1
|
Lato DF, Zeng Q, Golding GB. Genomic inversions in Escherichia coli alter gene expression and are associated with nucleoid protein binding sites. Genome 2022; 65:287-299. [DOI: 10.1139/gen-2021-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic reorganization, like rearrangements and inversions, influence how genetic information is organized within bacterial genomes. Inversions in particular, facilitate genome evolution through gene gain and loss, and can alter gene expression. Previous studies investigating the impact inversions have on gene expression induced inversions targeting specific genes or examine inversions between distantly related species. This fails to encompass a genome wide perspective on naturally occurring inversions and their post adaptation impact on gene expression. Here we use bioinformatic techniques and multiple RNA-seq datasets to investigate the short- and long-range impact inversions have on genomic gene expression within <i>Escherichia coli</i>. We observed differences in gene expression between homologous inverted and non-inverted genes, even after long term exposure to adaptive selection. In 4% of inversions representing 33 genes, differential gene expression between inverted and non-inverted homologs was detected, with nearly two thirds (71%) of differentially expressed inverted genes having 9.4-85.6 fold higher gene expression. The identified inversions had more overlap than expected with nucleoid associated protein binding sites, which assist in genomic gene expression regulation. Some inversions can drastically impact gene expression even between different strains of <i>E.coli</i>, and could provide a mechanism for the diversification of genetic content through controlled expression changes.
Collapse
Affiliation(s)
| | - Qing Zeng
- McMaster University, Department of Biology, Hamilton, Ontario, Canada,
| | - G. Brian Golding
- McMaster University, Department of Biology, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1,
| |
Collapse
|
2
|
Hu XP, Lercher MJ. An optimal growth law for RNA composition and its partial implementation through ribosomal and tRNA gene locations in bacterial genomes. PLoS Genet 2021; 17:e1009939. [PMID: 34843465 PMCID: PMC8659690 DOI: 10.1371/journal.pgen.1009939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/09/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
The distribution of cellular resources across bacterial proteins has been quantified through phenomenological growth laws. Here, we describe a complementary bacterial growth law for RNA composition, emerging from optimal cellular resource allocation into ribosomes and ternary complexes. The predicted decline of the tRNA/rRNA ratio with growth rate agrees quantitatively with experimental data. Its regulation appears to be implemented in part through chromosomal localization, as rRNA genes are typically closer to the origin of replication than tRNA genes and thus have increasingly higher gene dosage at faster growth. At the highest growth rates in E. coli, the tRNA/rRNA gene dosage ratio based on chromosomal positions is almost identical to the observed and theoretically optimal tRNA/rRNA expression ratio, indicating that the chromosomal arrangement has evolved to favor maximal transcription of both types of genes at this condition. Unlike the proteome composition, RNA composition is often assumed to be independent of growth rate in bacteria, despite experimental evidence for a growth rate dependence in many microbes. In this work, we derived a growth-rate dependent optimal tRNA/rRNA concentration ratio by minimizing the combined costs of ribosome and ternary complex at the required protein production rate. The predicted optimal tRNA/rRNA expression ratio, which is a monotonically decreasing function of growth rate, agrees with experimental data for E. coli and other fast-growing microbes. This indicates the existing of an RNA composition growth law. Due to the presence of partially replicated chromosomes, gene dosage is higher for those genes whose DNA is replicated earlier, an effect that becomes stronger at higher growth rates. Because rRNA genes are located closer to origin of replication than tRNA genes in fast-growing species, the tRNA/rRNA gene dosage ratio scales with growth rate in the same direction as the optimal tRNA/rRNA expression ratio. Thus, it appears that the RNA growth law is–at least in part–implemented simply through the genomic positions of tRNA and rRNA genes. This finding indicates that growth rate-dependent optimal resource allocation can influence the genomic organization in bacteria.
Collapse
Affiliation(s)
- Xiao-Pan Hu
- Institute for Computer Science and Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Martin J. Lercher
- Institute for Computer Science and Department of Biology, Heinrich Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
3
|
Schlegel S, Genevaux P, de Gier JW. Isolating Escherichia coli strains for recombinant protein production. Cell Mol Life Sci 2016; 74:891-908. [PMID: 27730255 PMCID: PMC5306230 DOI: 10.1007/s00018-016-2371-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/22/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Escherichia coli has been widely used for the production of recombinant proteins. To improve protein production yields in E. coli, directed engineering approaches have been commonly used. However, there are only few reported examples of the isolation of E. coli protein production strains using evolutionary approaches. Here, we first give an introduction to bacterial evolution and mutagenesis to set the stage for discussing how so far selection- and screening-based approaches have been used to isolate E. coli protein production strains. Finally, we discuss how evolutionary approaches may be used in the future to isolate E. coli strains with improved protein production characteristics.
Collapse
Affiliation(s)
- Susan Schlegel
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16C, 106 91, Stockholm, Sweden.
| |
Collapse
|
4
|
Vandecraen J, Monsieurs P, Mergeay M, Leys N, Aertsen A, Van Houdt R. Zinc-Induced Transposition of Insertion Sequence Elements Contributes to Increased Adaptability of Cupriavidus metallidurans. Front Microbiol 2016; 7:359. [PMID: 27047473 PMCID: PMC4803752 DOI: 10.3389/fmicb.2016.00359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Bacteria can respond to adverse environments by increasing their genomic variability and subsequently facilitating adaptive evolution. To demonstrate this, the contribution of Insertion Sequence (IS) elements to the genetic adaptation of Cupriavidus metallidurans AE126 to toxic zinc concentrations was determined. This derivative of type strain CH34, devoid of its main zinc resistance determinant, is still able to increase its zinc resistance level. Specifically, upon plating on medium supplemented with a toxic zinc concentration, resistant variants arose in which a compromised cnrYX regulatory locus caused derepression of CnrH sigma factor activity and concomitant induction of the corresponding RND-driven cnrCBA efflux system. Late-occurring zinc resistant variants likely arose in response to the selective conditions, as they were enriched in cnrYX disruptions caused by specific IS elements whose transposase expression was found to be zinc-responsive. Interestingly, deletion of cnrH, and consequently the CnrH-dependent adaptation potential, still enabled adaptation by transposition of IS elements (ISRme5 and IS1086) that provided outward-directed promoters driving cnrCBAT transcription. Finally, adaptation to zinc by IS reshuffling can also enhance the adaptation to subsequent environmental challenges. Thus, transposition of IS elements can be induced by stress conditions and play a multifaceted, pivotal role in the adaptation to these and subsequent stress conditions.
Collapse
Affiliation(s)
- Joachim Vandecraen
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium; Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Pieter Monsieurs
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| | - Max Mergeay
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| | - Natalie Leys
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven Leuven, Belgium
| | - Rob Van Houdt
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| |
Collapse
|
5
|
Kono N, Arakawa K, Sato M, Yoshikawa H, Tomita M, Itaya M. Undesigned selection for replication termination of bacterial chromosomes. J Mol Biol 2014; 426:2918-27. [PMID: 24946150 DOI: 10.1016/j.jmb.2014.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/09/2014] [Accepted: 06/09/2014] [Indexed: 11/15/2022]
Abstract
The oriC DNA replication origin in bacterial chromosomes, the location of which appears to be physically identified, is genetically regulated by relevant molecular machinery. In contrast, the location of the terminus remains obscure for many bacterial replicons, except for terC, the proposed and well-studied chromosome termination site in certain bacteria. The terC locus, which is composed of specific sequences for its binding protein, is located at a site opposite from oriC, exhibiting a symmetric structure around the oriC-terC axis. Here, we investigated Bacillus subtilis 168 strains whose axes were hindered and found that the native terC function was robust. However, eradication of terminus region specific binding protein resulted in the natural terC sites not being used for termination; instead, new termini were selected at a location exactly opposite to oriC. We concluded that replication generally terminates at the loci where the two approaching replisomes meet. This site was automatically selected, and two replisomes moving at the same rate supported symmetrical chromosome structures relative to oriC. The rule, which was even validated by artificial chromosomes irrespective of oriC, should be general for replicons administered by two replisomes.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0017, Japan.
