA203 and dnaA204 (promoter distal) differed from the other class 2 mutants (dnaA167, dnaA508; promoter proximal) in that asynchrony increased no more than twofold between 25 and 37 degrees C compared with the more-than-fourfold increase in the latter. The high degree of asynchrony in class 1 mutants was independent of temperature and was not due to insufficient functional DnaA protein, because overproduction of DnaA46 protein did not decrease the asynchrony. The data demonstrate that the DnaA protein has functions in addition to acting positively in the initiation process and negatively as its own repressor, namely in coordinating initiations at all oriC sites within a single cell.
Collapse
Affiliation(s)
- K Skarstad
- Department of Biophysics, Norwegian Radium Hospital, Oslo
| | | | | | | |
Collapse
|
31
|
Kogoma T, Kline BC. Integrative suppression of dnaA(Ts) mutations mediated by plasmid F in Escherichia coli is a DnaA-dependent process. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:262-9. [PMID: 2830456 DOI: 10.1007/bf00325692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The thermosensitivity of dnaA(Ts) mutations can be suppressed by integration of plasmid F (integrative suppression). In the light of the recent finding that F requires DnaA protein for both establishment and maintenance, integrative suppression of 11 dnaA(Ts) mutations by a mini-F, pML31, integrated near oriC was examined. The plating efficiency of integratively suppressed strains was dnaA(Ts) allele-dependent and medium-dependent. The initiation capability of suppressed dnaA(Ts) strains lacking the oriC site and their F- counterparts was determined at various temperatures between 30 degrees C and 42 degrees C. The degree of integrative suppression measured by the initiation capability varied in a dnaA(Ts) allele-dependent manner. F-directed DNA replication was most affected by the dnaA(Ts) mutations mapping in the middle of the gene whereas oriC-dependent replication was most thermosensitive in strains carrying mutations mapping in the carboxy-terminal half of the gene. The results indicated that the integrative suppression by F plasmid is a DnaA-dependent process and suggested that the requirements for DnaA protein in the oriC-dependent replication and F replication processes are qualitatively different.
Collapse
Affiliation(s)
- T Kogoma
- Department of Cell Biology, School of Medicine, University of New Mexico, Albuquerque 87131
| | | |
Collapse
|
32
|
Kur J, Gorska I, Taylor K. Escherichia coli dnaA initiation function is required for replication of plasmids derived from coliphage lambda. J Mol Biol 1987; 198:203-10. [PMID: 2828637 DOI: 10.1016/0022-2836(87)90306-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The dnaA gene function, indispensable for the initiation of Escherichia coli replication from oriC is not essential for the growth of phage lambda. The in-vitro replication of plasmids derived from phage lambda does not seem to require DnaA protein either. However, we present evidence that in vivo the normal replication of lambda plasmids is dnaA-dependent. After inactivating the dnaA gene function, half of the plasmid molecules may enter a single round of replication. Rifampicin sensitivity of this abortive, as well as normal, replication indicates involvement of RNA polymerase. The rifampicin resistance of the normal replication of lambda plasmids in E. coli carrying the dnaAts46 or dnaAts5, but not the dnaAts204 allele at 30 degrees C implies the interaction of DnaA protein and RNA polymerase in this process. We propose that DnaA protein co-operates with RNA polymerase in the initiation of replication at ori lambda. The dispensability of DnaA in the growth of phage lambda and in lambda plasmid replication in vitro is discussed.
