1
|
Knytl M, Fornaini NR. Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus Carassius. Cells 2021; 10:2343. [PMID: 34571992 PMCID: PMC8471844 DOI: 10.3390/cells10092343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022] Open
Abstract
The widely distributed ray-finned fish genus Carassius is very well known due to its unique biological characteristics such as polyploidy, clonality, and/or interspecies hybridization. These biological characteristics have enabled Carassius species to be successfully widespread over relatively short period of evolutionary time. Therefore, this fish model deserves to be the center of attention in the research field. Some studies have already described the Carassius karyotype, but results are inconsistent in the number of morphological categories for individual chromosomes. We investigated three focal species: Carassius auratus, C. carassius and C. gibelio with the aim to describe their standardized diploid karyotypes, and to study their evolutionary relationships using cytogenetic tools. We measured length (q+plength) of each chromosome and calculated centromeric index (i value). We found: (i) The relationship between q+plength and i value showed higher similarity of C. auratus and C. carassius. (ii) The variability of i value within each chromosome expressed by means of the first quartile (Q1) up to the third quartile (Q3) showed higher similarity of C. carassius and C. gibelio. (iii) The fluorescent in situ hybridization (FISH) analysis revealed higher similarity of C. auratus and C. gibelio. (iv) Standardized karyotype formula described using median value (Q2) showed differentiation among all investigated species: C. auratus had 24 metacentric (m), 40 submetacentric (sm), 2 subtelocentric (st), 2 acrocentric (a) and 32 telocentric (T) chromosomes (24m+40sm+2st+2a+32T); C. carassius: 16m+34sm+8st+42T; and C. gibelio: 16m+22sm+10st+2a+50T. (v) We developed R scripts applicable for the description of standardized karyotype for any other species. The diverse results indicated unprecedented complex genomic and chromosomal architecture in the genus Carassius probably influenced by its unique biological characteristics which make the study of evolutionary relationships more difficult than it has been originally postulated.
Collapse
Affiliation(s)
- Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, 12843 Prague, Czech Republic;
| | | |
Collapse
|
2
|
Park IS. The Nuclear DNA Content Determination of 31 Endemic Freshwater Fishes in Korea. Dev Reprod 2021; 25:25-32. [PMID: 33977172 PMCID: PMC8087261 DOI: 10.12717/dr.2021.25.1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
The main purpose of the current study was to obtain nuclear DNA content data
among the representatives of the families and subfamilies of 31 endemic fishes
that inhabit river of Korea. DNA contents of 31 endemic species were observed to
rang from 1.5 to 4.8 pg DNA/nucleus. In Cyprinidae, DNA content of
Abbottina springeri (1.5±0.03 pg DNA/nucleus) was
the lowest value and DNA content of Carassius cuvieri
(4.5±0.32 pg DNA/nucleus) was the highest value in all experimental
groups. In Cobitidae, DNA content of Iksookimia longicorpa
(3.9±0.17 pg DNA/nucleus) was the highest value and DNA content of
Orthrias toni (1.5±0.18 pg DNA/nucleus) was the
lowest value in all experimental groups. This study provides new information for
a better understanding of the process of genomic evolution in 31 endemic species
in river of Korea.
Collapse
Affiliation(s)
- In-Seok Park
- Division of Convergence on Marine Science, College of Ocean Science and Engineering, Korea Maritime & Ocean University, Busan 49112, Korea
| |
Collapse
|
3
|
Tang KL, Stiassny MLJ, Mayden RL, DeSalle R. Systematics of Damselfishes. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/i2020105] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kevin L. Tang
- University of Michigan–Flint, Department of Biology, 303 East Kearsley St., Flint, Michigan 48502; . Send reprint requests to this address
| | - Melanie L. J. Stiassny
- American Museum of Natural History, Department of Ichthyology, Central Park West at 79th St., New York, New York 10024;
| | - Richard L. Mayden
- Saint Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, Missouri 63103;
| | - Robert DeSalle
- American Museum of Natural History, Division of Invertebrate Zoology, Central Park West at 79th St., New York, New York 10024;
| |
Collapse
|
4
|
Barby FF, Ráb P, Lavoué S, Ezaz T, Bertollo LAC, Kilian A, Maruyama SR, Aguiar de Oliveira E, Artoni RF, Santos MH, Ilesanmi Jegede O, Hatanaka T, Tanomtong A, Liehr T, Cioffi MDB. From Chromosomes to Genome: Insights into the Evolutionary Relationships and Biogeography of Old World Knifefishes (Notopteridae; Osteoglossiformes). Genes (Basel) 2018; 9:E306. [PMID: 29921830 PMCID: PMC6027293 DOI: 10.3390/genes9060306] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 01/13/2023] Open
Abstract
In addition to its wide geographical distribution, osteoglossiform fishes represent one of the most ancient freshwater teleost lineages; making it an important group for systematic and evolutionary studies. These fishes had a Gondwanan origin and their past distribution may have contributed to the diversity present in this group. However, cytogenetic and genomic data are still scarce, making it difficult to track evolutionary trajectories within this order. In addition, their wide distribution, with groups endemic to different continents, hinders an integrative study that allows a globalized view of its evolutionary process. Here, we performed a detailed chromosomal analysis in Notopteridae fishes, using conventional and advanced molecular cytogenetic methods. Moreover, the genetic distances of examined species were assessed by genotyping using diversity arrays technology sequencing (DArTseq). These data provided a clear picture of the genetic diversity between African and Asian Notopteridae species, and were highly consistent with the chromosomal, geographical, and historical data, enlightening their evolutionary diversification. Here, we discuss the impact of continental drift and split of Pangea on their recent diversity, as well as the contribution to biogeographical models that explain their distribution, highlighting the role of the Indian subcontinent in the evolutionary process within the family.
Collapse
Affiliation(s)
- Felipe Faix Barby
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP 13565-905, Brazil.
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic.
| | - Sébastien Lavoué
- Institute of Oceanography, National Taiwan University, Roosevelt Road, Taipei 10617, Taiwan.
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia.
| | - Luiz Antônio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP 13565-905, Brazil.
| | - Andrzej Kilian
- Diversity Arrays Technology, University of Canberra, Bruce, Australian Capital Territory, Canberra, ACT 2617, Australia.
| | - Sandra Regina Maruyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP 13565-905, Brazil.
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP 13565-905, Brazil.
| | - Roberto Ferreira Artoni
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR 84030-900 Brazil.
| | - Mateus Henrique Santos
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR 84030-900 Brazil.
| | - Oladele Ilesanmi Jegede
- Department of Fisheries and Aquaculture, Adamawa State University, P.M.B. 25 Mubi. Adamawa State, Nigeria.