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0017, Japan
| | - Mitsuru Sato
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0017, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0017, Japan
| | - Mitsuhiro Itaya
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0017, Japan.
| |
Collapse
|
6
|
Beaume M, Monina N, Schrenzel J, François P. Bacterial genome evolution within a clonal population: from in vitro investigations to in vivo observations. Future Microbiol 2013; 8:661-74. [PMID: 23642119 DOI: 10.2217/fmb.13.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteria are faced with a diversity of environmental stresses that include high salt concentrations, heavy metals and pH fluctuations. Adaptation to resist such stresses is a complex phenomenon that involves global pathways and simultaneous acquisition of multiple unrelated properties. During the last 3 years, the development of new technologies in the field of molecular biology has led to numerous fundamental and quantitative in vitro and in vivo evolutionary studies that have improved our understanding of the principles underlying bacterial adaptations, and helped us develop strategies to cope with the health burden of bacterial virulence. In this review, the authors discuss the evolution of bacteria in the laboratory and in human patients.
Collapse
Affiliation(s)
- Marie Beaume
- Genomic Research Laboratory, Infectious Diseases Service, University of Geneva Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva 14, Switzerland
| | | | | | | |
Collapse
|
7
|
Evertts AG, Coller HA. Back to the origin: reconsidering replication, transcription, epigenetics, and cell cycle control. Genes Cancer 2013; 3:678-96. [PMID: 23634256 DOI: 10.1177/1947601912474891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In bacteria, replication is a carefully orchestrated event that unfolds the same way for each bacterium and each cell division. The process of DNA replication in bacteria optimizes cell growth and coordinates high levels of simultaneous replication and transcription. In metazoans, the organization of replication is more enigmatic. The lack of a specific sequence that defines origins of replication has, until recently, severely limited our ability to define the organizing principles of DNA replication. This question is of particular importance as emerging data suggest that replication stress is an important contributor to inherited genetic damage and the genomic instability in tumors. We consider here the replication program in several different organisms including recent genome-wide analyses of replication origins in humans. We review recent studies on the role of cytosine methylation in replication origins, the role of transcriptional looping and gene gating in DNA replication, and the role of chromatin's 3-dimensional structure in DNA replication. We use these new findings to consider several questions surrounding DNA replication in metazoans: How are origins selected? What is the relationship between replication and transcription? How do checkpoints inhibit origin firing? Why are there early and late firing origins? We then discuss whether oncogenes promote cancer through a role in DNA replication and whether errors in DNA replication are important contributors to the genomic alterations and gene fusion events observed in cancer. We conclude with some important areas for future experimentation.
Collapse
|
8
|
Genome engineering in Vibrio cholerae: a feasible approach to address biological issues. PLoS Genet 2012; 8:e1002472. [PMID: 22253612 PMCID: PMC3257285 DOI: 10.1371/journal.pgen.1002472] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/24/2011] [Indexed: 01/10/2023] Open
Abstract
Although bacteria with multipartite genomes are prevalent, our knowledge of the mechanisms maintaining their genome is very limited, and much remains to be learned about the structural and functional interrelationships of multiple chromosomes. Owing to its bi-chromosomal genome architecture and its importance in public health, Vibrio cholerae, the causative agent of cholera, has become a preferred model to study bacteria with multipartite genomes. However, most in vivo studies in V. cholerae have been hampered by its genome architecture, as it is difficult to give phenotypes to a specific chromosome. This difficulty was surmounted using a unique and powerful strategy based on massive rearrangement of prokaryotic genomes. We developed a site-specific recombination-based engineering tool, which allows targeted, oriented, and reciprocal DNA exchanges. Using this genetic tool, we obtained a panel of V. cholerae mutants with various genome configurations: one with a single chromosome, one with two chromosomes of equal size, and one with both chromosomes controlled by identical origins. We used these synthetic strains to address several biological questions--the specific case of the essentiality of Dam methylation in V. cholerae and the general question concerning bacteria carrying circular chromosomes--by looking at the effect of chromosome size on topological issues. In this article, we show that Dam, RctB, and ParA2/ParB2 are strictly essential for chrII origin maintenance, and we formally demonstrate that the formation of chromosome dimers increases exponentially with chromosome size.
Collapse
|
9
|
Kuzminov A. Homologous Recombination-Experimental Systems, Analysis, and Significance. EcoSal Plus 2011; 4:10.1128/ecosalplus.7.2.6. [PMID: 26442506 PMCID: PMC4190071 DOI: 10.1128/ecosalplus.7.2.6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Indexed: 12/30/2022]
Abstract
Homologous recombination is the most complex of all recombination events that shape genomes and produce material for evolution. Homologous recombination events are exchanges between DNA molecules in the lengthy regions of shared identity, catalyzed by a group of dedicated enzymes. There is a variety of experimental systems in Escherichia coli and Salmonella to detect homologous recombination events of several different kinds. Genetic analysis of homologous recombination reveals three separate phases of this process: pre-synapsis (the early phase), synapsis (homologous strand exchange), and post-synapsis (the late phase). In E. coli, there are at least two independent pathway of the early phase and at least two independent pathways of the late phase. All this complexity is incongruent with the originally ascribed role of homologous recombination as accelerator of genome evolution: there is simply not enough duplication and repetition in enterobacterial genomes for homologous recombination to have a detectable evolutionary role and therefore not enough selection to maintain such a complexity. At the same time, the mechanisms of homologous recombination are uniquely suited for repair of complex DNA lesions called chromosomal lesions. In fact, the two major classes of chromosomal lesions are recognized and processed by the two individual pathways at the early phase of homologous recombination. It follows, therefore, that homologous recombination events are occasional reflections of the continual recombinational repair, made possible in cases of natural or artificial genome redundancy.
Collapse
|
10
|
Matthews TD, Rabsch W, Maloy S. Chromosomal rearrangements in Salmonella enterica serovar Typhi strains isolated from asymptomatic human carriers. mBio 2011; 2:e00060-11. [PMID: 21652779 PMCID: PMC3107234 DOI: 10.1128/mbio.00060-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 04/29/2011] [Indexed: 11/20/2022] Open
Abstract
Host-specific serovars of Salmonella enterica often have large-scale chromosomal rearrangements that occur by recombination between rrn operons. Two hypotheses have been proposed to explain these rearrangements: (i) replichore imbalance from horizontal gene transfer drives the rearrangements to restore balance, or (ii) the rearrangements are a consequence of the host-specific lifestyle. Although recent evidence has refuted the replichore balance hypothesis, there has been no direct evidence for the lifestyle hypothesis. To test this hypothesis, we determined the rrn arrangement type for 20 Salmonella enterica serovar Typhi strains obtained from human carriers at periodic intervals over multiple years. These strains were also phage typed and analyzed for rearrangements that occurred over long-term storage versus routine culturing. Strains isolated from the same carrier at different time points often exhibited different arrangement types. Furthermore, colonies isolated directly from the Dorset egg slants used to store the strains also had different arrangement types. In contrast, colonies that were repeatedly cultured always had the same arrangement type. Estimated replichore balance of isolated strains did not improve over time, and some of the rearrangements resulted in decreased replicore balance. Our results support the hypothesis that the restricted lifestyle of host-specific Salmonella is responsible for the frequent chromosomal rearrangements in these serovars.
Collapse
Affiliation(s)
- T. David Matthews
- Center for Microbial Sciences, Department of Biology, San Diego State University, San Diego, California, USA, and
| | - Wolfgang Rabsch
- Division of Bacterial Infections and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institute, Wernigerode Branch, Wernigerode, Germany
| | - Stanley Maloy
- Center for Microbial Sciences, Department of Biology, San Diego State University, San Diego, California, USA, and
| |
Collapse
|
11
|
Matthews TD, Edwards R, Maloy S. Chromosomal rearrangements formed by rrn recombination do not improve replichore balance in host-specific Salmonella enterica serovars. PLoS One 2010; 5:e13503. [PMID: 20976060 PMCID: PMC2957434 DOI: 10.1371/journal.pone.0013503] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/23/2010] [Indexed: 01/16/2023] Open
Abstract
Background Most of the ∼2,600 serovars of Salmonella enterica have a broad host range as well as a conserved gene order. In contrast, some Salmonella serovars are host-specific and frequently exhibit large chromosomal rearrangements from recombination between rrn operons. One hypothesis explaining these rearrangements suggests that replichore imbalance introduced from horizontal transfer of pathogenicity islands and prophages drives chromosomal rearrangements in an attempt to improve balance. Methodology/Principal Findings This hypothesis was directly tested by comparing the naturally-occurring chromosomal arrangement types to the theoretically possible arrangement types, and estimating their replichore balance using a calculator. In addition to previously characterized strains belonging to host-specific serovars, the arrangement types of 22 serovar Gallinarum strains was also determined. Only 48 out of 1,440 possible arrangement types were identified in 212 host-specific strains. While the replichores of most naturally-occurring arrangement types were well-balanced, most theoretical arrangement types had imbalanced replichores. Furthermore, the most common types of rearrangements did not change replichore balance. Conclusions/Significance The results did not support the hypothesis that replichore imbalance causes these rearrangements, and suggest that the rearrangements could be explained by aspects of a host-specific lifestyle.