Collapse
Affiliation(s)
- J Kur
- Department of Microbiology, University of Gdansk, Poland
| | | | | |
Collapse
|
33
|
Skovgaard O, Hansen FG. Comparison of dnaA nucleotide sequences of Escherichia coli, Salmonella typhimurium, and Serratia marcescens. J Bacteriol 1987; 169:3976-81. [PMID: 3040670 PMCID: PMC213696 DOI: 10.1128/jb.169.9.3976-3981.1987] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The dnaA genes of Salmonella typhimurium and Serratia marcescens, which complemented the temperature-sensitive dnaA46 mutation of Escherichia coli, were cloned and sequenced. They were very homologous to the dnaA gene of E. coli. The 63 N-terminal amino acids and the 333 C-terminal amino acids of the corresponding DnaA proteins were identical. The region in between, corresponding to 71 amino acids in E. coli, exhibited a number of changes. This variable region coincided with a nonhomologous region found in the comparison of E. coli dnaA and Bacillus subtilis "dnaA" genes. The regions upstream of the genes were also homologous. The ribosome-binding area, one of the promoters, the DnaA protein-binding site, and many GATC sites (Dam methyltransferase-recognition sequence) were conserved in these three enteric bacteria.
Collapse
|
34
|
Rokeach LA, Kassavetis GA, Zyskind JW. RNA polymerase pauses in vitro within the Escherichia coli origin of replication at the same sites where termination occurs in vivo. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)48232-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Schauzu MA, Kücherer C, Kölling R, Messer W, Lother H. Transcripts within the replication origin, oriC, of Escherichia coli. Nucleic Acids Res 1987; 15:2479-97. [PMID: 3031600 PMCID: PMC340664 DOI: 10.1093/nar/15.6.2479] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Transcription start and termination sites were mapped in the E. coli replication origin, oriC. Outward transcription from within oriC (promoters Pori-r and Pori-l) was found to start in vivo at position 178 for Pori-l and at positions 294 and 304 for Pori-r, respectively. These transcripts were terminated after 100-150 bases, at terminators designated Tori-l and Tori-r. Transcription from the 16 kd promoter, which lies clockwise adjacent to oriC and promotes transcription toward oriC, started at position 757 and gave transcripts with 3' ends at several positions within and to the left of the minimal replication origin. However, the majority of transcripts traversed the whole oriC region, and were not terminated within the DNA segment tested. Transcription of the chromosomal 16 kd gene was negatively regulated by DnaA protein and positively affected by dam methylation. The possible function of these transcripts is discussed.
Collapse
|
36
|
Rokeach LA, Zyskind JW. RNA terminating within the E. coli origin of replication: stringent regulation and control by DnaA protein. Cell 1986; 46:763-71. [PMID: 2427203 DOI: 10.1016/0092-8674(86)90352-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RNA entering the E. coli replication origin, oriC, in the counterclockwise direction terminates at several sites throughout the origin sequence. The significant finding was that nine clusters of these termination sites are found at the nine clusters of RNA to DNA transitions in oriC. The majority of these transcripts terminates with cytosine. Termination sites are associated with 9 of the 11 GATC sites and all DnaA protein-binding sites. Chloramphenicol-treated cells contain an increased amount of this RNA species, while cells starved for isoleucine have greatly reduced levels, indicating that synthesis of these transcripts is stringently regulated. Both decreased and increased intracellular levels of DnaA protein decrease the fraction of transcription that enters oriC.
Collapse
|
37
|
Junker DE, Rokeach LA, Ganea D, Chiaramello A, Zyskind JW. Transcription termination within the Escherichia coli origin of DNA replication, oriC. MOLECULAR & GENERAL GENETICS : MGG 1986; 203:101-9. [PMID: 3012276 DOI: 10.1007/bf00330390] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Initiation of DNA replication from the Escherichia coli origin, oriC, is dependent on an RNA polymerase-mediated transcription event. The function of this RNA synthetic event in initiation, however, remains obscure. Since control of the synthesis of this RNA could serve a key role in the overall initiation process, transcription regulatory sites within and near oriC were identified using the galK fusion vector system. Our results confirm the existence of a transcription termination signal within oriC, first identified by Hansen et al. (1981), for the 16 kd transcript that is transcribed counterclockwise towards oriC. Termination is shown to be 92% efficient. A similar approach led to the detection of transcription termination within the chromosomal replication origin of Klebsiella pneumoniae. Approximately 50% of the E. coli 16 kd transcripts appear to terminate before reaching oriC between the XhoI (+416 bp) and the HindIII (+243 bp) sites. The predominant 3' ends of RNA that enter oriC, as determined by SI nuclease mapping, were located at positions +20 +/- 2, +23 +/- 2, +37, +39, +52, +66, +92, and +107. These termination sites, which map cl to RNA . DNA junctions identified by Kohara et al. (1985), appear as triplets and quadruplets. The E. coli oriC Pori-L promoter described in in vitro transcription studies by Lother and Messer (1981) was not detected in this study in either wildtype cells or isogenic dnaA mutants at the nonpermissive temperature. A new promoter activity, Pori-R1, was identified within the E. coli origin in the clockwise direction.
