1
|
Alleman AB, Peters JW. Mechanisms for Generating Low Potential Electrons across the Metabolic Diversity of Nitrogen-Fixing Bacteria. Appl Environ Microbiol 2023; 89:e0037823. [PMID: 37154716 PMCID: PMC10231201 DOI: 10.1128/aem.00378-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The availability of fixed nitrogen is a limiting factor in the net primary production of all ecosystems. Diazotrophs overcome this limit through the conversion of atmospheric dinitrogen to ammonia. Diazotrophs are phylogenetically diverse bacteria and archaea that exhibit a wide range of lifestyles and metabolisms, including obligate anaerobes and aerobes that generate energy through heterotrophic or autotrophic metabolisms. Despite the diversity of metabolisms, all diazotrophs use the same enzyme, nitrogenase, to reduce N2. Nitrogenase is an O2-sensitive enzyme that requires a high amount of energy in the form of ATP and low potential electrons carried by ferredoxin (Fd) or flavodoxin (Fld). This review summarizes how the diverse metabolisms of diazotrophs utilize different enzymes to generate low potential reducing equivalents for nitrogenase catalysis. These enzymes include substrate-level Fd oxidoreductases, hydrogenases, photosystem I or other light-driven reaction centers, electron bifurcating Fix complexes, proton motive force-driven Rnf complexes, and Fd:NAD(P)H oxidoreductases. Each of these enzymes is critical for generating low potential electrons while simultaneously integrating the native metabolism to balance nitrogenase's overall energy needs. Understanding the diversity of electron transport systems to nitrogenase in various diazotrophs will be essential to guide future engineering strategies aimed at expanding the contributions of biological nitrogen fixation in agriculture.
Collapse
Affiliation(s)
- Alexander B. Alleman
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - John W. Peters
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
2
|
Webb IUC, Xu J, Sánchez-Cañizares C, Karunakaran R, Ramachandran VK, Rutten PJ, East AK, Huang WE, Watmough NJ, Poole PS. Regulation and Characterization of Mutants of fixABCX in Rhizobium leguminosarum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1167-1180. [PMID: 34110256 DOI: 10.1094/mpmi-02-21-0037-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Symbiosis between Rhizobium leguminosarum and Pisum sativum requires tight control of redox balance in order to maintain respiration under the microaerobic conditions required for nitrogenase while still producing the eight electrons and sixteen molecules of ATP needed for nitrogen fixation. FixABCX, a cluster of electron transfer flavoproteins essential for nitrogen fixation, is encoded on the Sym plasmid (pRL10), immediately upstream of nifA, which encodes the general transcriptional regulator of nitrogen fixation. There is a symbiotically regulated NifA-dependent promoter upstream of fixA (PnifA1), as well as an additional basal constitutive promoter driving background expression of nifA (PnifA2). These were confirmed by 5'-end mapping of transcription start sites using differential RNA-seq. Complementation of polar fixAB and fixX mutants (Fix- strains) confirmed expression of nifA from PnifA1 in symbiosis. Electron microscopy combined with single-cell Raman microspectroscopy characterization of fixAB mutants revealed previously unknown heterogeneity in bacteroid morphology within a single nodule. Two morphotypes of mutant fixAB bacteroids were observed. One was larger than wild-type bacteroids and contained high levels of polyhydroxy-3-butyrate, a complex energy/reductant storage product. A second bacteroid phenotype was morphologically and compositionally different and resembled wild-type infection thread cells. From these two characteristic fixAB mutant bacteroid morphotypes, inferences can be drawn on the metabolism of wild-type nitrogen-fixing bacteroids.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Isabel U C Webb
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Jiabao Xu
- Department of Engineering, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | | | - Ramakrishnan Karunakaran
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Vinoy K Ramachandran
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Paul J Rutten
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Alison K East
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Wei E Huang
- Department of Engineering, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - Nicholas J Watmough
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, U.K
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| |
Collapse
|
3
|
Minimal gene set from Sinorhizobium ( Ensifer) meliloti pSymA required for efficient symbiosis with Medicago. Proc Natl Acad Sci U S A 2021; 118:2018015118. [PMID: 33384333 DOI: 10.1073/pnas.2018015118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Reduction of N2 gas to ammonia in legume root nodules is a key component of sustainable agricultural systems. Root nodules are the result of a symbiosis between leguminous plants and bacteria called rhizobia. Both symbiotic partners play active roles in establishing successful symbiosis and nitrogen fixation: while root nodule development is mostly controlled by the plant, the rhizobia induce nodule formation, invade, and perform N2 fixation once inside the plant cells. Many bacterial genes involved in the rhizobia-legume symbiosis are known, and there is much interest in engineering the symbiosis to include major nonlegume crops such as corn, wheat, and rice. We sought to identify and combine a minimal bacterial gene complement necessary and sufficient for symbiosis. We analyzed a model rhizobium, Sinorhizobium (Ensifer) meliloti, using a background strain in which the 1.35-Mb symbiotic megaplasmid pSymA was removed. Three regions representing 162 kb of pSymA were sufficient to recover a complete N2-fixing symbiosis with alfalfa, and a targeted assembly of this gene complement achieved high levels of symbiotic N2 fixation. The resulting gene set contained just 58 of 1,290 pSymA protein-coding genes. To generate a platform for future synthetic manipulation, the minimal symbiotic genes were reorganized into three discrete nod, nif, and fix modules. These constructs will facilitate directed studies toward expanding the symbiosis to other plant partners. They also enable forward-type approaches to identifying genetic components that may not be essential for symbiosis, but which modulate the rhizobium's competitiveness for nodulation and the effectiveness of particular rhizobia-plant symbioses.
Collapse
|
4
|
Fagorzi C, Checcucci A, diCenzo GC, Debiec-Andrzejewska K, Dziewit L, Pini F, Mengoni A. Harnessing Rhizobia to Improve Heavy-Metal Phytoremediation by Legumes. Genes (Basel) 2018; 9:genes9110542. [PMID: 30413093 PMCID: PMC6266702 DOI: 10.3390/genes9110542] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Rhizobia are bacteria that can form symbiotic associations with plants of the Fabaceae family, during which they reduce atmospheric di-nitrogen to ammonia. The symbiosis between rhizobia and leguminous plants is a fundamental contributor to nitrogen cycling in natural and agricultural ecosystems. Rhizobial microsymbionts are a major reason why legumes can colonize marginal lands and nitrogen-deficient soils. Several leguminous species have been found in metal-contaminated areas, and they often harbor metal-tolerant rhizobia. In recent years, there have been numerous efforts and discoveries related to the genetic determinants of metal resistance by rhizobia, and on the effectiveness of such rhizobia to increase the metal tolerance of host plants. Here, we review the main findings on the metal resistance of rhizobia: the physiological role, evolution, and genetic determinants, and the potential to use native and genetically-manipulated rhizobia as inoculants for legumes in phytoremediation practices.
Collapse
Affiliation(s)
- Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - Alice Checcucci
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - George C diCenzo
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - Klaudia Debiec-Andrzejewska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Francesco Pini
- Department of Agri-food Production and Environmental Science, University of Florence, 50144 Florence, Italy.
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
5
|
diCenzo GC, Zamani M, Milunovic B, Finan TM. Genomic resources for identification of the minimal N2 -fixing symbiotic genome. Environ Microbiol 2016; 18:2534-47. [PMID: 26768651 DOI: 10.1111/1462-2920.13221] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/17/2015] [Accepted: 01/09/2016] [Indexed: 12/11/2022]
Abstract
The lack of an appropriate genomic platform has precluded the use of gain-of-function approaches to study the rhizobium-legume symbiosis, preventing the establishment of the genes necessary and sufficient for symbiotic nitrogen fixation (SNF) and potentially hindering synthetic biology approaches aimed at engineering this process. Here, we describe the development of an appropriate system by reverse engineering Sinorhizobium meliloti. Using a novel in vivo cloning procedure, the engA-tRNA-rmlC (ETR) region, essential for cell viability and symbiosis, was transferred from Sinorhizobium fredii to the ancestral location on the S. meliloti chromosome, rendering the ETR region on pSymB redundant. A derivative of this strain lacking both the large symbiotic replicons (pSymA and pSymB) was constructed. Transfer of pSymA and pSymB back into this strain restored symbiotic capabilities with alfalfa. To delineate the location of the single-copy genes essential for SNF on these replicons, we screened a S. meliloti deletion library, representing > 95% of the 2900 genes of the symbiotic replicons, for their phenotypes with alfalfa. Only four loci, accounting for < 12% of pSymA and pSymB, were essential for SNF. These regions will serve as our preliminary target of the minimal set of horizontally acquired genes necessary and sufficient for SNF.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Maryam Zamani
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Branislava Milunovic
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
6
|
Sullivan JT, Brown SD, Ronson CW. The NifA-RpoN regulon of Mesorhizobium loti strain R7A and its symbiotic activation by a novel LacI/GalR-family regulator. PLoS One 2013; 8:e53762. [PMID: 23308282 PMCID: PMC3538637 DOI: 10.1371/journal.pone.0053762] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Mesorhizobium loti is the microsymbiont of Lotus species, including the model legume L. japonicus. M. loti differs from other rhizobia in that it contains two copies of the key nitrogen fixation regulatory gene nifA, nifA1 and nifA2, both of which are located on the symbiosis island ICEMlSym(R7A). M. loti R7A also contains two rpoN genes, rpoN1 located on the chromosome outside of ICEMlSym(R7A) and rpoN2 that is located on ICEMlSym(R7A). The aims of the current work were to establish how nifA expression was activated in M. loti and to characterise the NifA-RpoN regulon. The nifA2 and rpoN2 genes were essential for nitrogen fixation whereas nifA1 and rpoN1 were dispensable. Expression of nifA2 was activated, possibly in response to an inositol derivative, by a novel regulator of the LacI/GalR family encoded by the fixV gene located upstream of nifA2. Other than the well-characterized nif/fix genes, most NifA2-regulated genes were not required for nitrogen fixation although they were strongly expressed in nodules. The NifA-regulated nifZ and fixU genes, along with nifQ which was not NifA-regulated, were required in M. loti for a fully effective symbiosis although they are not present in some other rhizobia. The NifA-regulated gene msi158 that encodes a porin was also required for a fully effective symbiosis. Several metabolic genes that lacked NifA-regulated promoters were strongly expressed in nodules in a NifA2-dependent manner but again mutants did not have an overt symbiotic phenotype. In summary, many genes encoded on ICEMlSym(R7A) were strongly expressed in nodules but not free-living rhizobia, but were not essential for symbiotic nitrogen fixation. It seems likely that some of these genes have functional homologues elsewhere in the genome and that bacteroid metabolism may be sufficiently plastic to adapt to loss of certain enzymatic functions.