Collapse
Affiliation(s)
- T. David Matthews
- Center for Microbial Sciences, Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Robert Edwards
- Center for Microbial Sciences, Department of Biology, San Diego State University, San Diego, California, United States of America
- Department of Computer Science, San Diego State University, San Diego, California, United States of America
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Stanley Maloy
- Center for Microbial Sciences, Department of Biology, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
A fitness cost due to imbalanced replichores has been proposed to provoke chromosome rearrangements in Salmonella enterica serovars. To determine the impact of replichore imbalance on fitness, the relative fitness of isogenic Salmonella strains containing transposon-held duplications of various sizes and at various chromosomal locations was determined. Although duplication of certain genes influenced fitness, a replichore imbalance of up to 16° did not affect fitness.
Collapse
|
13
|
Mathelier A, Carbone A. Chromosomal periodicity and positional networks of genes in Escherichia coli. Mol Syst Biol 2010; 6:366. [PMID: 20461073 PMCID: PMC2890325 DOI: 10.1038/msb.2010.21] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 03/18/2010] [Indexed: 12/26/2022] Open
Abstract
Escherichia coli periodic gene distribution is identified for a periodic interval of 33 kb. Two positional networks of genes are discovered by studying gene periodic distribution: one is driven by metabolic genes and the other by genes involved in cellular processing and signaling. A functional core of Escherichia coli genes drives gene periodic distribution. A few chromosomal regions that preserve gene transcription profiles across environmental changes are identified. This single genome analysis approach can be taken as a footprint for a large-scale bacterial and archaeal periodic distribution analysis.
The structure of dynamic folds in microbial chromosomes is largely unknown. On the other hand, genes characterizing a functional core in Escherichia coli K12 show to be periodically distributed along the arcs, suggesting an encoded three-dimensional genomic organization helping functional activities among which are translation and, possibly, transcription. Core genes are expected to be either highly expressed or rapidly expressed when needed. Because of E. coli K12 life mode, they are especially encoded at the genomic level, with a very biased codon composition, and as a consequence, they can, at some extent, be predicted in silico. On the basis of a computational method allowing the definition of a class of genes that are organism specific, we identify a pool of core genes, some of which are conserved across many species, some depend on the environmental living conditions of the organism, some are involved in the stress response, and others have no yet identified function. This set of predicted core genes covers roughly 10% of all genes in E. coli K12 and approximates well the class of experimentally known essential genes. An important property of core genes is that they cover all the spectrum of microbial functions. This means that for any functional class of genes, some representative of the class belongs to the functional core. Consequently, we reasoned, the three-dimensional chromosomal arrangement of these genes may be important to fulfill basic functional responses. A strong periodic signal of 33 kb is detected, and the approach shows also that a periodic arrangement affects not only core genes, but in fact, all genes along the E. coli K12 chromosome, even if the signal is weaker. An analysis of functional classes of genes shows that they systematically organize into two independent positional gene networks, one driven by metabolic genes and the other by genes involved in cellular processing and signaling (Figure 5A). We conclude that functional reasons justify periodic gene organization. To explore the functional basis of the distribution, we examined the relationships between the codon bias of E. coli K12 genes and transcriptomic data for a number of different growth conditions. We could identify in a very precise manner a few chromosomal regions that preserve gene transcription profiles across environmental changes. These regions present a profile of the expression levels for their genes, which is periodic by a period of 33 kb. These finding generate new questions on evolutionary pressures imposed on the chromosome and suggest a number of insights on chromosomal superhelicity that can lead to a precise conception of experiments and to hypothesis to be tested. The theoretical analysis of functional classes of genes involved in the periodic distribution, for instance, makes clear that metabolic genes and genes involved in translation are expected to be the most affected by a disruption of the periodic chromosomal arrangement. The methodological approach is based on single genome analysis. Given either core genes or genes organized in functional classes, we analyze the detailed distribution of distances between pairs of genes through a parameterized model based on signal processing and find that these groups of genes tend to be separated by a regular integral distance characterized by a periodic interval of 33 kb. The methodology can be applied to any set of genes and can be taken as a footprint for large-scale bacterial and archaeal analysis. The structure of dynamic folds in microbial chromosomes is largely unknown. Here, we find that genes with a highly biased codon composition and characterizing a functional core in Escherichia coli K12 show to be periodically distributed along the arcs, suggesting an encoded three-dimensional genomic organization helping functional activities among which are translation and, possibly, transcription. This extends to functional classes of genes that are shown to systematically organize into two independent positional gene networks, one driven by metabolic genes and the other by genes involved in cellular processing and signaling. We conclude that functional reasons justify periodic gene organization. This finding generates new questions on evolutionary pressures imposed on the chromosome. Our methodological approach is based on single genome analysis. Given either core genes or genes organized in functional classes, we analyze the detailed distribution of distances between pairs of genes through a parameterized model based on signal processing and find that these groups of genes tend to be separated by a regular integral distance. The methodology can be applied to any set of genes and can be taken as a footprint for large-scale bacterial and archaeal analysis.
Collapse
Affiliation(s)
- Anthony Mathelier
- UPMC Univ Paris 06, FRE3214, Génomique Analytique, 15 rue de l'Ecole de Médecine, Paris, France
| | | |
Collapse
|
14
|
Precise excision of IS5 from the intergenic region between the fucPIK and the fucAO operons and mutational control of fucPIK operon expression in Escherichia coli. J Bacteriol 2010; 192:2013-9. [PMID: 20097855 DOI: 10.1128/jb.01085-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Excision of transposable genetic elements from host DNA occurs at low frequencies and is usually imprecise. A common insertion sequence element in Escherichia coli, IS5, has been shown to provide various benefits to its host by inserting into specific sites. Precise excision of this element had not previously been demonstrated. Using a unique system, the fucose (fuc) regulon, in which IS5 insertion and excision result in two distinct selectable phenotypes, we have demonstrated that IS5 can precisely excise from its insertion site, restoring the wild-type phenotype. In addition to precise excision, several "suppressor" insertion, deletion, and point mutations restore the wild-type Fuc(+) phenotype to various degrees without IS5 excision. The possible bases for these observations are discussed.
Collapse
|
15
|
Abstract
Many bacterial cellular processes interact intimately with the chromosome. Such interplay is the major driving force of genome structure or organization. Interactions take place at different scales-local for gene expression, global for replication-and lead to the differentiation of the chromosome into organizational units such as operons, replichores, or macrodomains. These processes are intermingled in the cell and create complex higher-level organizational features that are adaptive because they favor the interplay between the processes. The surprising result of selection for genome organization is that gene repertoires change much more quickly than chromosomal structure. Comparative genomics and experimental genomic manipulations are untangling the different cellular and evolutionary mechanisms causing such resilience to change. Since organization results from cellular processes, a better understanding of chromosome organization will help unravel the underlying cellular processes and their diversity.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Institut Pasteur, Microbial Evolutionary Genomics, F-75015 Paris, France.
| |
Collapse
|
16
|
Zhou F, Xu Y. RepPop: a database for repetitive elements in Populus trichocarpa. BMC Genomics 2009; 10:14. [PMID: 19134208 PMCID: PMC2645430 DOI: 10.1186/1471-2164-10-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 01/09/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Populus trichocarpa is the first tree genome to be completed, and its whole genome is currently being assembled. No functional annotation about the repetitive elements in the Populus trichocarpa genome is currently available. RESULTS We predicted 9,623 repetitive elements in the Populus trichocarpa genome, and assigned functions to 3,075 of them (31.95%). The 9,623 repetitive elements cover approximately 40% of the current (partially) assembled genome. Among the 9,623 repetitive elements, 668 have copies only in the contigs that have not been assigned to one of the 19 chromosome while the rest all have copies in the partially assembled chromosomes. CONCLUSION All the predicted data are organized into an easy-to-use web-browsable database, RepPop. Various search capabilities are provided against the RepPop database. A Wiki system has been set up to facilitate functional annotation and curation of the repetitive elements by a community rather than just the database developer. The database RepPop will facilitate the assembling and functional characterization of the Populus trichocarpa genome.