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP 13565-905, Brazil.
| | - Alongklod Tanomtong
- Toxic Substances in Livestock and Aquatic Animals Research Group, KhonKaen University, Muang, KhonKaen 40002, Thailand.
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany.
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP 13565-905, Brazil.
| |
Collapse
|
5
|
Searcy DG. MEASUREMENTS BY DNA HYBRIDIZATION
IN VITRO
OF THE GENETIC BASIS OF PARASITIC REDUCTION. Evolution 2017; 24:207-219. [DOI: 10.1111/j.1558-5646.1970.tb01754.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/1969] [Indexed: 11/27/2022]
Affiliation(s)
- Dennis G. Searcy
- Department of Zoology University of California Los Angeles California 90024 U.S.A
| |
Collapse
|
6
|
Tempo and mode of recurrent polyploidization in the Carassius auratus species complex (Cypriniformes, Cyprinidae). Heredity (Edinb) 2014; 112:415-27. [PMID: 24398883 DOI: 10.1038/hdy.2013.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 11/09/2022] Open
Abstract
Polyploidization is an evolutionarily rare but important mechanism in both plants and animals because it increases genetic diversity. Goldfish of the Carassius auratus species complex can be tetraploids, hexaploids and octaploids. Polyploidization events have occurred repeatedly in goldfish, yet the extent of this phenomenon and its phyletic history are poorly understood. We explore the origin, tempo and frequency of polyploidization in Chinese and Japanese goldfish using both mitochondrial (mtDNA) and nuclear DNA sequences from up to 1202 individuals including the outgroup taxon, Cyprinus carpio. Analyses of de novo nuclear gene data resolve two clusters of alleles and the pattern supports the prior hypothesis of an ancient allotetraploidization for Carassius. Alleles shared by tetraploid and hexaploid individuals indicate recent autoploidizations within the C. auratus complex. Sympatric tetraploids and hexaploids share mtDNA haplotypes and these frequently occur independently within six well-supported lineages and sublineages on a small spatial scale. Gene flow estimates (Fst values) indicate that hexaploids differ only slightly from sympatric tetraploids, if at all. In contrast, allopatric populations of tetraploids and hexaploids differ from one another to a far greater extent. Gene flow between sampled localities appears to be limited. Coalescence-based time estimations for hexaploids reveal that the oldest lineage within any sampled locality is around one million years old, which is very young. Sympatric, recurrent autoploidization occurs in all sampled populations of the C. auratus complex. Goldfish experience polyploidization events more frequently than any other vertebrate.
Collapse
|
7
|
Souza ER, Ribeiro LB, Feldberg E, Hrbek IPFT, Gross MC. CompCytogen of two of the smallest Amazonian fishes: Fluviphylax simplex Costa, 1996 and Fluviphylax zonatus Costa, 1996 (Cyprinodontiformes, Poeciliidae). COMPARATIVE CYTOGENETICS 2011; 5:411-422. [PMID: 24260645 PMCID: PMC3833765 DOI: 10.3897/compcytogen.v5i5.1562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Indexed: 06/02/2023]
Abstract
The genus Fluviphylax Whitley, 1965is comprized of five valid species (Fluviphylax pygmaeus Myers et Carvalho, 1955, Fluviphylax zonatus, Fluviphylax simplex, Fluviphylax obscurus Costa, 1996,and Fluviphylax palikur Costa et Le Bail, 1999), which are endemic to the Amazon region. These fishes are the smallest known South American vertebrates and among the smallest know vertebrates on Earth. All species but the type Fluviphylax pygmaeus have been described in late 1990's, and much remains unknown about the biology, taxonomy and systematics of this group of fishes. The aims of the present study were to establish the diploid and haploid number of Fluviphylax zonatus and Fluviphylax simplex, and to find species-specific markers for the discrimination of taxa. The diploid number for both species was 48 chromosomes, with no sex chromosome heteromorphism. Fluviphylax zonatus exhibited the karyotypic formula 4m+8sm+22st+14a and FN=82, and Fluviphylax simplex exhibited 4m+16sm+18st+10a and FN=86. The determination of the total mean length of the chromosomes and their grouping into five size classes demonstrated different chromosome composition of the two species. This difference was further supported by the distribution of constitutive heterochromatin. The meiotic analysis revealed 24 bivalents in both species, but Fluviphylax zonatus exhibited chromosomes with late pairing of the telomeric portions in the pachytene. These data reveal that cytogenetic characterization is useful and important for the discrimination of these species. Our study further indicates that this method could be employed in the analysis of other species of small fishes that are difficult to distinguish using traditional morphological traits or are morphologically cryptic.
Collapse
Affiliation(s)
- E R Souza
- Laboratório de Evolução e Genética Animal, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | | | | | | | | |
Collapse
|
8
|
Poletto AB, Ferreira IA, Cabral-de-Mello DC, Nakajima RT, Mazzuchelli J, Ribeiro HB, Venere PC, Nirchio M, Kocher TD, Martins C. Chromosome differentiation patterns during cichlid fish evolution. BMC Genet 2010; 11:50. [PMID: 20550671 PMCID: PMC2896337 DOI: 10.1186/1471-2156-11-50] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 06/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cichlid fishes have been the subject of increasing scientific interest because of their rapid adaptive radiation which has led to an extensive ecological diversity and their enormous importance to tropical and subtropical aquaculture. To increase our understanding of chromosome evolution among cichlid species, karyotypes of one Asian, 22 African, and 30 South American cichlid species were investigated, and chromosomal data of the family was reviewed. RESULTS Although there is extensive variation in the karyotypes of cichlid fishes (from 2n = 32 to 2n = 60 chromosomes), the modal chromosome number for South American species was 2n = 48 and the modal number for the African ones was 2n = 44. The only Asian species analyzed, Etroplus maculatus, was observed to have 46 chromosomes. The presence of one or two macro B chromosomes was detected in two African species. The cytogenetic mapping of 18S ribosomal RNA (18S rRNA) gene revealed a variable number of clusters among species varying from two to six. CONCLUSIONS The karyotype diversification of cichlids seems to have occurred through several chromosomal rearrangements involving fissions, fusions and inversions. It was possible to identify karyotype markers for the subfamilies Pseudocrenilabrinae (African) and Cichlinae (American). The karyotype analyses did not clarify the phylogenetic relationship among the Cichlinae tribes. On the other hand, the two major groups of Pseudocrenilabrinae (tilapiine and haplochromine) were clearly discriminated based on the characteristics of their karyotypes. The cytogenetic mapping of 18S ribosomal RNA (18S rRNA) gene did not follow the chromosome diversification in the family. The dynamic evolution of the repeated units of rRNA genes generates patterns of chromosomal distribution that do not help follows the phylogenetic relationships among taxa. The presence of B chromosomes in cichlids is of particular interest because they may not be represented in the reference genome sequences currently being obtained.