Collapse
Affiliation(s)
- John T. Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Steven D. Brown
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Clive W. Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
7
|
Laguerre G, Heulin-Gotty K, Brunel B, Klonowska A, Le Quéré A, Tillard P, Prin Y, Cleyet-Marel JC, Lepetit M. Local and systemic N signaling are involved in Medicago truncatula preference for the most efficient Sinorhizobium symbiotic partners. THE NEW PHYTOLOGIST 2012; 195:437-449. [PMID: 22548481 DOI: 10.1111/j.1469-8137.2012.04159.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
• Responses of the Medicago truncatula-Sinorhizobium interaction to variation in N₂-fixation of the bacterial partner were investigated. • Split-root systems were used to discriminate between local responses, at the site of interaction with bacteria, and systemic responses related to the whole plant N status. • The lack of N acquisition by a half-root system nodulated with a nonfixing rhizobium triggers a compensatory response enabling the other half-root system nodulated with N₂-fixing partners to compensate the local N limitation. This response is mediated by a stimulation of nodule development (number and size) and involves a systemic signaling mechanism related to the plant N demand. In roots co-infected with poorly and highly efficient strains, partner choice for nodule formation was not modulated by the plant N status. However, the plant N demand induced preferential expansion of nodules formed with the most efficient partners when the symbiotic organs were functional. The response of nodule expansion was associated with the stimulation of symbiotic plant cell multiplication and of bacteroid differentiation. • A general model where local and systemic N signaling mechanisms modulate interactions between Medicago truncatula and its Sinorhizobium partners is proposed.
Collapse
Affiliation(s)
- Gisèle Laguerre
- INRA, USC 1242, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- IRD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- CIRAD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- SupAgro, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- UM2, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
| | - Karine Heulin-Gotty
- INRA, USC 1242, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- IRD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- CIRAD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- SupAgro, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- UM2, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
| | - Brigitte Brunel
- INRA, USC 1242, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- IRD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- CIRAD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- SupAgro, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- UM2, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
| | - Agnieszka Klonowska
- INRA, USC 1242, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- IRD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- CIRAD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- SupAgro, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- UM2, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
| | - Antoine Le Quéré
- INRA, USC 1242, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- IRD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- CIRAD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- SupAgro, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- UM2, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
| | - Pascal Tillard
- INRA, UMR 5004, Biochimie et Physiologie Moléculaire des Plantes, F-34000 Montpellier, France
- CNRS, Biochimie et Physiologie Moléculaire des Plantes, F-34000 Montpellier, France
- SupAgro, Biochimie et Physiologie Moléculaire des Plantes, F-34000 Montpellier, France
- UM2, Biochimie et Physiologie Moléculaire des Plantes, F-34000 Montpellier, France
| | - Yves Prin
- INRA, USC 1242, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- IRD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- CIRAD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- SupAgro, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- UM2, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
| | - Jean-Claude Cleyet-Marel
- INRA, USC 1242, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- IRD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- CIRAD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- SupAgro, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- UM2, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
| | - Marc Lepetit
- INRA, USC 1242, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- IRD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- CIRAD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- SupAgro, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
- UM2, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34000 Montpellier, France
| |
Collapse
|
8
|
Yurgel SN, Rice J, Kahn ML. Nitrogen metabolism in Sinorhizobium meliloti-alfalfa symbiosis: dissecting the role of GlnD and PII proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:355-362. [PMID: 22074345 DOI: 10.1094/mpmi-09-11-0249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To contribute nitrogen for plant growth and establish an effective symbiosis with alfalfa, Sinorhizobium meliloti Rm1021 needs normal operation of the GlnD protein, a bifunctional uridylyltransferase/uridylyl-cleavage enzyme that measures cellular nitrogen status and initiates a nitrogen stress response (NSR). However, the only two known targets of GlnD modification in Rm1021, the PII proteins GlnB and GlnK, are not necessary for effectiveness. We introduced a Tyr→Phe variant of GlnB, which cannot be uridylylated, into a glnBglnK background to approximate the expected state in a glnD-sm2 mutant, and this strain was effective. These results suggested that unmodified PII does not inhibit effectiveness. We also generated a glnBglnK-glnD triple mutant and used this and other mutants to dissect the role of these proteins in regulating the free-living NSR and nitrogen metabolism in symbiosis. The glnD-sm2 mutation was dominant to the glnBglnK mutations in symbiosis but recessive in some free-living phenotypes. The data show that the GlnD protein has a role in free-living growth and in symbiotic nitrogen exchange that does not depend on the PII proteins, suggesting that S. meliloti GlnD can communicate with the cell by alternate mechanisms.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman 99164-6340, USA.
| | | | | |
Collapse
|
9
|
Kvist S, Narechania A, Oceguera-Figueroa A, Fuks B, Siddall ME. Phylogenomics of Reichenowia parasitica, an alphaproteobacterial endosymbiont of the freshwater leech Placobdella parasitica. PLoS One 2011; 6:e28192. [PMID: 22132238 PMCID: PMC3223239 DOI: 10.1371/journal.pone.0028192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 11/02/2011] [Indexed: 01/30/2023] Open
Abstract
Although several commensal alphaproteobacteria form close relationships with plant hosts where they aid in (e.g.,) nitrogen fixation and nodulation, only a few inhabit animal hosts. Among these, Reichenowia picta, R. ornata and R. parasitica, are currently the only known mutualistic, alphaproteobacterial endosymbionts to inhabit leeches. These bacteria are harbored in the epithelial cells of the mycetomal structures of their freshwater leech hosts, Placobdella spp., and these structures have no other obvious function than housing bacterial symbionts. However, the function of the bacterial symbionts has remained unclear. Here, we focused both on exploring the genomic makeup of R. parasitica and on performing a robust phylogenetic analysis, based on more data than previous hypotheses, to test its position among related bacteria. We sequenced a combined pool of host and symbiont DNA from 36 pairs of mycetomes and performed an in silico separation of the different DNA pools through subtractive scaffolding. The bacterial contigs were compared to 50 annotated bacterial genomes and the genome of the freshwater leech Helobdella robusta using a BLASTn protocol. Further, amino acid sequences inferred from the contigs were used as queries against the 50 bacterial genomes to establish orthology. A total of 358 orthologous genes were used for the phylogenetic analyses. In part, results suggest that R. parasitica possesses genes coding for proteins related to nitrogen fixation, iron/vitamin B translocation and plasmid survival. Our results also indicate that R. parasitica interacts with its host in part by transmembrane signaling and that several of its genes show orthology across Rhizobiaceae. The phylogenetic analyses support the nesting of R. parasitica within the Rhizobiaceae, as sister to a group containing Agrobacterium and Rhizobium species.
Collapse
Affiliation(s)
- Sebastian Kvist
- Richard Gilder Graduate School, American Museum of Natural History, New York, New York, United States of America
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Alejandro Oceguera-Figueroa
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
- Department of Biology, The Graduate Center, The City University of New York, New York, New York, United States of America
| | - Bella Fuks
- Long Island University Brooklyn Campus, Brooklyn, New York, United States of America
| | - Mark E. Siddall
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| |
Collapse
|
10
|
Pobigaylo N, Szymczak S, Nattkemper TW, Becker A. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:219-31. [PMID: 18184066 DOI: 10.1094/mpmi-21-2-0219] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sinorhizobium meliloti enters an endosymbiosis with alfalfa plants through the formation of nitrogen-fixing nodules. In order to identify S. meliloti genes required for symbiosis and competitiveness, a method of signature-tagged mutagenesis was used. Two sets, each consisting of 378 signature-tagged mutants with a known transposon insertion site, were used in an experiment in planta. As a result, 67 mutants showing attenuated symbiotic phenotypes were identified, including most of the exo, fix, and nif mutants in the sets. For 38 mutants in genes previously not described to be involved in competitiveness or symbiosis in S. meliloti, attenuated competitiveness phenotypes were tested individually. A large part of these phenotypes was confirmed. Moreover, additional symbiotic defects were observed for mutants in several novel genes such as infection deficiency phenotypes (ilvI and ilvD2 mutants) or delayed nodulation (pyrE, metA, thiC, thiO, and thiD mutants).