Collapse
Affiliation(s)
- Fengfeng Zhou
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
17
|
Lesterlin C, Pages C, Dubarry N, Dasgupta S, Cornet F. Asymmetry of chromosome Replichores renders the DNA translocase activity of FtsK essential for cell division and cell shape maintenance in Escherichia coli. PLoS Genet 2008; 4:e1000288. [PMID: 19057667 PMCID: PMC2585057 DOI: 10.1371/journal.pgen.1000288] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/30/2008] [Indexed: 11/18/2022] Open
Abstract
Bacterial chromosomes are organised as two replichores of opposite polarity that coincide with the replication arms from the ori to the ter region. Here, we investigated the effects of asymmetry in replichore organisation in Escherichia coli. We show that large chromosome inversions from the terminal junction of the replichores disturb the ongoing post-replicative events, resulting in inhibition of both cell division and cell elongation. This is accompanied by alterations of the segregation pattern of loci located at the inversion endpoints, particularly of the new replichore junction. None of these defects is suppressed by restoration of termination of replication opposite oriC, indicating that they are more likely due to the asymmetry of replichore polarity than to asymmetric replication. Strikingly, DNA translocation by FtsK, which processes the terminal junction of the replichores during cell division, becomes essential in inversion-carrying strains. Inactivation of the FtsK translocation activity leads to aberrant cell morphology, strongly suggesting that it controls membrane synthesis at the division septum. Our results reveal that FtsK mediates a reciprocal control between processing of the replichore polarity junction and cell division.
Collapse
Affiliation(s)
- Christian Lesterlin
- Laboratoire de Microbiologie et de Génétique Moléculaire, Centre National de la Recherche Scientifique, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
- * E-mail: (CL); (FC)
| | - Carine Pages
- Laboratoire de Microbiologie et de Génétique Moléculaire, Centre National de la Recherche Scientifique, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Nelly Dubarry
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - François Cornet
- Laboratoire de Microbiologie et de Génétique Moléculaire, Centre National de la Recherche Scientifique, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
- * E-mail: (CL); (FC)
| |
Collapse
|
18
|
Zhou F, Olman V, Xu Y. Insertion Sequences show diverse recent activities in Cyanobacteria and Archaea. BMC Genomics 2008; 9:36. [PMID: 18218090 PMCID: PMC2246112 DOI: 10.1186/1471-2164-9-36] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 01/24/2008] [Indexed: 11/11/2022] Open
Abstract
Background Mobile genetic elements (MGEs) play an essential role in genome rearrangement and evolution, and are widely used as an important genetic tool. Results In this article, we present genetic maps of recently active Insertion Sequence (IS) elements, the simplest form of MGEs, for all sequenced cyanobacteria and archaea, predicted based on the previously identified ~1,500 IS elements. Our predicted IS maps are consistent with the NCBI annotations of the IS elements. By linking the predicted IS elements to various characteristics of the organisms under study and the organism's living conditions, we found that (a) the activities of IS elements heavily depend on the environments where the host organisms live; (b) the number of recently active IS elements in a genome tends to increase with the genome size; (c) the flanking regions of the recently active IS elements are significantly enriched with genes encoding DNA binding factors, transporters and enzymes; and (d) IS movements show no tendency to disrupt operonic structures. Conclusion This is the first genome-scale maps of IS elements with detailed structural information on the sequence level. These genetic maps of recently active IS elements and the several interesting observations would help to improve our understanding of how IS elements proliferate and how they are involved in the evolution of the host genomes.
Collapse
Affiliation(s)
- Fengfeng Zhou
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
19
|
Touchon M, Rocha EPC. From GC skews to wavelets: a gentle guide to the analysis of compositional asymmetries in genomic data. Biochimie 2007; 90:648-59. [PMID: 17988781 DOI: 10.1016/j.biochi.2007.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 09/21/2007] [Indexed: 12/29/2022]
Abstract
Compositional asymmetries are pervasive in DNA sequences. They are the result of the asymmetric interactions between DNA and cellular mechanisms such as replication and transcription. Here, we review many of the methods that have been proposed over the years to analyse compositional asymmetries in DNA sequences. Among these we list GC skews, oligonucleotide skews and wavelets, which among other uses have been extensively employed to delimitate origins and termini of replication in genomes. We also review the use of multivariate methods, such as factorial correspondence analysis, discriminant analysis and analysis of variance, which allow assigning compositional strand asymmetries to the different biological processes shaping sequence composition. Finally, we review methods that have been used to infer substitution matrices and allow understanding the mutational processes underlying strand asymmetry. We focus on replication asymmetries because they have been more thoroughly studied, but the methods may be adapted, and often are, to other problems. Although strand asymmetry has been studied more frequently through compositional skews of nucleotides or oligonucleotides, we recall that, depending on the goal of the analysis, other methods may be more appropriate to answer certain biological questions. We also refer to programs freely available to analyse strand asymmetry.
Collapse
Affiliation(s)
- Marie Touchon
- Atelier de Bioinformatique, Université Pierre et Marie Curie-Paris 6, Paris, France
| | | |
Collapse
|
20
|
Couturier E, Rocha EPC. Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes. Mol Microbiol 2006; 59:1506-18. [PMID: 16468991 DOI: 10.1111/j.1365-2958.2006.05046.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bidirectional replication of bacterial genomes leads to transient gene dosage effects. Here, we show that such effects shape the chromosome organisation of fast-growing bacteria and that they correlate strongly with maximal growth rate. Surprisingly the predicted maximal number of replication rounds shows little if any phylogenetic inertia, suggesting that it is a very labile trait. Yet, a combination of theoretical and statistical analyses predicts that dozens of replication forks may be simultaneously present in the cells of certain species. This suggests a strikingly efficient management of the replication apparatus, of replication fork arrests and of chromosome segregation in such cells. Gene dosage effects strongly constrain the position of genes involved in translation and transcription, but not other highly expressed genes. The relative proximity of the former genes to the origin of replication follows the regulatory dependencies observed under exponential growth, as the bias is stronger for RNA polymerase, then rDNA, then ribosomal proteins and tDNA. Within tDNAs we find that only the positions of the previously proposed 'ubiquitous' tRNA, which translate the most frequent codons in highly expressed genes, show strong signs of selection for gene dosage effects. Finally, we provide evidence for selection acting upon genome organisation to take advantage of gene dosage effects by identifying a positive correlation between genome stability and the number of simultaneous replication rounds. We also show that gene dosage effects can explain the over-representation of highly expressed genes in the largest replichore of genomes containing more than one chromosome. Together, these results demonstrate that replication-associated gene dosage is an important determinant of chromosome organisation and dynamics, especially among fast-growing bacteria.
Collapse
Affiliation(s)
- Etienne Couturier
- Atelier de Bioinformatique, Université Pierre et Marie Curie, 12, Rue Cuvier, 75005 Paris, France
| | | |
Collapse
|
21
|
Abstract
The stability of genomes is highly variable, both in terms of gene content and gene order. Here I calibrate the loss of gene order conservation (GOC) through time by fitting a simple probabilistic model on pairwise comparisons involving 126 bacterial genomes. The model computes the probability of separation of pairs of contiguous genes per unit of time and fits the data better than previous ones while allowing a mechanistic interpretation for the loss of GOC with time. Although the information on operons is not used in the model, I observe, as expected, that most highly conserved pairs of genes are indeed within operons. However, even the other pairs are much more conserved than expected given the observed experimental rearrangement rates. After 500 Myr, about 50% of the originally contiguous orthologues remain so in the average genome. Hence, the large majority of rearrangements must be deleterious and random genome rearrangements are unlikely to provide for positively selected structural changes. I then use the deviations from the model to define an intrinsic measure of genome stability that allowed the comparison of distantly related genomes and the inference of ancestral states. This shows that clades differ in genome stability, with cyanobacteria being the least stable and gamma-proteobacteria the most stable. Without correction for phylogeny, free-living bacteria are the least stable group of genomes, followed by pathogens, and then endomutualists. However, after correction for phylogenetic inertia (or the removal of cyanobacteria from the analysis), there is no significant association between genome stability and lifestyle or genome size. Hence, although this method has allowed uncovering some of mechanisms leading to rearrangements, we still ignore the forces that differentially shape selection upon genome stability in different species.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Unité Génétique des Génomes Bactériens, Institut Pasteur, Paris, France and Atelier de BioInformatique, Université Pierre et Marie Curie (Paris VI), Paris, France.
| |
Collapse
|
22
|
Lesterlin C, Mercier R, Boccard F, Barre FX, Cornet F. Roles for replichores and macrodomains in segregation of the Escherichia coli chromosome. EMBO Rep 2005; 6:557-62. [PMID: 15891766 PMCID: PMC1369093 DOI: 10.1038/sj.embor.7400428] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 04/13/2005] [Accepted: 04/14/2005] [Indexed: 11/09/2022] Open
Abstract
Recent work has highlighted two main levels of global organization of the Escherichia coli chromosome. Macrodomains are large domains inferred from structural data consisting of loci showing the same intracellular positioning. Replichores, defined by base composition skews, coincide with the replication arms in normal cells. We used chromosome inversions to show that the dif site, which resolves chromosome dimers, only functions when located at the junction of the replichores, whatever their size. This is the first evidence that replichore polarization has a role in chromosome segregation. We also show that disruption of the Ter macrodomain provokes a cell-cycle defect independent from dimer resolution. This confirms the existence of the Ter macrodomain and suggests a role in chromosome dynamics.