Collapse
Affiliation(s)
- Andréia B Poletto
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Irani A Ferreira
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Diogo C Cabral-de-Mello
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Rafael T Nakajima
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Juliana Mazzuchelli
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Heraldo B Ribeiro
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Paulo C Venere
- UFMT - Universidade Federal de Mato Grosso, Instituto Universitário do Araguaia, Pontal do Araguaia, MT, Brazil
| | - Mauro Nirchio
- Universidad de Oriente, Escuela de Ciencias Aplicadas del Mar, Boca de Rio, Venezuela
| | - Thomas D Kocher
- University of Maryland, Department of Biology, College Park, MD 20742 USA
| | - Cesar Martins
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Departamento de Morfologia, Botucatu, SP, Brazil
| |
Collapse
|
9
|
Gross MC, Schneider CH, Valente GT, Martins C, Feldberg E. Variability of 18S rDNA locus among Symphysodon fishes: chromosomal rearrangements. JOURNAL OF FISH BIOLOGY 2010; 76:1117-27. [PMID: 20409165 DOI: 10.1111/j.1095-8649.2010.02550.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Three species of cichlids belonging to the genus Symphysodon have demonstrated interspecific and intraspecific variation in nucleolus organizer regions (NOR) detected with silver nitrate. In order to understand the evolution of this marker in the genus, the structural variability of these sequences in mitotic chromosomes from Symphysodon aequifasciatus, Symphysodon discus and Symphysodon haraldi was investigated using both silver nitrate impregnation and hybridization of the 18S rRNA gene probe. For the three species, the two markers were intraspecifically and interspecifically variable both in the number and in the size of the sites. This polymorphism may stem from duplications and translocations, which suggests that structural chromosome rearrangements effectively act in the karyoevolution of wild Symphysodon species and may have favoured the adaptability of these fishes to diverse aquatic environments in the Amazon.
Collapse
Affiliation(s)
- M C Gross
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil.
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Abstract
AbstractKnowledge of genetic variation and population structure of existing strains of both farmed and wild common carp Cyprinus carpio L. is absolutely necessary for any efficient fish management and/or conservation program. To assess genetic diversity in common carp populations, a variety of molecular markers were analyzed. Of those, microsatellites and mitochondrial DNA were most frequently used in the analysis of genetic diversity and genome evolution of common carp. Using microsatellites showed that the genome evolution in common carp exhibited two waves of rearrangements: one whole-genome duplication (12–16 million years ago) and a more recent wave of segmental duplications occurring between 2.3 and 6.8 million years ago. The genome duplication event has resulted in tetraploidy since the common carp currently harbors a substantial portion of duplicated loci in its genome and twice the number of chromosomes (n = 100–104) of most other cyprinid fishes. The variation in domesticated carp populations is significantly less than that in wild populations, which probably arises from the loss of variation due to founder effects and genetic drift. Genetic differentiation between the European carp C.c. carpio and Asian carp C.c. haematopterus is clearly evident. In Asia, two carp subspecies, C.c. haematopterus and C.c. varidivlaceus, seem to be also genetically distinct.
Collapse
|
12
|
Genome size variation in the North American sunfish genusLepomis(Pisces: Centrarchidae). Genet Res (Camb) 2009. [DOI: 10.1017/s0016672300028135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SummaryGenome sizes (nuclear DNA contents) were documented spectrophotometrically from individuals of each of nine species of the North American centrarchid (sunfish) genusLepomis. The distributions of DNA values within and among the nine species were essentially normal and continuous, suggesting that changes in DNA quantity inLepomisare small in amount, involve both gains and losses of DNA, and are cumulative and independent in effect. Significant differences in mean genome size were found between individuals within populations in all nine species and between species. Nested analysis of variance and comparisons of average genome size difference or distance between individuals drawn from different levels of taxonomic organization revealed that the majority of genome size divergence inLepomisoccurs above the hierarchical level of individuals within populations. TheLepomisdata when compared to similar data from North American cyprinid fishes appear to suggest that: (i) genome size evolution in these fishes at least follows a continuous rather than a discontinuous mode; (ii) the general predictions of hypothetical models relating genome size variation as a function of organismal position along adaptive continua may be oversimplified, or not applicable to complex, higher eukaryotes; and (iii) changes in genome size in these fishes may be concentrated in speciation episodes.
Collapse
|
13
|
Wang X, Zhang Q, Sun X, Chen Y, Zhai T, Zhuang W, Qi J, Wang Z. Fosmid library construction and initial analysis of end sequences in female half-smooth tongue sole (Cynoglossus semilaevis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:236-242. [PMID: 18763017 DOI: 10.1007/s10126-008-9137-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 07/27/2008] [Indexed: 05/26/2023]
Abstract
Half-smooth tongue sole (Cynoglossus semilaevis: Pleuronectiformes) is a commercially important cultured marine flatfish in China and forms an important fishery resource, but the research of its genome is underdeveloped. In this study, we constructed a female C. semilaevis fosmid library and analyzed the fosmid end sequences to provide a preliminary assessment of the genome. The library consists of 49,920 clones with an average insert size of about 39 kb, amounting to 3.23 genome equivalents. Fosmid stability assays indicate that female C. semilaevis DNA was stable during propagation in the fosmid system. Library screening with eight microsatellite markers yielded between two and five positive clones, and none of those tested was absent from the library. End-sequencing of both 5' and 3' ends of 1,152 individual clones generated 2,247 sequences after trimming, with an average sequence length of 855 bp. BLASTN searches of the nr and EST databases of GenBank and BLASTX searches of the nr database resulted in 259 (11.53%) and 287 (12.77%) significant hits (E < e (-5)), respectively. Repetitive sequences analysis resulted in 5.23% of base pairs masked using both the Fugu and Danio databases, repetitive elements were composed of retroelements, DNA transposons, satellites, simple repeats, and low-complexity sequences. The fosmid library, in conjunction with the fosmid end sequences, will serve as a useful resource for large-scale genome sequencing, physical mapping, and positional cloning, and provide a better understanding of female C. semilaevis genome.