Collapse
Affiliation(s)
- Nataliya Pobigaylo
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | | | | | | |
Collapse
|
11
|
de Bruijn FJ, Rossbach S, Bruand C, Parrish JR. A highly conserved Sinorhizobium meliloti operon is induced microaerobically via the FixLJ system and by nitric oxide (NO) via NnrR. Environ Microbiol 2006; 8:1371-81. [PMID: 16872401 DOI: 10.1111/j.1462-2920.2006.01030.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A previously generated collection of 11 Tn5-luxAB insertion mutants of Sinorhizobium meliloti harbouring lux reporter gene fusions induced under microaerobic (1% O2) conditions was further characterized and mapped on the sequenced S. meliloti genome. One highly induced gene fusion from this collection (loe-7) was found to be located in the intergenic region between sma1292, encoding a putative protease/collagenase, and a gene of unknown function (sma1294). The loe-7 fusion had been shown previously to be partially controlled by the oxygen sensor/regulator FixLJ system, but significant ( approximately 40%) Lux activity remained in a fixLJ mutant background. Therefore, a secondary Tn1721 mutagenesis of the loe-7 strain was carried out. Nine Tn1721 ('dark') insertions completely abolishing the Lux activity of the loe-7 fusion under microaerobic conditions were isolated. Surprisingly, five dark insertions mapped in denitrification genes [napA, napC, nirK--two insertions--and sma1245 encoding a NnrR-like transcriptional regulator controlling denitrification in response to nitric oxide (NO)]; Tn1721 insertions in the respiration genes fixG and fixP resulted in a reduced expression of the loe-7-lux fusion, and insertions in the regulatory genes fixJ and fixK1 resulted in low, but still detectable Lux activity. On the contrary, insertions in the norD or norQ genes resulted in constitutive Lux activity. In these mutant strains, NO would be expected to accumulate under microaerobic conditions. NO was found to be able to strongly induce the loe-7-luxAB fusion under microaerobic and aerobic conditions, but only in the presence of the functional nnrR-like gene (sma1245). These results suggest that NO, via the NnrR regulator, can serve as a signal molecule to induce the loe-7-luxAB fusion in concert with the FixLJ system.
Collapse
Affiliation(s)
- Frans J de Bruijn
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS 2594/INRA 441, BP 52627, 31326 Castanet-Tolosan Cedex, France.
| | | | | | | |
Collapse
|
12
|
Stiens M, Schneiker S, Keller M, Kuhn S, Pühler A, Schlüter A. Sequence analysis of the 144-kilobase accessory plasmid pSmeSM11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. Appl Environ Microbiol 2006; 72:3662-72. [PMID: 16672515 PMCID: PMC1472397 DOI: 10.1128/aem.72.5.3662-3672.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Sinorhizobium meliloti type strain Rm1021 consists of three replicons: the chromosome and two megaplasmids, pSymA and pSymB. Additionally, many indigenous S. meliloti strains possess one or more smaller plasmids, which represent the accessory genome of this species. Here we describe the complete nucleotide sequence of an accessory plasmid, designated pSmeSM11a, that was isolated from a dominant indigenous S. meliloti subpopulation in the context of a long-term field release experiment with genetically modified S. meliloti strains. Sequence analysis of plasmid pSmeSM11a revealed that it is 144,170 bp long and has a mean G+C content of 59.5 mol%. Annotation of the sequence resulted in a total of 160 coding sequences. Functional predictions could be made for 43% of the genes, whereas 57% of the genes encode hypothetical or unknown gene products. Two plasmid replication modules, one belonging to the repABC replicon family and the other belonging to the plasmid type A replicator region family, were identified. Plasmid pSmeSM11a contains a mobilization (mob) module composed of the type IV secretion system-related genes traG and traA and a putative mobC gene. A large continuous region that is about 42 kb long is very similar to a corresponding region located on S. meliloti Rm1021 megaplasmid pSymA. Single-base-pair deletions in the homologous regions are responsible for frameshifts that result in nonparalogous coding sequences. Plasmid pSmeSM11a carries additional copies of the nodulation genes nodP and nodQ that are responsible for Nod factor sulfation. Furthermore, a tauD gene encoding a putative taurine dioxygenase was identified on pSmeSM11a. An acdS gene located on pSmeSM11a is the first example of such a gene in S. meliloti. The deduced acdS gene product is able to deaminate 1-aminocyclopropane-1-carboxylate and is proposed to be involved in reducing the phytohormone ethylene, thus influencing nodulation events. The presence of numerous insertion sequences suggests that these elements mediated acquisition of accessory plasmid modules.
Collapse
Affiliation(s)
- M Stiens
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Xie B, Chen DS, Zhou K, Xie YQ, Li YG, Hu GY, Zhou JC. Symbiotic abilities of Sinorhizobium fredii with modified expression of purL. Appl Microbiol Biotechnol 2006; 71:505-14. [PMID: 16228203 DOI: 10.1007/s00253-005-0186-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Revised: 09/02/2005] [Accepted: 09/07/2005] [Indexed: 11/28/2022]
Abstract
Previous reports showed that a transposon-induced PurL- mutant of Sinorhizobium fredii induced pseudonodules on Glycine max and the addition of 5-aminoimidazole-4-carboxamide-riboside or adenine to the plant could not restore the mutant to establish effective symbiosis. To gain a better understanding of the impact of the purL gene on symbiosis formation, we measured the effect of modified expression of this gene on the symbiotic abilities of S. fredii on soybean (G. max). A 1.98-kb in-frame deletion mutant in the purL gene of S. fredii was constructed. Transcriptional modification of the purL gene was conducted using several promoters such as those of lac, nifH, nifQ, and fixN. It was found that reduced expression of purL gene or suitable symbiotic expression of purL (such as with the promoter nifH or nifQ) can efficiently establish symbiosis of S. fredii on G. max without the exogenous supplementation of any adenine or purine precursor; at least a minimal level of expression of purL is essential for effective symbiosis with soybean.
Collapse
Affiliation(s)
- Bo Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Perrine FM, Hocart CH, Hynes MF, Rolfe BG. Plasmid-associated genes in the model micro-symbiont Sinorhizobium meliloti 1021 affect the growth and development of young rice seedlings. Environ Microbiol 2005; 7:1826-38. [PMID: 16232297 DOI: 10.1111/j.1462-2920.2005.00927.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sinorhizobium meliloti strain 1021 and its closely related strain Rm2011 inhibit rice seedling (Oryza sativa L. cv. Pelde) growth and development under certain rice-growing conditions. Experiments showed that inoculation of seedlings with approximately less than 10 cells of 1021 was sufficient to cause this inhibition. By using a series of plasmid-cured and plasmid-deleted derivatives of Rm2011, it was found that interactions between genes encoded on pSymA, and possibly pSymB, of Rm2011, affected rice growth and development by affecting both/either the plant and/or the bacteria. Further studies found that genes potentially related to indole-3-acetic acid (IAA) synthesis and nitrate metabolism, encoded on pSymA, were involved in rice growth inhibition in Sm1021- and Sm2011-treated rice seedlings. We conclude that the rice growth inhibition by S. meliloti Sm1021 is pSymA-associated and is induced by environmental nitrate.
Collapse
Affiliation(s)
- Francine M Perrine
- Genomic Interactions Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra, ACT 2601, Australia
| | | | | | | |
Collapse
|
15
|
Chan YK, McCormick WA. Experimental evidence for plasmid-bornenor-nirgenes inSinorhizobium melilotiJJ1c10. Can J Microbiol 2004; 50:657-67. [PMID: 15644918 DOI: 10.1139/w04-062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In denitrification, nir and nor genes are respectively required for the sequential dissimilatory reduction of nitrite and nitric oxide to form nitrous oxide. Their location on the pSymA megaplasmid of Sinorhizobium meliloti was confirmed by Southern hybridization of its clones with specific structural gene probes for nirK and norCB. A 20-kb region of pSymA containing the nor-nir genes was delineated by nucleotide sequence analysis. These genes were linked to the nap genes encoding periplasmic proteins involved in nitrate reduction. The nor-nir-nap segment is situated within 30 kb downstream from the nos genes encoding nitrous oxide reduction, with a fix cluster intervening between nir and nos. Most of these predicted nor-nir and accessory gene products are highly homologous with those of related proteobacterial denitrifiers. Functional tests of Tn5 mutants confirmed the requirement of the nirV product and 1 unidentified protein for nitrite reduction as well as the norB-D products and another unidentified protein for nitric oxide reduction. Overall comparative analysis of the derived amino acid sequences of the S. meliloti gene products suggested a close relationship between this symbiotic N2fixer and the free-living non-N2-fixing denitrifier Pseudomonas G-179, despite differences in their genetic organization. This relationship may be due to lateral gene transfer of denitrification genes from a common donor followed by rearrangement and recombination of these genes.Key words: denitrification genes, nitric oxide reductase, nitrite reductase, Rhizobiaceae, Sinorhizobium meliloti.