Collapse
Affiliation(s)
- Christian Lesterlin
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, 118, route de Narbonne, 31062 Toulouse Cedex, France
| | - Romain Mercier
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, 118, route de Narbonne, 31062 Toulouse Cedex, France
| | - Frédéric Boccard
- Centre de Génétique Moléculaire du CNRS, Bât. 26, avenue de la Terasse, 91198 Gif-sur Yvette, France
| | - François-Xavier Barre
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, 118, route de Narbonne, 31062 Toulouse Cedex, France
- Centre de Génétique Moléculaire du CNRS, Bât. 26, avenue de la Terasse, 91198 Gif-sur Yvette, France
| | - François Cornet
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, 118, route de Narbonne, 31062 Toulouse Cedex, France
- Tel: +33 561 335 985; Fax: +33 561 335 886; E-mail:
| |
Collapse
|
23
|
Price MN, Huang KH, Arkin AP, Alm EJ. Operon formation is driven by co-regulation and not by horizontal gene transfer. Genome Res 2005; 15:809-19. [PMID: 15930492 PMCID: PMC1142471 DOI: 10.1101/gr.3368805] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 03/16/2005] [Indexed: 11/24/2022]
Abstract
The organization of bacterial genes into operons was originally ascribed to the benefits of co-regulation. More recently, the "selfish operon" model, in which operons are formed by repeated gain and loss of genes, was proposed. Indeed, operons are often subject to horizontal gene transfer (HGT). On the other hand, non-HGT genes are particularly likely to be in operons. To clarify whether HGT is involved in operon formation, we identified recently formed operons in Escherichia coli K12. We show that genes that have homologs in distantly related bacteria but not in close relatives of E. coli--indicating HGT--form new operons at about the same rates as native genes. Furthermore, genes in new operons are no more likely than other genes to have phylogenetic trees that are inconsistent with the species tree. In contrast, essential genes and ubiquitous genes without paralogs--genes believed to undergo HGT rarely--often form new operons. We conclude that HGT is not a cause of operon formation but instead promotes the prevalence of pre-existing operons. To explain operon formation, we propose that new operons reduce the amount of regulatory information required to specify optimal expression patterns and infer that operons should be more likely to evolve than independent promoters when regulation is complex. Consistent with this hypothesis, operons have greater amounts of conserved regulatory sequences than do individually transcribed genes.
Collapse
Affiliation(s)
- Morgan N Price
- Lawrence Berkeley Laboratory, Berkeley California, 94720 USA
| | | | | | | |
Collapse
|
24
|
Schneider D, Lenski RE. Dynamics of insertion sequence elements during experimental evolution of bacteria. Res Microbiol 2004; 155:319-27. [PMID: 15207863 DOI: 10.1016/j.resmic.2003.12.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2003] [Accepted: 12/08/2003] [Indexed: 10/26/2022]
Abstract
We review the intersection between two areas of microbial evolution that were research foci of Michel Blot. One focus is the behavior of insertion sequence (IS) elements, including their role in promoting the evolutionary adaptation of their hosts. The other focus is experimental evolution, an approach that allows the dynamics of genomic and phenotypic change to be observed in the laboratory. This review shows that IS elements are useful as markers for detecting genomic change over experimental time scales and, moreover, that IS elements generate some of the beneficial mutations that increase organismal fitness.
Collapse
Affiliation(s)
- Dominique Schneider
- Laboratoire Adaptation et Pathogénie des Microorganismes, CNRS UMR5163, Université Joseph Fourier, 38041 Grenoble Cedex 9, France.
| | | |
Collapse
|
25
|
Abstract
The replication of the chromosome is among the most essential functions of the bacterial cell and influences many other cellular mechanisms, from gene expression to cell division. Yet the way it impacts on the bacterial chromosome was not fully acknowledged until the availability of complete genomes allowed one to look upon genomes as more than bags of genes. Chromosomal replication includes a set of asymmetric mechanisms, among which are a division in a lagging and a leading strand and a gradient between early and late replicating regions. These differences are the causes of many of the organizational features observed in bacterial genomes, in terms of both gene distribution and sequence composition along the chromosome. When asymmetries or gradients increase in some genomes, e.g. due to a different composition of the DNA polymerase or to a higher growth rate, so do the corresponding biases. As some of the features of the chromosome structure seem to be under strong selection, understanding such biases is important for the understanding of chromosome organization and adaptation. Inversely, understanding chromosome organization may shed further light on questions relating to replication and cell division. Ultimately, the understanding of the interplay between these different elements will allow a better understanding of bacterial genetics and evolution.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Atelier de Bioinformatique, Université Pierre et Marie Curie, 12, Rue Cuvier, 75005 Paris, and Unité Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
26
|
Campo N, Dias MJ, Daveran-Mingot ML, Ritzenthaler P, Le Bourgeois P. Chromosomal constraints in Gram-positive bacteria revealed by artificial inversions. Mol Microbiol 2004; 51:511-22. [PMID: 14756790 DOI: 10.1046/j.1365-2958.2003.03847.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used artificial chromosome inversions to investigate the chromosomal constraints that preserve genome organization in the Gram-positive bacterium Lactococcus lactis. Large inversions, 80-1260 kb in length, disturbing the symmetry of the origin and terminus of the replication axis to various extents, were constructed using the site-specific Cre-loxP recombination system. These inversions were all mechanistically feasible and fell into various classes according to stability and effect on cell fitness. The L. lactis chromosome supports only to some extent unbalance in length of its replication arms. The location of detrimental inversions allowed identification of two constrained chromosomal regions: a large domain covering one fifth of the genome that encompasses the origin of replication (Ori domain), and a smaller domain located at the opposite of the chromosome (Ter domain).
Collapse
Affiliation(s)
- N Campo
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS (UMR5100), Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | | | |
Collapse
|
27
|
Rocha EPC, Danchin A. Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res 2003; 31:6570-7. [PMID: 14602916 PMCID: PMC275555 DOI: 10.1093/nar/gkg859] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 09/25/2003] [Accepted: 09/25/2003] [Indexed: 11/12/2022] Open
Abstract
In Escherichia coli and Bacillus subtilis, essentiality, not expressivity, drives the distribution of genes between the two replicating strands. Although essential genes tend to be coded in the leading replicating strand, the underlying selective constraints and the evolutionary extent of these findings have still not been subject to comparative studies. Here, we extend our previous analysis to the genomes of low G + C firmicutes and gamma-proteobacteria, and in a second step to all sequenced bacterial genomes. The inference of essentiality by homology allows us to show that essential genes are much more frequent in the leading strand than other genes, even when compared with non- essential highly expressed genes. Smaller biases were found in the genomes of obligatory intracellular bacteria, for which the assignment of essentiality by homology from fast growing free-living bacteria is most problematic. Cross-comparisons used to assess potential errors in the assignment of essentiality by homology revealed that, in most cases, variations in the assignment criteria have little influence on the overall results. Essential genes tend to be more conserved in the leading strand than average genes, which is consistent with selection for this positioning and may impose a strong constraint on chromosomal rearrangements. These results indicate that essentiality plays a fundamental role in the distribution of genes in most bacterial genomes.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Unité Génétique des Génomes Bactériens, Institut Pasteur, 28, rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
28
|
Affiliation(s)
- Eduardo P C Rocha
- Unité Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
29
|
Rocha EPC, Danchin A. Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nat Genet 2003; 34:377-8. [PMID: 12847524 DOI: 10.1038/ng1209] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 06/09/2003] [Indexed: 11/09/2022]
Abstract
Preferential positioning of bacterial genes in the leading strand was thought to result from selection to avoid high head-on collision rates between DNA and RNA polymerases. Here we show, however, that in Bacillus subtilis and Escherichia coli, essentiality (the transcript product), not expressiveness (the collision rate), selectively drives the biased gene distribution.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Unité GGB, URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France.