Collapse
Affiliation(s)
- Xubo Wang
- Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Intriguing evidence of translocations in Discus fish (Symphysodon, Cichlidae) and a report of the largest meiotic chromosomal chain observed in vertebrates. Heredity (Edinb) 2009; 102:435-41. [PMID: 19240754 DOI: 10.1038/hdy.2009.3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
As part of a program to understand the genetics of Amazonian ornamental fish, classical cytogenetics was used to analyze Symphysodon aequifasciatus, S. discus and S. haraldi, popular and expensive aquarium fishes that are endemic to the Amazon basin. Mitotic analyses in Symphysodon have shown some odd patterns compared with other Neotropical cichlids. We have confirmed that Symphysodon species are characterized by chromosomal diversity and meiotic complexity despite the fact that species share the same diploid number 2n=60. An intriguing meiotic chromosomal chain, with up to 20 elements during diplotene/diakinesis, was observed in S. aequifasciatus and S. haraldi, whereas S. discus only contains typical bivalent chromosomes. Such chromosomal chains with a high number of elements have not been observed in any other vertebrates. We showed that the meiotic chromosomal chain was not sex related. This observation is unusual and we propose that the origin of meiotic multiples in males and females is based on a series of translocations that involved heterochromatic regions after hybridization of ancestor wild Discus species.
Collapse
|
15
|
Rexroad CE, Palti Y, Gahr SA, Vallejo RL. A second generation genetic map for rainbow trout (Oncorhynchus mykiss). BMC Genet 2008; 9:74. [PMID: 19019240 PMCID: PMC2605456 DOI: 10.1186/1471-2156-9-74] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 11/19/2008] [Indexed: 11/14/2022] Open
Abstract
Background Genetic maps characterizing the inheritance patterns of traits and markers have been developed for a wide range of species and used to study questions in biomedicine, agriculture, ecology and evolutionary biology. The status of rainbow trout genetic maps has progressed significantly over the last decade due to interest in this species in aquaculture and sport fisheries, and as a model research organism for studies related to carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition. We constructed a second generation genetic map for rainbow trout using microsatellite markers to facilitate the identification of quantitative trait loci for traits affecting aquaculture production efficiency and the extraction of comparative information from the genome sequences of model fish species. Results A genetic map ordering 1124 microsatellite loci spanning a sex-averaged distance of 2927.10 cM (Kosambi) and having 2.6 cM resolution was constructed by genotyping 10 parents and 150 offspring from the National Center for Cool and Cold Water Aquaculture (NCCCWA) reference family mapping panel. Microsatellite markers, representing pairs of loci resulting from an evolutionarily recent whole genome duplication event, identified 180 duplicated regions within the rainbow trout genome. Microsatellites associated with genes through expressed sequence tags or bacterial artificial chromosomes produced comparative assignments with tetraodon, zebrafish, fugu, and medaka resulting in assignments of homology for 199 loci. Conclusion The second generation NCCCWA genetic map provides an increased microsatellite marker density and quantifies differences in recombination rate between the sexes in outbred populations. It has the potential to integrate with cytogenetic and other physical maps, identifying paralogous regions of the rainbow trout genome arising from the evolutionarily recent genome duplication event, and anchoring a comparative map with the zebrafish, medaka, tetraodon, and fugu genomes. This resource will facilitate the identification of genes affecting traits of interest through fine mapping and positional cloning of candidate genes.
Collapse
Affiliation(s)
- Caird E Rexroad
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Leetown, West Virginia, USA.
| | | | | | | |
Collapse
|
16
|
Luo J, Stadler PF, He S, Meyer A. PCR survey of hox genes in the goldfish Carassius auratus auratus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 308:250-8. [PMID: 17171698 DOI: 10.1002/jez.b.21144] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A tetraploidization event took place in the cyprinid lineage leading to goldfishes about 15 million years ago. A PCR survey for Hox genes in the goldfish Carassius auratus auratus (Actinopterygii: Cyprinidae) was performed to assess the consequences of this genome duplication. Not surprisingly, the genomic organization of the Hox gene clusters of goldfish is similar to that of the closely related zebrafish (Danio rerio). However, the goldfish exhibits a much larger number of recent pseudogenes, which are characterized by indels. These findings are consistent with the hypothesis that dosage effects cause selection pressure to rapidly silence crucial developmental regulators after a tetraploidization event.
Collapse
Affiliation(s)
- Jing Luo
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
17
|
Mesquita DR, Porto JIR, Feldberg E. Chromosomal variability in the wild ornamental species of Symphysodon (Perciformes: Cichlidae) from Amazon. NEOTROPICAL ICHTHYOLOGY 2008. [DOI: 10.1590/s1679-62252008000200005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytogenetic studies were conducted on three discus species which inhabit the Amazon in Brazil: Symphysodon haraldi from Manacapuru, S. aequifasciatus from Tefé and S. discus from Barcelos. All individuals showed 2n=60 chromosomes, most of them biarmed. No sexual chromosomal heteromorphism was verified. However, different karyotypic formulae, owing to the presence of subtelocentric chromosomes, were verified for S. aequifasciatus and S. discus. One of the karyotypic formulae from S. aequifasciatus (cytotype 2) differs from the others, due to one of the homologues in the first chromosome pair being significantly larger than the other. A large variability was observed toward the nucleolar organizer regions (NOR) of S. haraldi and S. aequifasciatus. Although the number of silver-stained blocks varied from 2 to 5, confirming different NOR patterns, at least seven homologue pairs were involved with NORs. In S. discus only two marks were observed, however two chromosome pairs were involved, characterizing a multiple NOR system for the three species. The heterochromatic blocks were mainly located in the pericentromeric region of all chromosomes but, in some of them, they are also located in the proximal regions, both in the short and long arms. Moreover, in the cytotype 2 from S. aequifasciatus, an interstitial heterochromatic block was observed on the long arm of the largest homologue of the first pair. A direct comparison of karyotypes from more related genera (Heros, Uaru, Mesonauta and Pterophyllum), makes it clear that a succession of chromosomal rearrangements, mainly pericentric inversions, translocations and fissions/fusions occurred resulting in the present diploid number and intraspecific karyological variability found in Symphysodon.
Collapse
|
18
|
Luo J, Lang M, Salzburger W, Siegel N, Stölting KN, Meyer A. A BAC library for the goldfish Carassius auratus auratus (Cyprinidae, Cypriniformes). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 306:567-74. [PMID: 16708366 DOI: 10.1002/jez.b.21112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A goldfish (Carassius auratus auratus) bacterial artificial chromosome genomic library (BAC library) was constructed from one aquarium-bred male specimen (tetraploid, 4n=100, genome size=3.52 pg/cell). The library consists of 128,352 positive clones with an average insert size of 150.4 kb, covering the genome 11-fold. All clones were spotted onto nylon filters and thus are available for screening of genomic regions of interest, such as candidate genes, gene families, or large-sized syntenic DNA regions of cyprinid species. Preliminary screens with two genes were conducted with hybridizing probes to the genes RAG1 and lgi1. RAG1 is a single-copy gene in zebrafish and is duplicated in C. a. auratus. We found a very close correlation between the number of positive BAC clones and the expected library coverage. Two copies of lgi1 were found in zebrafish. We have detected four different copies in C. a. auratus, not in the expected abundance, which indicates some variation in the coverage of the BAC library. The preliminary screens indicate that many duplicated genes that resulted from the ancient fish-specific genome duplication persist in the tetraploid goldfish genome. Hence, the BAC library will provide a useful resource for the future work on comparative genomics, polyploidy, diploidization, and evolutionary genomics in fishes.