Collapse
Affiliation(s)
- Yiu-Kwok Chan
- Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON.
| | | |
Collapse
|
16
|
Mitra RM, Long SR. Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis. PLANT PHYSIOLOGY 2004; 134:595-604. [PMID: 14739349 PMCID: PMC344536 DOI: 10.1104/pp.103.031518] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 08/27/2003] [Accepted: 10/13/2003] [Indexed: 05/18/2023]
Abstract
In the Medicago truncatula/Sinorhizobium meliloti symbiosis, the plant undergoes a series of developmental changes simultaneously, creating a root nodule and allowing bacterial entry and differentiation. Our studies of plant genes reveal novel transcriptional regulation during the establishment of the symbiosis and identify molecular markers that distinguish classes of plant and bacterial symbiotic mutants. We have identified three symbiotically regulated plant genes encoding a beta,1-3 endoglucanase (MtBGLU1), a lectin (MtLEC4), and a cysteine-containing protein (MtN31). MtBGLU1 is down-regulated in the plant 24 h after exposure to the bacterial signal, Nod factor. The non-nodulating plant mutant dmi1 is defective in the ability to down-regulate MtBGLU1. MtLEC4 and MtN31 are induced 1 and 2 weeks after bacterial inoculation, respectively. We examined the regulation of these two genes and three previously identified genes (MtCAM1, ENOD2, and MtLB1) in plant symbiotic mutants and wild-type plants inoculated with bacterial symbiotic mutants. Plant (bit1, rit1, and Mtsym1) and bacterial (exoA and exoH) mutants with defects in the initial stages of invasion are unable to induce MtLEC4, MtN31, MtCAM1, ENOD2, and MtLB1. Bacterial mutants (fixJ and nifD) and a subset of plant mutants (dnf2, dnf3, dnf4, dnf6, and dnf7) defective for nitrogen fixation induce the above genes. The bacA bacterial mutant, which senesces upon deposition into plant cells, and two plant mutants with defects in nitrogen fixation (dnf1 and dnf5) induce MtLEC4 and ENOD2 but not MtN31, MtCAM1, or MtLB1. These data suggest the presence of at least three transcriptionally distinct developmental stages during invasion of M. truncatula by S. meliloti.
Collapse
Affiliation(s)
- Raka Mustaphi Mitra
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
17
|
Cosseau C, Garnerone AM, Batut J. The fixM flavoprotein modulates inhibition by AICAR or 5'AMP of respiratory and nitrogen fixation gene expression in Sinorhizobium meliloti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:598-607. [PMID: 12059108 DOI: 10.1094/mpmi.2002.15.6.598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
AICAR, a purine-related metabolite, was recently shown to inhibit respiratory and nifA gene expression in Sino-rhizobium meliloti. Here, we demonstrate that AICAR has essentially no or little effect in a wild-type S. meliloti strain and inhibits respiratory and nitrogen fixation gene expression only in specific mutant backgrounds. We have analyzed in detail a mutant in which addition of AICAR inhibited fixK,fixN,fixT and nifA expression. The corresponding gene,fixM, is located just downstream of fixK1 on pSymA megaplasmid and encodes a flavoprotein oxidoreductase. 5'AMP, a structural analogue of AICAR, mimicked AICAR effect as well as the nucleoside precursors AICAriboside and adenosine. The mode of action of AICAR and 5'AMP in vivo was investigated. We demonstrate that AICAR does not affect FixK transcriptional activity and instead regulates fixK and nifA gene expression. We hypothesize that AICAR and 5'AMP may modulate, possibly indirectly, the activity of the FixLJ two-component regulatory system. The possible physiological roles of AICAR, 5'AMP, and fixM in the context of symbiosis are discussed.
Collapse
Affiliation(s)
- Céline Cosseau
- Laboratoire de Biologie Moléculaire des Relations Plantes Microorganismes, UMR215, CNRS-INRA, Castanet-Tolosan, France
| | | | | |
Collapse
|
18
|
Rudnick PA, Arcondéguy T, Kennedy CK, Kahn D. glnD and mviN are genes of an essential operon in Sinorhizobium meliloti. J Bacteriol 2001; 183:2682-5. [PMID: 11274131 PMCID: PMC95188 DOI: 10.1128/jb.183.8.2682-2685.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the role of uridylyl-transferase, the Sinorhizobium meliloti glnD gene was isolated by heterologous complementation in Azotobacter vinelandii. The glnD gene is cotranscribed with a gene homologous to Salmonella mviN. glnD1::Omega or mviN1::Omega mutants could not be isolated by a powerful sucrose counterselection procedure unless a complementing cosmid was provided, indicating that glnD and mviN are members of an indispensable operon in S. meliloti.
Collapse
Affiliation(s)
- P A Rudnick
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, INRA/CNRS, 31326 Castanet-Tolosan Cedex, France
| | | | | | | |
Collapse
|
19
|
Timmers AC, Soupène E, Auriac MC, de Billy F, Vasse J, Boistard P, Truchet G. Saprophytic intracellular rhizobia in alfalfa nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:1204-13. [PMID: 11059487 DOI: 10.1094/mpmi.2000.13.11.1204] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In indeterminate alfalfa nodules, the establishment of the senescent zone IV, in which both symbionts undergo simultaneous degeneration, has been considered, until now, as the end point of the symbiotic interaction. However, we now describe an additional zone, zone V, proximal to the senescent zone IV and present in alfalfa nodules more than 6 weeks old. In zone V, a new round of bacterial release occurs from remaining infection threads, leading to the reinvasion of plant cells that have completely senesced. These intracellular rhizobia are rod shaped and do not display the ultrastructural differentiation features of bacteroids observed in the more distal zones of the nodule. Interestingly, we have found that oxygen is available in zone V at a concentration compatible with both bacterial development and nitrogen fixation gene expression in newly released rhizobia. However, this expression is not correlated with acetylene reduction. Moreover, the pattern of nifH expression in this zone, as well as new data relating to expression in zone II, strongly suggest that nifH transcription in the nodule is under the control of a negative regulator in addition to oxygen. Our results support the conclusion that zone V is an ecological niche where intracellular rhizobia take advantage of the interaction for their exclusive benefit and live as parallel saprophytic partners. The demonstration of such an advantage for rhizobia in nodules was the missing evidence that Rhizobium-legume interactions are indeed symbiotic and, in particular, suggests that benefits to the two partners are associated with different developmental stages within the nodule.
Collapse
Affiliation(s)
- A C Timmers
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS-INRA, Castanet-Tolosan, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Oresnik IJ, Liu SL, Yost CK, Hynes MF. Megaplasmid pRme2011a of Sinorhizobium meliloti is not required for viability. J Bacteriol 2000; 182:3582-6. [PMID: 10852892 PMCID: PMC101967 DOI: 10.1128/jb.182.12.3582-3586.2000] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the curing of the 1,360-kb megaplasmid pRme2011a from Sinorhizobium meliloti strain Rm2011. With a positive selection strategy that utilized Tn5B12-S containing the sacB gene, we were able to cure this replicon by successive rounds of selecting for deletion formation in vivo. Subsequent Southern blot, Eckhardt gel, and pulsed-field gel electrophoresis analyses were consistent with the hypothesis that the resultant strain was indeed missing pRme2011a. The cured derivative grew as well as the wild-type strain in both complex and defined media but was unable to use a number of substrates as a sole source of carbon on defined media.
Collapse
Affiliation(s)
- I J Oresnik
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
21
|
Barloy-Hubler F, Capela D, Barnett MJ, Kalman S, Federspiel NA, Long SR, Galibert F. High-resolution physical map of the Sinorhizobium meliloti 1021 pSyma megaplasmid. J Bacteriol 2000; 182:1185-9. [PMID: 10648551 PMCID: PMC94401 DOI: 10.1128/jb.182.4.1185-1189.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To facilitate sequencing of the Sinorhizobium meliloti 1021 pSyma megaplasmid, a high-resolution map was constructed by ordering 113 overlapping bacterial artificial chromosome clones with 192 markers. The 157 anonymous sequence tagged site markers (81,072 bases) reveal hypothetical functions encoded by the replicon.
Collapse
Affiliation(s)
- F Barloy-Hubler
- Laboratoire de Recombinaisons Génétiques UPR41-CNRS, Faculté de Médecine, F-35043 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Capela D, Barloy-Hubler F, Gatius MT, Gouzy J, Galibert F. A high-density physical map of Sinorhizobium meliloti 1021 chromosome derived from bacterial artificial chromosome library. Proc Natl Acad Sci U S A 1999; 96:9357-62. [PMID: 10430947 PMCID: PMC17787 DOI: 10.1073/pnas.96.16.9357] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/1999] [Accepted: 05/27/1999] [Indexed: 11/18/2022] Open
Abstract
As part of the European Sinorhizobium meliloti (strain 1021) chromosome sequencing project, four genomic bacterial artificial chromosome (BAC) libraries have been constructed, one of which was mainly used for chromosome mapping. This library consists of 1,824 clones with an average insert size of 80 kilobases and represents approximately 20-fold total genome coverage [6.8 megabases (Mbs)]. PCR screening of 384 BAC clones with 447 chromosomal markers (PCR primer pairs), consisting of 73 markers representing 118 genes (40 individual genes and 78 genes clustered in 23 operons), two markers from the rrn operon (three loci), four markers from insertion sequences (approximately 16 loci) and 368 sequence-tagged sites allowed the identification of 252 chromosomal BAC clones and the construction of a high-density physical map of the whole 3.7-Mb chromosome of S. meliloti. An average of 5.5 overlapping and colinear BAC clones per marker, correlated with a low rate of deleted or rearranged clones (0.8%) indicate a solid BAC contigation and a correct mapping. Systematic BLASTX analysis of sequence-tagged site marker sequences allowed prediction of a biological function for a number of putative ORFs. Results are available at. This map, whose resolution averages one marker every 9 kilobases, should provide a valuable tool for further sequencing, functional analysis, and positional cloning.