Collapse
|
38
|
Jenkins AJ, March JB, Oliver IR, Masters M. A DNA fragment containing the groE genes can suppress mutations in the Escherichia coli dnaA gene. MOLECULAR & GENERAL GENETICS : MGG 1986; 202:446-54. [PMID: 3012270 DOI: 10.1007/bf00333275] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An 8.2 kb fragment of E. coli chromosomal DNA, when cloned in increased copy number, suppresses the dnaA46 mutation, and an abundant protein of about 68 kd (60 kd when measured by us), encoded by the fragment, is essential for the suppression (Takeda and Hirota 1982). Mapping experiments show that the fragment originates from the 94 min region of the chromosome. It encodes several proteins but only one abundant polypeptide of the correct size, the product of the groEL gene. Suppression by the fragment is allele specific; those mutations which map to the centre of the gene are suppressed. Other initiation mutants including dnaA203, dnaA204, dnaA508, dnaAam, dnaC, dnaP and dnaB252 are not suppressed. Most suppressed strains are cold-sensitive suggesting an interaction between the mutant proteins (or their genes) and the suppressing protein or proteins.
Collapse
|
39
|
Atlung T, Clausen ES, Hansen FG. Autoregulation of the dnaA gene of Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1985; 200:442-50. [PMID: 2995766 DOI: 10.1007/bf00425729] [Citation(s) in RCA: 164] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Regulation of the dnaA gene, which codes for an essential factor for the initiation of replication from the chromosomal origin, was studied in vivo using transcriptional and translational gene fusions. We found that the dnaA gene was autoregulated over a 30-fold range by the activity of dnaA protein. Expression from the dnaA promoter region of a dnaA"lacZ fusion was inhibited up to sevenfold by surplus dnaA protein and was stimulated up to fivefold upon thermoinactivation of the mutant protein in five different dnaA(Ts) strains. The autoregulation was found to be exerted at transcription from the major dnaA promoter and was eliminated by deletion of sequences around position -65 of this promoter where a 9-bp sequence, which is also found four times in the chromosomal origin, is located.
Collapse
|
40
|
Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: primase as the sole priming enzyme. Proc Natl Acad Sci U S A 1985; 82:3954-8. [PMID: 2408271 PMCID: PMC397912 DOI: 10.1073/pnas.82.12.3954] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The enzymatic replication of plasmids containing the unique (245 base pair) origin of the Escherichia coli chromosome (oriC) can be initiated with any of three enzyme priming systems: primase alone, RNA polymerase alone, or both combined (Ogawa, T., Baker, T. A., van der Ende, A. & Kornberg, A. (1985) Proc. Natl. Acad. Sci. USA 82, 3562-3566). At certain levels of auxiliary proteins (topoisomerase I, protein HU, and RNase H), the solo primase system is efficient and responsible for priming synthesis of all DNA strands. Replication of oriC plasmids is here separated into four stages: (i) formation of an isolable, prepriming complex requiring oriC, dnaA protein, dnaB protein, dnaC protein, gyrase, single-strand binding protein, and ATP; (ii) formation of a primed template by primase; (iii) rapid, semiconservative replication by DNA polymerase III holoenzyme; and (iv) conversion of nearly completed daughter molecules to larger DNA forms. Optimal initiation of the leading strand of DNA synthesis, over a range of levels of auxiliary proteins, appears to depend on transcriptional activation of the oriC region by RNA polymerase prior to priming by primase.
Collapse
|