Collapse
Affiliation(s)
- Jing Luo
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Lang M, Miyake T, Braasch I, Tinnemore D, Siegel N, Salzburger W, Amemiya CT, Meyer A. A BAC library of the East African haplochromine cichlid fish Astatotilapia burtoni. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:35-44. [PMID: 16254984 DOI: 10.1002/jez.b.21068] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A BAC library was constructed from Astatotilapia burtoni, a haplochromine cichlid that is found in Lake Tanganyika, East Africa, and its surrounding rivers. The library was generated from genomic DNA of blood cells and comprises 96,768 individual clones. Its median insert size is 150 kb and the coverage is expected to represent about 14 genome equivalents. The coverage evaluation was based on genome size estimates that were obtained by flow cytometry. In addition, hybridization screens with five probes largely corroborate the above coverage estimate, although the number of clones ranged from 5 to 22 authenticated clones per single copy probe. The BAC library described here is expected to be useful to the scientific community interested in cichlid genomics as an important resource to gain new insights into the rapid evolution of the great species diversity of haplochromine cichlid fishes.
Collapse
Affiliation(s)
- Michael Lang
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Leaver MJ, Boukouvala E, Antonopoulou E, Diez A, Favre-Krey L, Ezaz MT, Bautista JM, Tocher DR, Krey G. Three peroxisome proliferator-activated receptor isotypes from each of two species of marine fish. Endocrinology 2005; 146:3150-62. [PMID: 15790725 DOI: 10.1210/en.2004-1638] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cloning and characterization of cDNAs and genes encoding three peroxisome proliferator-activated receptor (PPAR) isotypes from two species of marine fish, the plaice (Pleuronectes platessa) and the gilthead sea bream (Sparus aurata), are reported for the first time. Although differences in the genomic organization of the fish PPAR genes compared with their mammalian counterparts are evident, sequence alignments and phylogenetic comparisons show the fish genes to be homologs of mammalian PPARalpha, PPARbeta/delta, and PPARgamma. Like their mammalian homologs, fish PPARs bind to a variety of natural PPAR response elements (PPREs) present in the promoters of mammalian or piscine genes. In contrast, the mRNA expression pattern of PPARs in the two fish species differs from that observed in other vertebrates. Thus, PPARgamma is expressed more widely in fish tissues than in mammals, whereas PPARalpha and beta are expressed similarly in profile to mammals. Furthermore, nutritional status strongly influences the expression of all three PPAR isotypes in liver, whereas it has no effect on PPAR expression in intestinal and adipose tissues. Fish PPARalpha and beta exhibit an activation profile similar to that of the mammalian PPAR in response to a variety of activators/ligands, whereas PPARgamma is not activated by mammalian PPARgamma-specific ligands. Amino acid residues shown to be critical for ligand binding in mammalian PPARs are not conserved in fish PPARgamma and therefore, together with the distinct tissue expression profile of this receptor, suggest potential differences in the function of PPARgamma in fish compared with mammals.
Collapse
Affiliation(s)
- Michael J Leaver
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Uenishi H, Hiraiwa H, Yamamoto R, Yasue H, Takagaki Y, Shiina T, Kikkawa E, Inoko H, Awata T. Genomic structure around joining segments and constant regions of swine T-cell receptor alpha/delta (TRA/TRD) locus. Immunology 2003; 109:515-26. [PMID: 12871218 PMCID: PMC1783003 DOI: 10.1046/j.1365-2567.2003.01695.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Revised: 04/10/2003] [Accepted: 05/15/2003] [Indexed: 11/20/2022] Open
Abstract
A complete genomic region of 131.2 kb including the swine T-cell receptor alpha/delta constant region (TRAC/TRDC) and joining segments (TRAJ/TRDJ) was sequenced. The structure of this region was strikingly conserved in comparison to that of human or mouse. All of the 61 TRAJ segments detected in the human genomic sequence were detected in the swine sequence and the sequence of the protein binding site of T early alpha, the sequence of the alpha enhancer element and the conserved sequence block between TRAJ3 and TRAJ4 are highly conserved. Insertion of the repetitive sequences that interspersed after the differentiation of the species in mammals such as short interspersed nucleotide elements is markedly suppressed in comparison to other genomic regions, while the composition of the mammalian-wide interspersed sequences is relatively conserved in human and swine. This observation indicates the existence of a highly selective pressure to conserve this genomic region around TRAJ throughout the evolution of mammals.
Collapse
Affiliation(s)
- Hirohide Uenishi
- Genome Research Department, National Institute of Agrobiological Sciences, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Santini S, Boore JL, Meyer A. Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res 2003; 13:1111-22. [PMID: 12799348 PMCID: PMC403639 DOI: 10.1101/gr.700503] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Comparisons of DNA sequences among evolutionarily distantly related genomes permit identification of conserved functional regions in noncoding DNA. Hox genes are highly conserved in vertebrates, occur in clusters, and are uninterrupted by other genes. We aligned (PipMaker) the nucleotide sequences of the HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human, and mouse, which are separated by approximately 500 million years of evolution. In support of our approach, several identified putative regulatory elements known to regulate the expression of Hox genes were recovered. The majority of the newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac database). The regulatory intergenic regions located between the genes that are expressed most anteriorly in the embryo are longer and apparently more evolutionarily conserved than those at the other end of Hox clusters. Different presumed regulatory sequences are retained in either the Aalpha or Abeta duplicated Hox clusters in the fish lineages. This suggests that the conserved elements are involved in different gene regulatory networks and supports the duplication-deletion-complementation model of functional divergence of duplicated genes.