Collapse
Affiliation(s)
- D Capela
- Laboratoire Recombinaisons Génétiques, Centre National de la Recherche Scientifique-UPR41, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
23
|
Delgado MJ, Bedmar EJ, Downie JA. Genes involved in the formation and assembly of rhizobial cytochromes and their role in symbiotic nitrogen fixation. Adv Microb Physiol 1999; 40:191-231. [PMID: 9889979 DOI: 10.1016/s0065-2911(08)60132-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rhizobia fix nitrogen in a symbiotic association with leguminous plants and this occurs in nodules. A low-oxygen environment is needed for nitrogen fixation, which paradoxically has a requirement for rapid respiration to produce ATP. These conflicting demands are met by control of oxygen flux and production of leghaemoglobin (an oxygen carrier) by the plant, coupled with the expression of a high-affinity oxidase by the nodule bacteria (bacteroids). Many of the bacterial genes encoding cytochrome synthesis and assembly have been identified in a variety of rhizobial strains. Nitrogen-fixing bacteroids use a cytochrome cbb3-type oxidase encoded by the fixNOQP operon; electron transfer to this high-affinity oxidase is via the cytochrome bc1 complex. During free-living growth, electron transport from the cytochrome bc1 complex to cytochrome aa3 occurs via a transmembrane cytochrome c (CycM). In some rhizobia (such as Bradyrhizobium japonicum) there is a second cytochrome oxidase that also requires electron transport via the cytochrome bc1 complex. In parallel with these cytochrome c oxidases there are quinol oxidases that are expressed during free-living growth. A cytochrome bb3 quinol oxidase is thought to be present in B. japonicum; in Rhizobium leguminosarum, Rhizobium etli and Azorhizobium caulinodans cytochrome d-type oxidases have been identified. Spectroscopic data suggest the presence of a cytochrome o-type oxidase in several rhizobia, although the absence of haem O in B. japonicum may indicate that the absorption attributed to cytochrome o could be due to a high-spin cytochrome b in a cytochrome bb3-type oxidase. In some rhizobia, mutation of genes involved in cytochrome c assembly does not strongly affect growth, presumably because the bacteria utilize the cytochrome c-independent quinol oxidases. In this review, we outline the work on various rhizobial mutants affected in different components of the electron transport pathways, and the effects of these mutations on symbiotic nitrogen fixation and free-living growth.
Collapse
Affiliation(s)
- M J Delgado
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidin, CSIC, Granada, Spain
| | | | | |
Collapse
|
24
|
Arcondéguy T, Huez I, Tillard P, Gangneux C, de Billy F, Gojon A, Truchet G, Kahn D. The Rhizobium meliloti PII protein, which controls bacterial nitrogen metabolism, affects alfalfa nodule development. Genes Dev 1997; 11:1194-206. [PMID: 9159400 DOI: 10.1101/gad.11.9.1194] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Symbiotic nitrogen fixation involves the development of specialized organs called nodules within which plant photosynthates are exchanged for combined nitrogen of bacterial origin. To determine the importance of bacterial nitrogen metabolism in symbiosis, we have characterized a key regulator of this metabolism in Rhizobium meliloti, the uridylylatable P(II) protein encoded by glnB. We have constructed both a glnB null mutant and a point mutant making nonuridylylatable P(II). In free-living conditions, P(II) is required for expression of the ntrC-dependent gene glnII and for adenylylation of glutamine synthetase I. P(II) is also required for efficient infection of alfalfa but not for expression of nitrogenase. However alfalfa plants inoculated with either glnB mutant are nitrogen-starved in the absence of added combined nitrogen. We hypothesize that P(II) controls expression or activity of a bacteroid ammonium transporter required for a functional nitrogen-fixing symbiosis. Therefore, the P(II) protein affects both Rhizobium nitrogen metabolism and alfalfa nodule development.
Collapse
Affiliation(s)
- T Arcondéguy
- Unité Mixte de Recherches (UMR) 215 Institut National de la Recherche Agronomique (INRA)/Centre National de la Recherche Scientifique (CNRS), Castanet-Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Arcondéguy T, Huez I, Fourment J, Kahn D. Symbiotic nitrogen fixation does not require adenylylation of glutamine synthetase I in Rhizobium meliloti. FEMS Microbiol Lett 1996; 145:33-40. [PMID: 8931324 DOI: 10.1111/j.1574-6968.1996.tb08553.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Symbiotic nitrogen fixation is accompanied by a shift of Rhizobium nitrogen metabolism from ammonium assimilation to ammonium export, which probably involves genetic or metabolic regulation of glutamine synthetase activity. In free-living Rhizobium meliloti glutamine synthetase I (GSI) is regulated post-translationally by reversible adenylylation in response to ammonium addition. Moreover, full expression of the GSI gene glnA requires the transcriptional activator, NtrC. A glnA1 mutant synthesizing a non-adenylylatable GSI produces normal nitrogen-fixing nodules on alfalfa: GSI adenylylation is dispensable for symbiotic nitrogen fixation. This is rationalized by the observation that less GS protein is present in R. meliloti bacteroids than in free-living bacterial cells.
Collapse
Affiliation(s)
- T Arcondéguy
- Laboratoire de Bíologie Moléculaire des Relations Plantes-Microorganismes, UMR 215 INRAICNRS, Chemin de Borde Rouge, Castanet-Tolosan, France
| | | | | | | |
Collapse
|
26
|
Swamynathan SK, Singh A. Pleiotropic effects of purine auxotrophy inRhizobium meliloti on cell surface molecules. J Biosci 1995. [DOI: 10.1007/bf02711577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Abstract
Rhizobia are gram-negative bacteria with two distinct habitats: the soil rhizosphere in which they have a saprophytic and, usually, aerobic life and a plant ecological niche, the legume nodule, which constitutes a microoxic environment compatible with the operation of the nitrogen reducing enzyme nitrogenase. The purpose of this review is to summarize the present knowledge of the changes induced in these bacteria when shifting to a microoxic environment. Oxygen concentration regulates the expression of two major metabolic pathways: energy conservation by respiratory chains and nitrogen fixation. After reviewing the genetic data on these metabolic pathways and their response to oxygen we will put special emphasis on the regulatory molecules which are involved in the control of gene expression. We will show that, although homologous regulatory molecules allow response to oxygen in different species, they are assembled in various combinations resulting in a variable regulatory coupling between genes for microaerobic respiration and nitrogen fixation genes. The significance of coordinated regulation of genes not essential for nitrogen fixation with nitrogen fixation genes will also be discussed.
Collapse
Affiliation(s)
- J Batut
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS INRA, Castanet-Tolosan, France
| | | |
Collapse
|
28
|
Chan YK, Wheatcroft R. Detection of a nitrous oxide reductase structural gene in Rhizobium meliloti strains and its location on the nod megaplasmid of JJ1c10 and SU47. J Bacteriol 1993; 175:19-26. [PMID: 8416894 PMCID: PMC196093 DOI: 10.1128/jb.175.1.19-26.1993] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The gene encoding a denitrification enzyme, nitrous oxide reductase (EC 1.7.99.6), in Rhizobium meliloti and other gram-negative bacteria was detected by hybridization to an internal 1.2-kb PstI fragment of the structural gene (nosZ) cloned from Pseudomonas stutzeri Zobell (W.G. Zumft, A. Viebrock-Sambale, and C. Braun, Eur. J. Biochem. 192:591-599, 1990). Homology to the probe was detected in the DNAs of two N2-fixing strains of P. stutzeri, two denitrifying Pseudomonas species, one Alcaligenes eutrophus strain, and 36 of 56 R. meliloti isolates tested. Except for two isolates of R. meliloti, all showed nitrous oxide reduction activity (Nos+). Therefore, at least part of the nosZ sequence appears to be conserved and widely distributed among denitrifiers, which include free-living and symbiotic diazotrophs. By using Agrobacterium tumefaciens transconjugants harboring different megaplasmids of R. meliloti JJ1c10 and SU47, sequence homology with the nosZ probe was unequivocally located on the nod megaplasmid. A cosmid clone of JJ1c10 in which nosZ homology was mapped on a 4.2-kb BamHI fragment was selected. This cosmid, which conferred Nos+ activity to the R. meliloti wild-type strains ATCC 9930 and Balsac (Nos- and nondenitrifying, respectively) also restored Nos+ activity in the mutants of JJ1c10 and SU47 in which the 4.2-kb BamHI segment was deleted. Therefore, this segment contains sequences essential for nos gene expression in JJ1c10 and SU47 and thus confirms that the nod megaplasmid in JJ1c10 and SU47 which carries genes essential for symbiotic dinitrogen fixation also carries genes involved in the antagonistic process of denitrification.