| | | |
Collapse
|
30
|
Achaz G, Coissac E, Netter P, Rocha EPC. Associations between inverted repeats and the structural evolution of bacterial genomes. Genetics 2003; 164:1279-89. [PMID: 12930739 PMCID: PMC1462642 DOI: 10.1093/genetics/164.4.1279] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The stability of the structure of bacterial genomes is challenged by recombination events. Since major rearrangements (i.e., inversions) are thought to frequently operate by homologous recombination between inverted repeats, we analyzed the presence and distribution of such repeats in bacterial genomes and their relation to the conservation of chromosomal structure. First, we show that there is a strong under-representation of inverted repeats, relative to direct repeats, in most chromosomes, especially among the ones regarded as most stable. Second, we show that the avoidance of repeats is frequently associated with the stability of the genomes. Closely related genomes reported to differ in terms of stability are also found to differ in the number of inverted repeats. Third, when using replication strand bias as a proxy for genome stability, we find a significant negative correlation between this strand bias and the abundance of inverted repeats. Fourth, when measuring the recombining potential of inverted repeats and their eventual impact on different features of the chromosomal structure, we observe a tendency of repeats to be located in the chromosome in such a way that rearrangements produce a smaller strand switch and smaller asymmetries than expected by chance. Finally, we discuss the limitations of our analysis and the influence of factors such as the nature of repeats, e.g., transposases, or the differences in the recombination machinery among bacteria. These results shed light on the challenges imposed on the genome structure by the presence of inverted repeats.
Collapse
Affiliation(s)
- Guillaume Achaz
- Structure et Dynamique des Génomes, Institut Jacques Monod, 75251 Paris, France
| | | | | | | |
Collapse
|
31
|
Rocha EPC, Fralick J, Vediyappan G, Danchin A, Norris V. A strand-specific model for chromosome segregation in bacteria. Mol Microbiol 2003; 49:895-903. [PMID: 12890016 DOI: 10.1046/j.1365-2958.2003.03606.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromosome separation and segregation must be executed within a bacterial cell in which the membrane and cytoplasm are highly structured. Here, we develop a strand-specific model based on each of the future daughter chromosomes being associated with a different set of structures or hyperstructures in an asymmetric cell. The essence of the segregation mechanism is that the genes on the same strand in the parental cell that are expressed together in a hyperstructure continue to be expressed together and segregate together in the daughter cell. The model therefore requires an asymmetric distribution of classes of genes and of binding sites and other structures on the strands of the parental chromosome. We show that the model is consistent with the asymmetric distribution of highly expressed genes and of stress response genes in Escherichia coli and Bacillus subtilis. The model offers a framework for interpreting data from genomics.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Unité Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris 15, France
| | | | | | | | | |
Collapse
|
32
|
Campo N, Daveran-Mingot ML, Leenhouts K, Ritzenthaler P, Le Bourgeois P. Cre-loxP recombination system for large genome rearrangements in Lactococcus lactis. Appl Environ Microbiol 2002; 68:2359-67. [PMID: 11976109 PMCID: PMC127585 DOI: 10.1128/aem.68.5.2359-2367.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used a new genetic strategy based on the Cre-loxP recombination system to generate large chromosomal rearrangements in Lactococcus lactis. Two loxP sites were sequentially integrated in inverse order into the chromosome either at random locations by transposition or at fixed points by homologous recombination. The recombination between the two chromosomal loxP sites was highly efficient (approximately 1 x 10(-1)/cell) when the Cre recombinase was provided in trans, and parental- or inverted-type chromosomal structures were isolated after removal of the Cre recombinase. The usefulness of this approach was demonstrated by creating three large inversions of 500, 1,115, and 1,160 kb in size that modified the lactococcal genome organization to different extents. The Cre-loxP recombination system described can potentially be used for other gram-positive bacteria without further modification.
Collapse
Affiliation(s)
- Nathalie Campo
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, UMR5100, Université Paul Sabatier, 31062 Toulouse, France
| | | | | | | | | |
Collapse
|
33
|
Maisnier-Patin S, Nordström K, Dasgupta S. RecA-mediated rescue of Escherichia coli strains with replication forks arrested at the terminus. J Bacteriol 2001; 183:6065-73. [PMID: 11567007 PMCID: PMC99686 DOI: 10.1128/jb.183.20.6065-6073.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2001] [Accepted: 07/20/2001] [Indexed: 11/20/2022] Open
Abstract
The recombinational rescue of chromosome replication was investigated in Escherichia coli strains with the unidirectional origin oriR1, from the plasmid R1, integrated within oriC in clockwise (intR1(CW)) or counterclockwise (intR1(CC)) orientations. Only the intR1(CC) strain, with replication forks arrested at the terminus, required RecA for survival. Unlike the strains with RecA-dependent replication known so far, the intR1(CC) strain did not require RecBCD, RecF, RecG, RecJ, RuvAB, or SOS activation for viability. The overall levels of degradation of replicating chromosomes caused by inactivation of RecA were similar in oriC and intR1(CC) strains. In the intR1(CC) strain, RecA was also needed to maintain the integrity of the chromosome when the unidirectional replication forks were blocked at the terminus. This was consistent with suppression of the RecA dependence of the intR1(CC) strain by inactivating Tus, the protein needed to block replication forks at Ter sites. Thus, RecA is essential during asymmetric chromosome replication for the stable maintenance of the forks arrested at the terminus and for their eventual passage across the termination barrier(s) independently of the SOS and some of the major recombination pathways.
Collapse
Affiliation(s)
- S Maisnier-Patin
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, S-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
34
|
Guijo MI, Patte J, del Mar Campos M, Louarn JM, Rebollo JE. Localized remodeling of the Escherichia coli chromosome: the patchwork of segments refractory and tolerant to inversion near the replication terminus. Genetics 2001; 157:1413-23. [PMID: 11290700 PMCID: PMC1461588 DOI: 10.1093/genetics/157.4.1413] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The behavior of chromosomal inversions in Escherichia coli depends upon the region they affect. Regions flanking the replication terminus have been termed nondivisible zones (NDZ) because inversions ending in the region were either deleterious or not feasible. This regional phenomenon is further analyzed here. Thirty segments distributed between 23 and 29 min on the chromosome map have been submitted to an inversion test. Twenty-five segments either became deleterious when inverted or were noninvertible, but five segments tolerated inversion. The involvement of polar replication pause sites in this distribution was investigated. The results suggest that the Tus/pause site system may forbid some inversion events, but that other constraints to inversion, unrelated to this system, exist. Our current model for deleterious inversions is that the segments involved carry polar sequences acting in concert with other polar sequences located outside the segments. The observed patchwork of refractory and tolerant segments supports the existence of several NDZs in the 23- to 29-min region. Microscopic observations revealed that deleterious inversions are associated with high frequencies of abnormal nucleoid structure and distribution. Combined with other information, the data suggest that NDZs participate in the organization of the terminal domain of the nucleoid.
Collapse
Affiliation(s)
- M I Guijo
- Departamento de Bioquimica y Biologia Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06080 Badajoz, Spain
| | | | | | | | | |
Collapse
|
35
|
Schneider D, Duperchy E, Coursange E, Lenski RE, Blot M. Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 2000; 156:477-88. [PMID: 11014799 PMCID: PMC1461276 DOI: 10.1093/genetics/156.2.477] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As part of a long-term evolution experiment, two populations of Escherichia coli B adapted to a glucose minimal medium for 10,000 generations. In both populations, multiple IS-associated mutations arose that then went to fixation. We identify the affected genetic loci and characterize the molecular events that produced nine of these mutations. All nine were IS-mediated events, including simple insertions as well as recombination between homologous elements that generated inversions and deletions. Sequencing DNA adjacent to the insertions indicates that the affected genes are involved in central metabolism (knockouts of pykF and nadR), cell wall synthesis (adjacent to the promoter of pbpA-rodA), and ill-defined functions (knockouts of hokB-sokB and yfcU). These genes are candidates for manipulation and competition experiments to determine whether the mutations were beneficial or merely hitchhiked to fixation.