Collapse
Affiliation(s)
- Simona Santini
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | |
Collapse
|
23
|
Morescalchi M, Rocco L, Stingo V. Cytogenetic and molecular studies in a lungfish, Protopterus annectens (Osteichthyes, Dipnoi). Gene 2002; 295:279-87. [PMID: 12354663 DOI: 10.1016/s0378-1119(02)00755-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A neontological approach to the problem of the origin of tetrapods consists in the examination of the available cytological and molecular data on the genome of these vertebrates. Dipnoans are a group of osteichthyian fishes, the evolutionary relationships of which with tetrapods have been disputed since their discovery. In the past, they were variously considered as being related to actinistians, tetrapods, and lower actinopterygians, though nowadays they are considered a monophyletic group, the sister group of crossopterygians. Dipnoans first appeared in the geologic record in the Early Devonian with 50 extinct genera, surviving up to date, with only three genera: Lepidosiren, Neoceratodus and Protopterus, including only six recognized species. Nothing is known of the genome of the early tetrapods, except that they and the Choanoichthyes exhibited a remarkable interspecific variability of the karyotype and of DNA content. These characteristics are often found in dipnoans and in the extant lissamphibians. Very little is known about the evolutionary karyology in the four Protopterus species and in the dipnoan clade in general. In this paper, we karyotyped ten male and female specimens of P. annectens (2n=34) from Nigeria. Moreover, we localized heterochromatin and nucleolar organizer regions by using base-specific fluorochromes and detected the human telomeric (TTAGGG)(n) sequences on all the telomeric sites of P. annectens chromosomes. DNA was also extracted and digested with seven restriction enzymes, which revealed the probable presence of almost three different families of satellite DNA. Nuclear DNA content was identified from blood samples by flow cytometry. New genomic and karyological data were compared and discussed with those on closer genera and taxa available in literature.
Collapse
Affiliation(s)
- Maria Morescalchi
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 80100, Caserta, Italy.
| | | | | |
Collapse
|
24
|
Ciudad J, Cid E, Velasco A, Lara JM, Aijón J, Orfao A. Flow cytometry measurement of the DNA contents of G0/G1 diploid cells from three different teleost fish species. CYTOMETRY 2002; 48:20-5. [PMID: 12116377 DOI: 10.1002/cyto.10100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Although there is a lot information in the literature about genome size in fish, a high variability among data for the same species is reported, being mainly related to methodological aspects. Flow cytometry-based fluorescence measurements of intercalating dyes is the most attractive approach due to its precision, objectivity, high speed, and relative simplicity. METHODS We analyze the DNA content of G0/G1 diploid nuclei of three teleost species (Carassius auratus, Tinca tinca, and Danio rerio) using flow cytometry. Forty-three animals were used and up to 50,000 retinal cells were analyzed per sample. Propidium iodide-associated fluorescence was assessed using a FACSCalibur flow cytometer. Standard human leukocytes were used as a reference. RESULTS Our results show that C. auratus (3.584 +/- 0.058 pg per nucleus) and D. rerio (3.357 +/- 0.074 pg per nucleus) showed similar DNA contents per cell, whereas it was significantly lower (2.398 +/- 0.038 pg per nucleus) in T. tinca. Interestingly, a low intraspecies variability was observed, the coefficient of variation being 1.608%, 2.198%, and 1.573% for C. auratus, D. rerio, and T. tinca, respectively. CONCLUSIONS The methodology used in this study provides an accurate and easy measurement of the genome size of a species.
Collapse
Affiliation(s)
- Juana Ciudad
- Servicio de Citometría, Laboratorio de Hematologia (1(a) planta), Hospital Universitario de Salamanca, Paseo de San Vicente s/n, 37007 Salamanca, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Carvalho ML, Oliveira C, Navarrete MC, Froehlich O, Foresti F. Nuclear DNA content determination in Characiformes fish (Teleostei, Ostariophysi) from the Neotropical region. Genet Mol Biol 2002. [DOI: 10.1590/s1415-47572002000100010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Basaglia F. Multilocus isozyme systems in African lungfish, Protopterus annectens: distribution, differential expression and variation in dipnoans. Comp Biochem Physiol B Biochem Mol Biol 2002; 131:89-102. [PMID: 11742762 DOI: 10.1016/s1096-4959(01)00485-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Distribution of ADH, ALP, FBALD, GAPDH, G3PDH, G6PDH, GPI, LDH, MDH, PGM, and SOD was identified in retina, heart, muscle, liver, kidney, gills, brain, gut, lung and ovary of the African lungfish. Data are compared with patterns previously described in dipnoans and other vertebrates. The number of loci expressed for all enzymes was found to be similar to those of diploid Actinopterygii. Differences in the number of loci expressed in Amphibia were found for ALP, sG3PDH, GPI, LDH, MDH and SOD. Differences in tissue distribution were noted in ALP due to the absence of an intestinal-specific form typical of teleostean fish, amphibians, reptiles and birds, and in GPI and MDH, due to the tissue expression, as in primitive fish. There were also differences in LDH, where a third locus (LDH-C*) was expressed in the gills of Protopterus annectens and not in the retina or liver tissues, as in teleosts. LDH-A4 was most common in all the tissues. Major differences were noted in the tissue patterns of protein expression in the three dipnoans compared. As expected, the least divergence was found between the two species belonging to the same family (Lepidosirenidae). The highest index of divergence was observed between Neoceratodus forsteri and Lepidosiren paradoxa, belonging to the families Ceratontidae and Lepidosirenidae, respectively. The divergence is revealed by changes at the enzyme and morphological levels. These results suggest that P. annectens occupies an interesting systematic position, its biochemical characteristics distinguishing it from N. forsteri, L. paradoxa, the advanced fish and amphibians.
Collapse
Affiliation(s)
- Fulvia Basaglia
- Comparative Anatomy Section, Department of Morphology and Embryology, Ferrara University, Via Luigi Borsari 46, 44100, Ferrara, Italy.
| |
Collapse
|
27
|
Crossman EJ, Ráb P. Chromosomal NOR Phenotype and C-Banded Karyotype of Olympic Mudminnow,Novumbra hubbsi(Euteleostei: Umbridae). COPEIA 2001. [DOI: 10.1643/0045-8511(2001)001[0860:cnpacb]2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Leaver MJ. A family of Tc1-like transposons from the genomes of fishes and frogs: evidence for horizontal transmission. Gene 2001; 271:203-14. [PMID: 11418241 DOI: 10.1016/s0378-1119(01)00530-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tc1-like transposons are very widely distributed within the genomes of animal species. They consist of an inverted repeat sequence flanking a transposase gene with homology to the mobile DNA element, Tc1 of the nematode Caenorhabditis elegans. These elements seem particularly to infest the genomes of fish and amphibian species where they can account for 1% of the total genome. However, all vertebrate Tc1-like elements isolated so far are non-functional in that they contain multiple frameshifts within their transposase coding regions. Here I describe a Tc1-like transposon (PPTN) from the genome of a marine flatfish species (Pleuronectes platessa) which bears conserved inverted repeats flanking an apparently intact transposase gene. Closely related, although degenerate, Tc1-like transposons were also isolated from the genomes of Atlantic salmon (SSTN, Salmo salar) and frog (RTTN, Rana temporaria). Consensual nucleic acid sequences were derived by comparing several individual isolates from each species and conceptual amino acid sequences were thence derived for their transposases. Phylogenetic analysis of these sequences with previously isolated Tc1-like transposases shows that the elements from plaice, salmon and frog comprise a new subfamily of Tc1-like transposons. Each member is distinct in that it is not found in the genomes of the other species tested. Plaice genomes contain about 300 copies of PPTN, salmon 1200 copies of SSTN and frog genomes about 500 copies of RTTN. The presence of these closely related elements in the genomes of fish and frog species, representing evolutionary lines, which diverged more than 400 million years ago, is not consistent with a vertical transmission model for their distributions.