Collapse
Affiliation(s)
- Y K Chan
- Plant Research Centre, Agriculture Canada, Ottawa, Ontario
| | | |
Collapse
|
29
|
Klein S, Lohman K, Clover R, Walker GC, Signer ER. A directional, high-frequency chromosomal mobilization system for genetic mapping of Rhizobium meliloti. J Bacteriol 1992; 174:324-6. [PMID: 1309521 PMCID: PMC205713 DOI: 10.1128/jb.174.1.324-326.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A system for mapping of the Rhizobium meliloti chromosome that utilizes transposon Tn5-Mob, which carries the mobilization site of IncP plasmid RP4 (R. Simon, Mol. Gen. Genet. 196:413-420, 1984), was developed. Insertions of Tn5-Mob that were located at particular sites on the R. meliloti chromosome were isolated and served as origins of high-frequency chromosomal transfer when IncP tra functions were provided in trans. This approach is, in principle, applicable to any gram-negative bacterium in which Tn5 can transpose and into which IncP plasmids can conjugate.
Collapse
Affiliation(s)
- S Klein
- Biology Department, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | |
Collapse
|
30
|
Kaminski PA, Mandon K, Arigoni F, Desnoues N, Elmerich C. Regulation of nitrogen fixation in Azorhizobium caulinodans: identification of a fixK-like gene, a positive regulator of nifA. Mol Microbiol 1991; 5:1983-91. [PMID: 1766374 DOI: 10.1111/j.1365-2958.1991.tb00820.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleotide sequence of a 1 kb fragment upstream of Azorhizobium caulinodans fixL was established. An open reading frame of 744 bp was identified as a fixK homologue. A kanamycin cartridge was inserted into the cloned fixK-like gene and recombined into the host genome. The resulting mutant was Nif-Fix-, suggesting that FixK was required for nitrogen fixation both in symbiotic conditions and in the free-living state. Using a pfixK-lacZ fusion, the FixLJ products were shown to control the expression of fixK. Using a pnifA-lacZ fusion, the FixK product was shown to regulate positively the transcription of nifA in bacteria grown in the free-living state. In addition, a double ntrC-fixL mutant was constructed and was shown to be completely devoid of nitrogenase activity. A model of regulation, based on these data, is presented and might explain the unusual ability of A. caulinodans to fix nitrogen both under symbiotic conditions and in the free-living state.
Collapse
Affiliation(s)
- P A Kaminski
- Unité de Physiologie Cellulaire, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
31
|
Sanjuan J, Olivares J. NifA-NtrA regulatory system activates transcription of nfe, a gene locus involved in nodulation competitiveness of Rhizobium meliloti. Arch Microbiol 1991; 155:543-8. [PMID: 1953295 DOI: 10.1007/bf00245347] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have previously demonstrated that the Rhizobium meliloti large plasmid pRmeGR4b carries the gene locus nodule formation efficiency (nfe) which is responsible for nodulation efficiency and competitive ability of strain GR4 on alfalfa roots. In this study we report that expression of nfe-lacZ fusions in Escherichia coli is activated in the presence of the cloned nifA gene of R. meliloti. This activation was found to be oxygen sensitive and to require the E. coli ntrA gene product. In contrast to the R. meliloti nifA, the cloned nifA gene of Klebsiella pneumoniae was able to activate expression of nfe in aerobically grown cells of both E. coli and R. meliloti. Hybridization experiments did not show homology to nfe in four R. meliloti wild-type strains tested. These strains were uncompetitive when coinoculated with a GR4 derivative carrying plasmid pRmeGR4b, but were competitive when coinoculated with a GR4 derivative carrying a single transposon mutation into the nfe region. When nfe DNA was introduced into the four wild-type strains, a significant increase in the competitive ability of two of them was observed, as deduced from their respective percentages of alfalfa root nodule occupancy in two-strains coinoculation experiments.
Collapse
Affiliation(s)
- J Sanjuan
- Departamento de Microbiología, Estación Experimental del Zaidín, Granada, Spain
| | | |
Collapse
|
32
|
Wheatcroft R, Laberge S. Identification and nucleotide sequence of Rhizobium meliloti insertion sequence ISRm3: similarity between the putative transposase encoded by ISRm3 and those encoded by Staphylococcus aureus IS256 and Thiobacillus ferrooxidans IST2. J Bacteriol 1991; 173:2530-8. [PMID: 1849509 PMCID: PMC207817 DOI: 10.1128/jb.173.8.2530-2538.1991] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The insertion sequence ISRm3 was discovered simultaneously in different Rhizobium meliloti strains by probing Southern blots of total cellular DNA with 32P-labeled pTA2. This plasmid is indigenous to strain IZ450 and fortuitously contained four copies of ISRm3. By using an internal EcoRI fragment as a specific probe (pRWRm31), homology to ISRm3 was subsequently detected in over 90% of R. meliloti strains tested from different geographical locations around the world. The frequency of stable nonlethal ISRm3 transpositions was estimated to be 4 x 10(-5) per generation per cell in strain SU47 when grown in liquid culture. The entire nucleotide sequence of ISRm3 in R. meliloti 102F70 is 1,298 bp and has 30-bp terminal inverted repeats which are perfectly matched. Analysis of six copies of ISRm3 in two strains showed that a variable number of base pairs (usually eight or nine) were duplicated and formed direct repeats adjacent to the site of insertion. On one DNA strand, ISRm3 contains an open reading frame spanning 93% of its length. Comparison of the putative protein encoded with sequences derived from the EMBL and GenBank databases showed significant similarity between the putative transposases of ISRm3 from R. meliloti, IS256 from Staphylococcus aureus, and IST2 from Thiobacillus ferroxidans. These insertion sequences appear to be distantly related members of a distinct class.
Collapse
Affiliation(s)
- R Wheatcroft
- Plant Research Centre, Agriculture Canada, Ottawa, Ontario
| | | |
Collapse
|
33
|
Kaminski PA, Elmerich C. Involvement of fixLJ in the regulation of nitrogen fixation in Azorhizobium caulinodans. Mol Microbiol 1991; 5:665-73. [PMID: 2046550 DOI: 10.1111/j.1365-2958.1991.tb00738.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A gene bank of Azorhizobium caulinodans DNA constructed in the bacteriophage lambda GEM11 was screened with Rhizobium meliloti fixL and fixJ genes as probes. One positive recombinant phage, ORS lambda L, was isolated. The nucleotide sequence of a 3.7 kb fragment was established. Two open reading frames of 1512bp and 613bp were identified as fixL and fixJ. Kanamycin cartridges were inserted into the cloned fixL and fixJ genes and recombined into the host genome. The resulting mutants were Nif- Fix-, suggesting that the two genes were required for symbiotic nitrogen fixation and for nitrogen fixation in the free-living state. Using pnifH-lacZ and pnifA-lacZ fusions, it was shown that the FixLJ products controlled the expression of nifH and nifA in bacteria grown in the free-living state.
Collapse
Affiliation(s)
- P A Kaminski
- Département des Biotechnologies, Institute Pasteur, Paris, France
| | | |
Collapse
|
34
|
Pretorius-Güth IM, Pühler A, Simon R. Conjugal Transfer of Megaplasmid 2 between
Rhizobium meliloti
Strains in Alfalfa Nodules. Appl Environ Microbiol 1990; 56:2354-2359. [PMID: 16348248 PMCID: PMC184733 DOI: 10.1128/aem.56.8.2354-2359.1990] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A DNA fragment containing the RP4
mob
function, as well as the gentamicin and spectinomycin resistance genes, was inserted by gene replacement onto the megaplasmid 2 (pM2) of
Rhizobium meliloti
0540 (Inf
−
EPS
−
), resulting in PG101 (Inf
−
EPS
−
). The self-transfer of pM2 and the mobilization of pM2 by plasmid RP4-4 were investigated during conjugation between PG101 and
R. meliloti
2526 (Nod
−
). In filter conjugations, pM2 was readily mobilized by RP4-4. In addition to this, the self-transfer of one megaplasmid (pM) was detected at a frequency of 3 × 10
−7
. Bacteria isolated from the nodules of alfalfa and coinoculated with strains PG101 and 2526 showed that pM2 was mobilized at a frequency of approximately 7 × 10
−5
. Bacterial cell numbers were too low in the nodules for detection of the self-transfer of pM2 to occur. No pM2 transfer was detected in the inoculum. A comparison of the transfer frequencies for the various conjugation conditions revealed that pM2 transfer occurred as frequently in the nodules as in filter conjugations. These results indicate that the nodule creates conditions for gene transfer that are comparable to optimal laboratory conditions.
Collapse
Affiliation(s)
- Inge-M Pretorius-Güth
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Postfach 8640, D-4800 Bielefeld 1, Federal Republic of Germany
| | | | | |
Collapse
|
35
|
Vasse J, de Billy F, Camut S, Truchet G. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 1990; 172:4295-306. [PMID: 2376562 PMCID: PMC213254 DOI: 10.1128/jb.172.8.4295-4306.1990] [Citation(s) in RCA: 337] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacteroid differentiation was examined in developing and mature alfalfa nodules elicited by wild-type or Fix- mutant strains of Rhizobium meliloti. Ultrastructural studies of wild-type nodules distinguished five steps in bacteroid differentiation (types 1 to 5), each being restricted to a well-defined histological region of the nodule. Correlative studies between nodule development, bacteroid differentiation, and acetylene reduction showed that nitrogenase activity was always associated with the differentiation of the distal zone III of the nodule. In this region, the invaded cells were filled with heterogeneous type 4 bacteroids, the cytoplasm of which displayed an alternation of areas enriched with ribosomes or with DNA fibrils. Cytological studies of complementary halves of transversally sectioned mature nodules confirmed that type 4 bacteroids were always observed in the half of the nodule expressing nitrogenase activity, while the presence of type 5 bacteroids could never be correlated with acetylene reduction. Bacteria with a transposon Tn5 insertion in pSym fix genes elicited the development of Fix- nodules in which bacteroids could not develop into the last two ultrastructural types. The use of mutant strains deleted of DNA fragments bearing functional reiterated pSym fix genes and complemented with recombinant plasmids, each carrying one of these fragments, strengthened the correlation between the occurrence of type 4 bacteroids and acetylene reduction. A new nomenclature is proposed to distinguish the histological areas in alfalfa nodules which account for and are correlated with the multiple stages of bacteroid development.