Collapse
Affiliation(s)
- D Schneider
- Laboratoire Plasticité et Expression des Génomes Microbiens, Université Joseph Fourier, 38041 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
36
|
Califano JV, Kitten T, Lewis JP, Macrina FL, Fleischmann RD, Fraser CM, Duncan MJ, Dewhirst FE. Characterization of Porphyromonas gingivalis insertion sequence-like element ISPg5. Infect Immun 2000; 68:5247-53. [PMID: 10948151 PMCID: PMC101785 DOI: 10.1128/iai.68.9.5247-5253.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis, a black-pigmented, gram-negative anaerobe, is found in periodontitis lesions, and its presence in subgingival plaque significantly increases the risk for periodontitis. In contrast to many bacterial pathogens, P. gingivalis strains display considerable variability, which is likely due to genetic exchange and intragenomic changes. To explore the latter possibility, we have studied the occurrence of insertion sequence (IS)-like elements in P. gingivalis W83 by utilizing a convenient and rapid method of capturing IS-like sequences and through analysis of the genome sequence of P. gingivalis strain W83. We adapted the method of Matsutani et al. (S. Matsutani, H. Ohtsubo, Y. Maeda, and E. Ohtsubo, J. Mol. Biol. 196:445-455, 1987) to isolate and clone rapidly annealing DNA sequences characteristic of repetitive regions within a genome. We show that in P. gingivalis strain W83, such sequences include (i) nucleotide sequence with homology to tRNA genes, (ii) a previously described IS element, and (iii) a novel IS-like element. Analysis of the P. gingivalis genome sequence for the distribution of the least used tetranucleotide, CTAG, identified regions in many of the initial 218 contigs which contained CTAG clusters. Examination of these CTAG clusters led to the discovery of 11 copies of the same novel IS-like element identified by the repeated sequence capture method of Matsutani et al. This new 1,512-bp IS-like element, designated ISPg5, has features of the IS3 family of IS elements. When a recombinant plasmid containing much of ISPg5 was used in Southern analysis of several P. gingivalis strains, including clinical isolates, diversity among strains was apparent. This suggests that ISPg5 and other IS elements may contribute to strain diversity and can be used for strain fingerprinting.
Collapse
Affiliation(s)
- J V Califano
- Department of Periodontics, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
We have revealed the subcellular localization of different DNA segments that are located at ∼230-kb intervals on theEscherichia coli chromosome using fluorescence in situ hybridization (FISH). The series of chromosome segments is localized within the cell in the same order as the chromosome map. The large chromosome region including oriC shows similar localization patterns, which we call the Ori domain. In addition, the localization pattern of the large segment including dif is characteristic of the replication terminus region. The segment also shows similar localization patterns, which we call the Ter domain. In newborn cells, Ori and Ter domains of the chromosome are differentially localized near opposite cell poles. Subsequently, in the B period, the Ori domain moves toward mid-cell before the initiation of replication, and the Ter domain tends to relocate at mid-cell. An inversion mutant, in which the Ter domain is located close to oriC, shows abnormal subcellular localization of ori and dif segments, resulting in frequent production of anucleate cells. These studies thus suggest that the E. coli chromosome is organized to form a compacted ring structure with the Ori and Ter domains; these domains participate in the cell cycle-dependent localization of the chromosome.
Collapse
|
38
|
Daveran-Mingot ML, Campo N, Ritzenthaler P, Le Bourgeois P. A natural large chromosomal inversion in Lactococcus lactis is mediated by homologous recombination between two insertion sequences. J Bacteriol 1998; 180:4834-42. [PMID: 9733685 PMCID: PMC107507 DOI: 10.1128/jb.180.18.4834-4842.1998] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative analysis of chromosomal macrorestriction polymorphism of the two closely related Lactococcus lactis subsp. cremoris strains MG1363 and NCDO763 revealed the presence of a large inversion covering half of the genome. To determine what kind of genetic element could be implicated in this rearrangement, the two inversion junctions of MG1363 and NCDO763 chromosomes were cloned and characterized. Nucleotide sequence analysis showed the presence of one copy of the lactococcal IS905 element in each junction. Each copy of this element contained the same nucleotide mutation that inactivates the putative transposase. Comparison of the sequences surrounding the insertion sequence demonstrated that the large inversion arose from a single-step homologous recombination event between the two defective copies of the IS905 element. The large inversion presumably conferred no selective disadvantage on strain NCDO763 because this rearrangement did not alter the oriC-terC symmetry of the chromosome and the local genetic environment.
Collapse
Affiliation(s)
- M L Daveran-Mingot
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | | | | | | |
Collapse
|
39
|
Abstract
Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available.
Collapse
Affiliation(s)
- J Mahillon
- Laboratoire de Génétique Microbienne, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
40
|
Cornet F, Louarn J, Patte J, Louarn JM. Restriction of the activity of the recombination site dif to a small zone of the Escherichia coli chromosome. Genes Dev 1996; 10:1152-61. [PMID: 8654930 DOI: 10.1101/gad.10.9.1152] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The recombination site dif is the target on the Escherichia coli chromosome of the site-specific recombinases XerC and XerD. The dif/XerC-D system plays a role during the cell cycle, probably by favoring sister chromosome monomerization or separation. A phenomenon of regional control over dif activity, also analyzed in this issue, is demonstrated here by translocation of dif to a series of loci close to the normal locus. We found that the site is physiologically active only within a narrow zone around its natural position. Competence for dif activity does not depend on the sequence of the normal dif activity zone (DAZ), because delta(dif) deletions larger than the DAZ result in Dif+ bacteria when dif is reinserted at the junction point. Although dif maps where replication normally terminates, termination of replication is not the elicitor. A strain with a large inversion that places dif and its surrounding region close to oriC remains Dif+, even when a Tus- mutation allows replication to terminate far away from it. Preliminary data suggest the possibility that specialized sequences separate the competent zone from the rest of the chromosome. We suspect that these sequences are members of a set of sequences involved in a polarized process of postreplicative reconstruction of the nucleoid structure. We propose that this reconstruction forces catenation links between sister chromosomes to accumulate within the DAZ, where they eventually favor recombination at dif.
Collapse
Affiliation(s)
- F Cornet
- Laboratoire de Microbiologie et de Génétique Moléculaire, Centre National de la Recherche Scientifique, 31062 Toulouse, Cedex, France
| | | | | | | |
Collapse
|
41
|
Bi X, Liu LF. recA-independent DNA recombination between repetitive sequences: mechanisms and implications. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:253-92. [PMID: 8768077 DOI: 10.1016/s0079-6603(08)60365-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- X Bi
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | |
Collapse
|
42
|
Le Bourgeois P, Lautier M, van den Berghe L, Gasson MJ, Ritzenthaler P. Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome: comparison with that of Lactococcus lactis subsp. lactis IL 1403 reveals a large genome inversion. J Bacteriol 1995; 177:2840-50. [PMID: 7751295 PMCID: PMC176957 DOI: 10.1128/jb.177.10.2840-2850.1995] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A physical and genetic map of the chromosome of the Lactococcus lactis subsp. cremoris reference strain MG1363 was established. The physical map was constructed for NotI, ApaI, and SmaI enzymes by using a strategy that combines creation of new rare restriction sites by the random-integration vector pRL1 and ordering of restriction fragments by indirect end-labeling experiments. The MG1363 chromosome appeared to be circular and 2,560 kb long. Seventy-seven chromosomal markers were located on the physical map by hybridization experiments. Integration via homologous recombination of pRC1-derived plasmids allowed a more precise location of some lactococcal genes and determination of their orientation on the chromosome. The MG1363 chromosome contains six rRNA operons; five are clustered within 15% of the chromosome and transcribed in the same direction. Comparison of the L. lactis subsp. cremoris MG1363 physical map with those of the two L. lactis subsp. lactis strains IL1403 and DL11 revealed a high degree of restriction polymorphism. At the genetic organization level, despite an overall conservation of gene organization, strain MG1363 presents a large inversion of half of the genome in the region containing the rRNA operons.
Collapse
Affiliation(s)
- P Le Bourgeois
- Laboratoire de Microbiologie et Génétique Moléculaire, Institut de Biologie Cellulaire et de Génétique du Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | | | |
Collapse
|
43
|
Enomoto M, Komoda Y, Tominaga A. Mapping by transposons of the inversion termini in Escherichia coli K-12 strain 1485IN. Genetics 1991; 129:631-8. [PMID: 1661251 PMCID: PMC1204730 DOI: 10.1093/genetics/129.3.631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Strain 1485IN carries a chromosomal inversion which corresponds to 35% of the chromosome and includes proC, trp and his genes. The termini of the inversion lie between the lac and proC loci and between his and cdd of the normal strain. Using Tn10 and Tn5 in transduction crosses between the normal and inversion strains, the termini were mapped to sites located approximately 0.25 min and 1.6 min away from proC and his, respectively within a region of roughly 4 kb long. The crosses where the normal strains carrying Tn10 near the terminus are donors and the inversion strain is a recipient, yielded unusual Tetr His- recombinants, which arose from illegitimate recombination leading to the replacement of a chromosomal his+ region with a transducing fragment carrying proC. Another rearrangement was detected between the normal and inversion strains in a region outside the inverted segment near the cdd locus.