Collapse
Affiliation(s)
- M J Leaver
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
29
|
Risinger C, Salaneck E, Söderberg C, Gates M, Postlethwait JH, Larhammar D. Cloning of two loci for synapse protein Snap25 in zebrafish: comparison of paralogous linkage groups suggests loss of one locus in the mammalian lineage. J Neurosci Res 1998; 54:563-73. [PMID: 9843147 DOI: 10.1002/(sici)1097-4547(19981201)54:5<563::aid-jnr1>3.0.co;2-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Synaptosome-associated protein of 25 kDa (Snap25) is an intracellular protein that is defined as a target receptor for synapse vesicles prior to neurotransmitter release. Snap25 is highly conserved, with 61% identity between human and Drosophila melanogaster. Whereas mammals and chicken have a single locus for Snap25, the tetraploid goldfish has at least three loci. We report that the zebrafish has two loci with 91% amino acid identity to each other. The alternative splicing of exon 5 arose before the gene duplication. The expression patterns of the two loci are virtually identical in adult zebrafish. The two zebrafish snap25 loci are located in paralogous linkage groups that seem to correspond to human chromosome 20, which harbors the SNAP locus, and human chromosome 14. Because no additional Snap25 homologue has been reported for any mammal or chicken, snap25.2 may have been lost in the amniote or even tetrapod lineage.
Collapse
Affiliation(s)
- C Risinger
- Department of Neuroscience, Uppsala University, Sweden
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Populations of marine, estuarine, and freshwater fish from highly urban and industrialized sites in North America often exhibit elevated prevalences of neoplastic, preneoplastic, and nonneoplastic hepatic lesions, and sometimes epidermal neoplasms compared to conspecifics from more pristine reference locales. Positive statistical associations with environmental concentrations of PAHs and other xenobiotics and experimental laboratory studies suggest a chemical etiology to these epizootics. Studies have investigated the expression of carcinogenically relevant genes, the extent of overall DNA damage, somatic cell mutations, germ line polymorphisms, and overall levels of genetic diversity in fish from these populations and other polluted sites. In general, elevated levels of cytochrome P4501A expression have been found in fish from contaminated locales; however, inhibition of gene induction has been seen in hepatic lesions and in normal tissue in fish from the most contaminated sites, perhaps due to genetic adaptation or physiological acclimation. Levels of bulky hepatic DNA adducts, as detected by 32P-postlabeling, are almost always elevated in fish from populations that are exposed to highly contaminated environments. However, levels of DNA adducts were not always predictive of the vulnerability to neoplasia of populations and species from polluted sites. Elevated levels of oxygen radical-induced DNA damage have been observed in hepatic tumors, preneoplastic lesions, and normal livers in a single species of flatfish from contaminated sites; however, the prevalences of these alterations in other species and at other polluted sites has yet to be evaluated. Frequent alterations in the K-ras oncogene have been reported in hepatic neoplasms in several species from highly contaminated sites and also in embryos that were experimentally exposed to oil-contaminated sediments. Studies also suggest that heritable germ line polymorphisms, altered allelic frequencies, and reductions in overall genetic diversity may have occurred in some highly impacted populations; however, the origin and functional significance of altered allelic frequencies have largely yet to be evaluated. In summary, feral fish appear particularly sensitive to DNA alterations from xenobiotics, perhaps due to their unusually high levels of exposure, relatively inefficient DNA repair, and the high frequency of polyploidy in some taxa and provide excellent models to explore the relationships between xenobiotic exposure and altered gene structure and expression.
Collapse
Affiliation(s)
- I Wirgin
- Department of Environmental Medicine, New York University Medical Center, Tuxedo 10987, USA.
| | | |
Collapse
|
31
|
Carvalho ML, Oliveira C, Foresti F. Nuclear DNA content of thirty species of Neotropical fishes. Genet Mol Biol 1998. [DOI: 10.1590/s1415-47571998000100009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present paper reports nuclear DNA content in 30 Neotropical freshwater fish species and summarizes the data on other Neotropical species presented in the literature. Among Neotropical fishes, the nuclear DNA content ranges from 1.04 ± 0.09 pg/nucleus in Corydoras cf. simulatus (2n = 62) to 248.0 pg/nucleus in Lepidosiren paradoxa (2n = 38). A general analysis of the data obtained in the present study for each species showed that DNA measurements were practically constant at the individual level, while significant differences were observed among individuals of the same population. This observation was valid for all species analyzed and was more evident in those species that presented other karyotypic particularities such as sex chromosomes or supernumerary chromosomes. The importance of changes in nuclear DNA content in the evolutionary process of Neotropical fishes is discussed.
Collapse
|
32
|
Young WP, Wheeler PA, Coryell VH, Keim P, Thorgaard GH. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics 1998; 148:839-50. [PMID: 9504929 PMCID: PMC1459819 DOI: 10.1093/genetics/148.2.839] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report the first detailed genetic linkage map of rainbow trout (Oncorhynchus mykiss). The segregation analysis was performed using 76 doubled haploid rainbow trout produced by androgenesis from a hybrid between the "OSU" and "Arlee" androgenetically derived homozygous lines. Four hundred and seventy-six markers segregated into 31 major linkage groups and 11 small groups (< 5 markers/group). The minimum genome size is estimated to be 2627.5 cM in length. The sex-determining locus segregated to a distal position on one of the linkage groups. We analyzed the chromosomal distribution of three classes of markers: (1) amplified fragment length polymorphisms, (2) variable number of tandem repeats, and (3) markers obtained using probes homologous to the 5' or 3' end of salmonid-specific small interspersed nuclear elements. Many of the first class of markers were clustered in regions that appear to correspond to centromeres. The second class of markers were more telomeric in distribution, and the third class were intermediate. Tetrasomic inheritance, apparently related to the tetraploid ancestry of salmonid fishes, was detected at one simple sequence repeat locus and suggested by the presence of one extremely large linkage group that appeared to consist of two smaller groups linked at their tips. The double haploid rainbow trout lines and linkage map present a foundation for further genomic studies.