Collapse
Affiliation(s)
- J Vasse
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, Céntre National de la Recherche Scientifique-Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | | | | | | |
Collapse
|
36
|
Colonna-Romano S, Arnold W, Schlüter A, Boistard P, Pühler A, Priefer UB. An Fnr-like protein encoded in Rhizobium leguminosarum biovar viciae shows structural and functional homology to Rhizobium meliloti FixK. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:138-47. [PMID: 2175385 DOI: 10.1007/bf00315806] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A 1.9 kb DNA region of Rhizobium leguminosarum biovar viciae strain VF39 capable of promoting microaerobic and symbiotic induction of the Rhizobium meliloti fixN gene was identified by heterologous complementation. Sequence analysis of this DNA region revealed the presence of two complete open reading frames, orf240 and orf114. The deduced amino acid sequence of orf240 showed significant homology to Escherichia coli Fnr and R. meliloti FixK. The major difference between ORF240 and FixK is the presence of 21 N-terminal amino acids in ORF240 that have no counterpart in FixK. A similar protein domain is also present in E. coli Fnr and is essential for the oxygen-regulated activity of this protein. Analysis of the nucleotide sequence upstream of orf240 revealed a motif similar to the NtrA-dependent promoter consensus sequence, as well as two DNA regions resembling the Fnr consensus binding sequence. A Tn5-generated mutant in orf240 lost the ability to induce the R. meliloti fixN-lacZ fusion. Interestingly, this mutant was still capable of nitrogen fixation but showed reduced nitrogenase activity.
Collapse
Affiliation(s)
- S Colonna-Romano
- University of Bielefeld, Faculty of Biology, Department of Genetics, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
37
|
de Philip P, Batut J, Boistard P. Rhizobium meliloti Fix L is an oxygen sensor and regulates R. meliloti nifA and fixK genes differently in Escherichia coli. J Bacteriol 1990; 172:4255-62. [PMID: 2115865 PMCID: PMC213249 DOI: 10.1128/jb.172.8.4255-4262.1990] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In Rhizobium meliloti, nif and fix genes, involved in nitrogen fixation during symbiosis with alfalfa, are under the control of two transcriptional regulators encoded by nifA and fixK. Expression of nifA and fixK is under the control of FixL/J, a two-component regulatory system. We showed, using Escherichia coli as a heterologous host, that FixL/J controls nifA and fixK expression in response to microaerobiosis. Furthermore, expression of the sensor gene fixL and of the activator gene fixJ under the control of two different promoters allowed us to show that FixL mediates microaerobic induction of nifA when the level of FixJ is low and aerobic repression of nifA when the level of FixJ is high. Similarly, activation of fixK occurred in microaerobiosis when the FixJ level was low in the presence of FixL. In contrast to nifA, fixK expression was not affected by FixL in aerated cultures when the level of FixJ was high. We conclude that R. meliloti FixL senses oxygen in the heterologous host E. coli consistent with the microaerobic induction of nifA and fixK in R. meliloti and that nifA and fixK promoters are differentially activated by FixJ in response to the oxygen signal.
Collapse
Affiliation(s)
- P de Philip
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique, Castanet-Toulosan, France
| | | | | |
Collapse
|
38
|
Abstract
A circular linkage map of the Rhizobium meliloti megaplasmid pRmeSU47b was constructed. The map consists of transposon insertions carrying alternating antibiotic resistance markers linked by phi M12 transduction. Data from conjugation experiments utilizing donor strains carrying Tn5-oriT insertions in the megaplasmid supported the proposed genetic map. In addition, the positions of previously identified Fix, exopolysaccharide synthetic, thiamine synthetic, and C4-dicarboxylate transport loci on the megaplasmid map were determined. By converting cotransduction frequencies to physical distance, we calculated the replicon to be 1,600 kilobases in size, which compares favorably with previous physical estimates.
Collapse
Affiliation(s)
- T C Charles
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
39
|
Symbiotic and galactose utilization properties of phage RMP64-resistant mutants affecting three complementation groups inRhizobium meliloti. J Genet 1989. [DOI: 10.1007/bf02927852] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Klipp W, Reiländer H, Schlüter A, Krey R, Pühler A. The Rhizobium meliloti fdxN gene encoding a ferredoxin-like protein is necessary for nitrogen fixation and is cotranscribed with nifA and nifB. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:293-302. [PMID: 2747618 DOI: 10.1007/bf00334368] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sequencing of the Rhizobium meliloti DNA region downstream of nifA revealed the existence of nifB, fdxN and ORF3. The molecular weight of the fdxN protein (Mr 6830) and the distribution of cysteine residues in its deduced amino acid sequence is typical for low molecular weight bacterial ferredoxins. Interposon insertion and plasmid integration mutagenesis demonstrated that FdxN is essential for nitrogen fixation in R. meliloti, whereas the predicted translation product of ORF3 (Mr 8708) is not necessary for this process. In contrast, ferredoxin-like proteins, which are encoded by nifB-associated genes, are not required for nitrogen fixation in all other organisms analysed so far. Plasmid integration mutagenesis additionally revealed that nifA, nifB and fdxN form one transcriptional unit. This result was confirmed by complementation analysis of polar interposon insertion mutants of nifA, nifB and fdxN and by complementation of a non-polar nifA deletion mutant. A DNA sequence resembling a typical nif consensus promoter, which is preceded by two putative NifA-binding sites, is located in front of nifB. This nifB promoter can be activated in Escherichia coli by the nifA gene product of Klebsiella pneumoniae to the same level as that of the R. meliloti nifH promoter. In contrast, R. meliloti NifA stimulates the nifH promoter more efficiently than the nifB promoter. This low-level activation of the nifB promoter may be the reason why transcription of nifB and fdxN is initiated primarily at a promoter in front of nifA.
Collapse
Affiliation(s)
- W Klipp
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
41
|
Kahn D, David M, Domergue O, Daveran ML, Ghai J, Hirsch PR, Batut J. Rhizobium meliloti fixGHI sequence predicts involvement of a specific cation pump in symbiotic nitrogen fixation. J Bacteriol 1989; 171:929-39. [PMID: 2536685 PMCID: PMC209684 DOI: 10.1128/jb.171.2.929-939.1989] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We present genetic and structural analyses of a fix operon conserved among rhizobia, fixGHI from Rhizobium meliloti. The nucleotide sequence of the operon suggests it may contain a fourth gene, fixS. Adjacent open reading frames of this operon showed an overlap between TGA stop codons and ATG start codons in the form of an ATGA motif suggestive of translational coupling. All four predicted gene products contained probable transmembrane sequences. FixG contained two cysteine clusters typical of iron-sulfur centers and is predicted to be involved in a redox process. FixI was found to be homologous with P-type ATPases, particularly with K+ pumps from Escherichia coli and Streptococcus faecalis but also with eucaryotic Ca2+, Na+/K+, H+/K+, and H+ pumps, which implies that FixI is a pump of a specific cation involved in symbiotic nitrogen fixation. Since prototrophic growth of fixI mutants appeared to be unimpaired, the predicted FixI cation pump probably has a specifically symbiotic function. We suggest that the four proteins FixG, FixH, FixI, and FixS may participate in a membrane-bound complex coupling the FixI cation pump with a redox process catalyzed by FixG.
Collapse
Affiliation(s)
- D Kahn
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The application of recombinant DNA techniques to the study of symbiotic nitrogen fixation has yielded a growing list of Rhizobium meliloti genes involved in the processes of nodulation, infection thread formation and nitrogenase activity in nodules on the roots of the host plant, Medicago sativa (alfalfa). Interaction with the plant is initiated by genes encoding sensing and motility systems by which the bacteria recognizes and approaches the root. Signal molecules, such as flavonoids, mediate a complex interplay of bacterial and plant nodulation genes leading to entry of the bacteria through a root hair. As the nodule develops, the bacteria proceed inward towards the cortex within infection threads, the formation of which depends on bacterial genes involved in polysaccharide synthesis. Within the cortex, the bacteria enter host cells and differentiate into forms known as bacteroids. Genes which encode and regulate nitrogenase enzyme are expressed in the mature nodule, together with other genes required for import and metabolism of carbon and energy sources offered by the plant.