Collapse
Affiliation(s)
- M Enomoto
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | | | |
Collapse
|
44
|
Soldati L, Piffaretti JC. Molecular typing of Shigella strains using pulsed field gel electrophoresis and genome hybridization with insertion sequences. Res Microbiol 1991; 142:489-98. [PMID: 1658885 DOI: 10.1016/0923-2508(91)90182-a] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The genomes of 18 independent Shigella isolates (9 Shigella sonnei, 5 Shigella dysenteriae and 4 Shigella flexneri) as well as of 4 epidemic S. flexneri strains were analysed by pulsed field gel electrophoresis (PFGE) and by the distribution of insertion sequences (IS1, IS2 and IS911). Despite the close relatedness observed among the 9 independent S. sonnei, all of them could be differentiated from each other. The 4 independent S. flexneri isolates showed clearly distinguishable DNA profiles. Nearly complete genetic identity was detected within the 4 epidemic S. flexneri when analysed by PFGE or for IS1 and IS2 patterns. However, IS911 was found to be too mobile in these epidemic S. flexneri to be used as a typing probe. The 5 S. dysenteriae isolates could also be distinguished by the techniques used. The diversity found within this species is striking: of the 5 investigated isolates, 3 completely different DNA profiles were revealed. In conclusion, both PFGE and IS probing demonstrated their potential usefulness in molecular epidemiology and in typing of Shigella strains. The degree of differentiation given by these two methods was generally comparable, although IS probes showed better discrimination of the isolates.
Collapse
Affiliation(s)
- L Soldati
- Istituto Cantonale Batteriologico, Lugano, Switzerland
| | | |
Collapse
|
45
|
Abstract
Recent progress in studies on the bacterial chromosome is summarized. Although the greatest amount of information comes from studies on Escherichia coli, reports on studies of many other bacteria are also included. A compilation of the sizes of chromosomal DNAs as determined by pulsed-field electrophoresis is given, as well as a discussion of factors that affect gene dosage, including redundancy of chromosomes on the one hand and inactivation of chromosomes on the other hand. The distinction between a large plasmid and a second chromosome is discussed. Recent information on repeated sequences and chromosomal rearrangements is presented. The growing understanding of limitations on the rearrangements that can be tolerated by bacteria and those that cannot is summarized, and the sensitive region flanking the terminator loci is described. Sources and types of genetic variation in bacteria are listed, from simple single nucleotide mutations to intragenic and intergenic recombinations. A model depicting the dynamics of the evolution and genetic activity of the bacterial chromosome is described which entails acquisition by recombination of clonal segments within the chromosome. The model is consistent with the existence of only a few genetic types of E. coli worldwide. Finally, there is a summary of recent reports on lateral genetic exchange across great taxonomic distances, yet another source of genetic variation and innovation.
Collapse
Affiliation(s)
- S Krawiec
- Department of Biology, Lehigh University, Bethlehem, Pennsylvania 18015
| | | |
Collapse
|
46
|
Umeda M, Ohtsubo E. Mapping of insertion element IS30 in the Escherichia coli K12 chromosome. MOLECULAR & GENERAL GENETICS : MGG 1990; 222:317-22. [PMID: 1980336 DOI: 10.1007/bf00633835] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We identified seven phage clones containing the insertion element IS30 in a lambda phage library mini-set, which includes 476 clones carrying chromosomal segments that cover almost the entire chromosome of Escherichia coli K12 W3110 (Kohara et al. 1987). We could assign locations and orientations to four copies of IS30 (named is30A to is30D) on the W3110 chromosome by restriction analysis of phage DNAs containing them. These IS30s were present at the same locations in chromosomes of both W3110 and another E. coli K12 strain JE5519, and thus are assumed to be present in other E. coli K12 derivatives, including early isolates. Among the IS30 copies found, one (is30B) contained a large deletion and possessed only a 181 bp stretch of the right terminal region of IS30.
Collapse
Affiliation(s)
- M Umeda
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | |
Collapse
|
47
|
Umeda M, Ohtsubo E. Mapping of insertion element IS5 in the Escherichia coli K-12 chromosome. Chromosomal rearrangements mediated by IS5. J Mol Biol 1990; 213:229-37. [PMID: 2160543 DOI: 10.1016/s0022-2836(05)80186-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We identified phage clones containing insertion element IS5 in a set of 476 lambda phage clones carrying chromosomal segments that cover almost the entire chromosome of Escherichia coli K-12 W3110. Precise locations and orientations of IS5 were then determined by cleavage analysis of phage DNAs containing them. We mapped 23 copies of IS5 (named is5A to is5W) on the W3110 chromosome. Among them, ten were identified as the common elements present at the same locations in both chromosomes of W3110 and another E. coli K-12 strain, JE5519. While most of the mapped IS5 elements were scattered over the W3110 chromosome, four copies of IS5 (designated is5L, is5M, is5N and is5O) were in a region representing tandem duplication of a DNA segment flanked by two copies of IS5. Interestingly, one unit of this DNA segment as well as a portion of it was seen also in a tandem array in a different region where two copies of IS5 (designated is5P and is5Q) were present. In particular two pairs of the mapped IS5 elements may have been involved in inversion of the chromosomal segments in two of the E. coli K-12 derivatives.
Collapse
Affiliation(s)
- M Umeda
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | |
Collapse
|
48
|
François V, Louarn J, Patte J, Rebollo JE, Louarn JM. Constraints in chromosomal inversions in Escherichia coli are not explained by replication pausing at inverted terminator-like sequences. Mol Microbiol 1990; 4:537-42. [PMID: 2191180 DOI: 10.1111/j.1365-2958.1990.tb00621.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Regions close to the replication terminus of the Escherichia coli chromosome are strongly refractory to genomic inversions. Since these regions also harbour polar replication terminator-like sequences or pause sites, we have investigated the possibility that slowing of replication as a result of pausing at inverted pause sites is responsible for inability to isolate stable inversions affecting these regions. A mutation in the tus gene is known to abolish replication pausing at terminators. We show here that the distribution of invertible and noninvertible segments along the chromosome is not affected by tus mutations. This observation eliminates replication pausing as a cause for the reduced fitness of bacteria harbouring certain chromosomal inversions.
Collapse
Affiliation(s)
- V François
- Centre de Biochimie et de Génétique Cellulaires du CNRS, Toulouse, France
| | | | | | | | | |
Collapse
|
49
|
François V, Conter A, Louarn JM. Properties of new Escherichia coli Hfr strains constructed by integration of pSC101-derived conjugative plasmids. J Bacteriol 1990; 172:1436-40. [PMID: 2155201 PMCID: PMC208617 DOI: 10.1128/jb.172.3.1436-1440.1990] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Conjugative temperature-sensitive plasmids were derived from pSC101. These plasmids are useful in genetic analysis for two reasons: (i) they render possible the construction of new Hfr lines by plasmid integration at predetermined chromosomal loci via Tn10 inverse transposition, and (ii) the Hfr characters are transducible via bacteriophage P1. We also showed that replication from pSC101 origin is deleterious for the plasmid-chromosome fusion.
Collapse
Affiliation(s)
- V François
- Centre de Biochimie et de Génétique cellulaires du Centre National de la Recherche Scientifique, Toulouse, France
| | | | | |
Collapse
|
50
|
Birkenbihl RP, Vielmetter W. Complete maps of IS1, IS2, IS3, IS4, IS5, IS30 and IS150 locations in Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1989; 220:147-53. [PMID: 2558284 DOI: 10.1007/bf00260869] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this paper complete distribution maps are presented of the seven IS elements 1, 2, 3, 4, 5, 30 and 150. These maps were obtained during the construction of an almost complete restriction map of the Escherichia coli genome of K12 strain BHB2600. The positions of IS elements were correlated to this map. The distribution of integration sites of all IS types is nonrandom. Besides a large gap from 79 min to 96 min, there is a pronounced IS cluster at 6 min and another at 97 min, map locations that have low gene incidences on the classical map. One cluster coincides with a region of IS induced rearrangements. The IS distribution pattern was compared to patterns of strains W3110 and HB101.
Collapse
Affiliation(s)
- R P Birkenbihl
- Institut für Genetik, Universität zu Köln, Federal Republic of Germany
| | | |
Collapse
|