Collapse
Affiliation(s)
- R J Watson
- Plant Research Centre, Agriculture Canada, Ottawa, Ontario, K1A 0C6 Canada
| |
Collapse
|
43
|
Innes RW, Hirose MA, Kuempel PL. Induction of nitrogen-fixing nodules on clover requires only 32 kilobase pairs of DNA from the Rhizobium trifolii symbiosis plasmid. J Bacteriol 1988; 170:3793-802. [PMID: 3410817 PMCID: PMC211373 DOI: 10.1128/jb.170.9.3793-3802.1988] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Overlapping subclones from the Rhizobium trifolii symbiosis plasmid pRt843a were generated by using in vivo and in vitro methods. Subclones were assayed for symbiotic phenotype by introducing them into a derivative of R. trifolii ANU843 cured of its symbiosis plasmid and testing the transconjugant strains for the ability to induce nitrogen-fixing nodules on clover. One subclone spanning 32 kilobase pairs (kb) of DNA from pRt843a was found to restore nitrogen fixation ability. This subclone included all known nodulation genes of R. trifolii ANU843 and the nitrogenase structural genes nifHDK. In addition, regions homologous to fixABC, nifA, nifB, nifE, and nifN genes of other nitrogen-fixing bacteria were identified in this 32-kb subclone by DNA-DNA hybridization. Transposon mutagenesis of this subclone confirmed that regions containing these nif and fix genes were required for induction of nitrogen-fixing nodules on clover. In addition, a region located 5 kb downstream of the nifK gene was found to be required for induction of nitrogen-fixing nodules. No homology to known nif and fix genes could be detected in this latter region.
Collapse
Affiliation(s)
- R W Innes
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | |
Collapse
|
44
|
David M, Daveran ML, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P, Kahn D. Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 1988; 54:671-83. [PMID: 2842062 DOI: 10.1016/s0092-8674(88)80012-6] [Citation(s) in RCA: 293] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the discovery of two genes from Rhizobium meliloti, fixL and fixJ, which are positive regulators of symbiotic expression of diverse nitrogen fixation (nif and fix) genes. nif gene regulation is shown to consist of a cascade: the fixLJ genes activate nifA, which in turn activates nifHDK and fixABCX. Like nifA, fixN can be induced in free-living microaerobic cultures of R. meliloti, indicating a major physiological role for oxygen in nif and fix gene regulation. Microaerobic expression of fixN and nifA depends on fixL and fixJ. The FixL and FixJ proteins belong to a family of two-component regulatory systems widely spread among prokaryotes and responsive to the cell environment. We propose that FixL, which has features of a transmembrane protein, senses an environmental signal and transduces it to FixJ, a transcriptional activator of nif and fix genes.
Collapse
Affiliation(s)
- M David
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes CNRS-INRA, BP27, Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Aguilar OM, Reiländer H, Arnold W, Pühler A. Rhizobium meliloti nifN (fixF) gene is part of an operon regulated by a nifA-dependent promoter and codes for a polypeptide homologous to the nifK gene product. J Bacteriol 1987; 169:5393-400. [PMID: 3316182 PMCID: PMC213963 DOI: 10.1128/jb.169.12.5393-5400.1987] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
An essential gene for symbiotic nitrogen fixation (fixF) is located near the common nodulation region of Rhizobium meliloti. A DNA fragment carrying fixF was characterized by hybridization with Klebsiella pneumoniae nif DNA and by nucleotide sequence analysis. The fixF gene was found to be related to K. pneumoniae nifN and was therefore renamed as the R. meliloti nifN gene. Upstream of the nifN coding region a second open reading frame was identified coding for a putative polypeptide of 110 amino acids (ORF110). By fragment-specific Tn5 mutagenesis it was shown that the nifN gene and ORF110 form an operon. The control region of this operon contains a nif promoter and also the putative nifA-binding sequence. For the deduced amino acid sequence of the nifN gene product a striking homology to the R. meliloti nifK protein was found. One cysteine residue and its adjacent amino acid sequence, which are highly conserved in the R. meliloti nifK, R. meliloti nifN, and K. pneumoniae nifN proteins, may play a role in binding the FeMo cofactor.
Collapse
Affiliation(s)
- O M Aguilar
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Federal Republic of Germany
| | | | | | | |
Collapse
|
46
|
Martínez E, Palacios R, Sánchez F. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J Bacteriol 1987; 169:2828-34. [PMID: 3584072 PMCID: PMC212195 DOI: 10.1128/jb.169.6.2828-2834.1987] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rhizobium phaseoli CFN299 forms nitrogen-fixing nodules in Phaseolus vulgaris (bean) and in Leucaena esculenta. It has three plasmids of 185, 225, and 410 kilobases. The 410-kilobase plasmid contains the nitrogenase structural genes. We have transferred these plasmids to the plasmid-free strain Agrobacterium tumefaciens GMI9023. Transconjugants containing different combinations of the R. phaseoli plasmids were obtained, and they were exhaustively purified before nodulation was assayed. Only transconjugants harboring the 410-kilobase plasmid nodulate P. vulgaris and L. esculenta. Nodules formed by all such transconjugants are able to reduce acetylene. Transconjugants containing the whole set of plasmids from CFN299 nodulate better and fix more nitrogen than the transconjugants carrying only the Sym plasmid. Microscopic analysis of nodules induced by A. tumefaciens transconjugants reveals infected cells and vascular bundles. None of the A. tumefaciens transconjugants, not even the one with the whole set of plasmids from CFN299, behaves in symbiosis like the original R. phaseoli strain; the transconjugants produce fewer nodules and have lower acetylene reduction (25% as compared to the original R. phaseoli strain) and more amyloplasts per nodule. More than 2,000 bacterial isolates from nodules of P. vulgaris and L. esculenta formed by the transconjugants were analyzed by different criteria. Not a single rhizobium could be detected. Our results show that R. phaseoli plasmids may be expressed in the A. tumefaciens background and direct the formation of effective, differentiated nodules.
Collapse
|
47
|
Ebeling S, Hahn M, Fischer HM, Hennecke H. Identification of nifE-, nifN- and nifS-like genes in Bradyrhizobium japonicum. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00331622] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
David M, Domergue O, Pognonec P, Kahn D. Transcription patterns of Rhizobium meliloti symbiotic plasmid pSym: identification of nifA-independent fix genes. J Bacteriol 1987; 169:2239-44. [PMID: 2437100 PMCID: PMC212141 DOI: 10.1128/jb.169.5.2239-2244.1987] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We performed a systematic survey of transcription of a large region of the Rhizobium meliloti symbiotic plasmid pSym. This led to the discovery of two new sequences induced during symbiosis. The first sequence was linked to the known nitrogen fixation (nif-fix) gene cluster, and its expression depended on the nifA gene product. The second sequence was a novel fix locus (M.-H. Renalier, J. Batut, J. Ghai, B. Terzaghi, M. Gherardi, M. David, A.-M. Garnerone, J. Vasse, G. Truchet, T. Huguet, and P. Boistard, J. Bacteriol. 169:2231-2238, 1987) whose expression was independent of the nifA gene product; therefore this fix locus undergoes a novel type of symbiotic regulation.
Collapse
|
49
|
Renalier MH, Batut J, Ghai J, Terzaghi B, Gherardi M, David M, Garnerone AM, Vasse J, Truchet G, Huguet T. A new symbiotic cluster on the pSym megaplasmid of Rhizobium meliloti 2011 carries a functional fix gene repeat and a nod locus. J Bacteriol 1987; 169:2231-8. [PMID: 3571166 PMCID: PMC212139 DOI: 10.1128/jb.169.5.2231-2238.1987] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A 290-kilobase (kb) region of the Rhizobium meliloti 2011 pSym megaplasmid, which contains nodulation genes (nod) as well as genes involved in nitrogen fixation (nif and fix), was shown to carry at least six sequences repeated elsewhere in the genome. One of these reiterated sequences, about 5 kb in size, had previously been identified as part of a cluster of fix genes located 220 kb downstream of the nifHDK promoter. Deletion of the reiterated part of this fix cluster does not alter the symbiotic phenotype. Deletion of the second copy of this reiterated sequence, which maps on pSym 40 kb upstream of the nifHDK promoter, also has no effect. Deletion of both of these copies however leads to a Fix- phenotype, indicating that both sequences carry functionally reiterated fix gene(s). The fix copy 40 kb upstream of nifHDK is part of a symbiotic cluster which also carries a nod locus, the deletion of which produces a marked delay in nodulation.
Collapse
|
50
|
Buikema WJ, Klingensmith JA, Gibbons SL, Ausubel FM. Conservation of structure and location of Rhizobium meliloti and Klebsiella pneumoniae nifB genes. J Bacteriol 1987; 169:1120-6. [PMID: 3029020 PMCID: PMC211909 DOI: 10.1128/jb.169.3.1120-1126.1987] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Using transposon Tn5-mediated mutagenesis, an essential Rhizobium meliloti nitrogen fixation (nif) gene was identified and located directly downstream of the regulatory gene nifA. Maxicell and DNA sequence analysis demonstrated that the new gene is transcribed in the same direction as nifA and codes for a 54-kilodalton protein. In Klebsiella pneumoniae, the nifBQ operon is located directly downstream of a gene which is structurally and functionally homologous to the R. meliloti nifA gene. The DNA sequences of the K. pneumoniae nifB and nifQ genes (which code for 51- and 20-kilodalton proteins, respectively) were determined. The DNA sequence of the newly identified R. meliloti gene was approximately 50% homologous to the K. pneumoniae nifB gene. R. meliloti does not contain a gene homologous to nifQ directly downstream of nifB. The R. meliloti nifB product shares approximately 40% amino acid homology with the K. pneumoniae nifB product, and 10 of the 12 cysteine residues of the R. meliloti nifB product are conserved with 10 of the 17 cysteine residues of the K. pneumoniae nifB product.
Collapse
|