Collapse
Affiliation(s)
- W P Young
- Department of Zoology, Washington State University, Pullman 99164-4236, USA
| | | | | | | | | |
Collapse
|
33
|
Kazianis S, Morizot DC, McEntire BB, Nairn RS, Borowsky RL. Genetic mapping in Xiphophorus hybrid fish: assignment of 43 AP-PCR/RAPD and isozyme markers to multipoint linkage groups. Genome Res 1996; 6:280-9. [PMID: 8723721 DOI: 10.1101/gr.6.4.280] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The combined use of the arbitrarily primed polymerase chain reaction [AP-PCR, also known as random amplification of polymorphic DNA (RAPD)] and isozyme mapping resulted in the production of 87 potential marker loci, enabling an overall expansion within the genetic map of the fish genus Xiphophorus. Use of DNA sequencing-style acrylamide gels and carefully controlled conditions of amplification and silver staining allowed exceptional resolution and reproducibility of AP-PCR/RAPD generated markers. Linkage analysis of AP-PCR/RAPD and isozyme markers resulted in the addition of 16 new markers to Xiphophorus linkage groups (LGs) I, II, III, V, IX, X, XII, and XIV. Addition of 5 AP-PCR/RAPD markers to linkage group U6 containing the Tailspot pigment pattern locus (P) and designation of eight new unassigned linkage groups with 22 markers was also accomplished. Genetic linkage data allowed inference of the existence of a novel pigment pattern modifier locus. Expansion of the Xiphophorus gene map by linkage analysis of AP-PCR/RAPD markers in conjunction with isozyme polymorphisms should lead to the rapid saturation of genetic linkage groups such as LG V, which will probably be instrumental to cloning the Diff tumor suppressor gene locus.
Collapse
Affiliation(s)
- S Kazianis
- Department of Biology, New York University, New York 10003, USA.
| | | | | | | | | |
Collapse
|
34
|
Crossman EJ, Ráb P. Chromosome-banding study of the Alaska blackfish, Dallia pectoralis (Euteleostei: Esocae), with implications for karyotype evolution and relationship of esocoid fishes. CAN J ZOOL 1996. [DOI: 10.1139/z96-019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosomes of Dallia pectoralis from two widely separated locations in Alaska (Yukon River system and Colville River) were analyzed by Giemsa staining, C-banding, and Chromomycin A3 fluorescence. The karyotype was redescribed more precisely. The diploid number 2n = 78 was found, but a significant number of cells with 74–77 chromosomes in individuals from the Yukon River indicate chromosomal polymorphism in the species. The diploid chromosome number of individuals from Colville River was constant (2n = 74). Colville River individuals had one more pair of metacentrics than Yukon River individuals with 2n = 76. The distribution of heterochromatin was nearly the same, and the number and location of nucleolar organizer regions (NORs) was identical. The variation (71–79) may be attributable to the association of NOR-bearing chromosomes or to chromosomal distinction between populations in the two rivers. The results suggest close relationships among all the species of Umbra, a closer relationship between Novumbra and Dallia than either bears to Umbra, and a possible closer relationship between Umbra and Esox than between Esox and Novumbra plus Dallia.
Collapse
|
35
|
Jagoe CH, Welter DA. Quantitative comparisons of the morphology and ultrastructure of erythrocyte nuclei from seven freshwater fish species. CAN J ZOOL 1995. [DOI: 10.1139/z95-229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosome number and genomic DNA content vary widely among fish species, and ploidy can vary within species. This suggests that the size, shape, and morphological features of cell nuclei may also vary. Nucleated erythrocytes of fish are an easily sampled homogeneous population of differentiated cells ideal for inter- and intra-species comparisons. We collected blood samples from largemouth bass (Micropterus salmoides), bluegill (Lepomis macrochirus), chain pickerel (Esox niger), yellow perch (Perca flavescens), mosquitofish (Gambusia holbrooki), redeye bass (Micropterus coosae), and rainbow trout (Oncorhynchus mykiss) and removed cytoplasm and nuclear membranes from blood cells. Individual nuclei were examined and measured using scanning electron microscopy and a computerized image analysis system, and inter- and intra-species differences evaluated by nested analysis of variance. Nuclear size and shape varied significantly among species. Isolated nuclei had conspicuous apertures or holes, and the number and size of these holes also varied significantly among species. Variations in nuclear size and structure within species were small compared with interspecies differences. Little is known of the ultrastructure of erythrocyte nuclei in lower vertebrates, but their structure differs considerably from that of other vertebrate non-erythroid cells, suggesting that the organization of their DNA and associated proteins may be different.
Collapse
|
36
|
|
37
|
Peterson DG, Stack SM, Healy JL, Donohoe BS, Anderson LK. The relationship between synaptonemal complex length and genome size in four vertebrate classes (Osteicthyes, Reptilia, Aves, Mammalia). Chromosome Res 1994; 2:153-62. [PMID: 8032674 DOI: 10.1007/bf01553494] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We investigated the relationship between synaptonemal complex (SC) length and genome size in 18 species of vertebrates from the classes Osteicthyes (bony fish), Reptilia (reptiles), Aves (birds), and Mammalia (mammals). When total SC length was plotted against genome size for all 18 vertebrate species, there did not appear to be a correlation between the two variables. However, when birds were excluded from the data and a linear regression analysis was performed, variation in genome size accounted for approximately 50% of the variation in total SC length (r2 = 0.47). Dividing the average total SC length for a species by its 4C DNA amount yields the species' SC/DNA ratio. SC/DNA ratios of birds were approximately twice as high as the SC/DNA ratios of reptiles and mammals. Bony fish showed intraclass divergence in SC/DNA ratios. The sunfish (Centrarchidae) had SC/DNA ratios almost as high as those of birds, while the remaining fish in the study had SC/DNA ratios similar to those of reptiles and mammals. These observations indicate that inter and intraclass divergence in the relationship between total SC length and genome size has occurred in the vertebrates. Coupled with evidence from the literature, our results also suggest that SC/DNA ratios are positively correlated with crossover frequency.
Collapse
Affiliation(s)
- D G Peterson
- Department of Biology, Colorado State University, Fort Collins 80523
| | | | | | | | | |
Collapse
|
38
|
Müller-Schmid A, Rinder H, Lottspeich F, Gertzen EM, Hoffmann W. Ependymins from the cerebrospinal fluid of salmonid fish: gene structure and molecular characterization. Gene 1992; 118:189-96. [PMID: 1511892 DOI: 10.1016/0378-1119(92)90188-u] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
So far, ependymins (Epds) have been sequenced only from cypriniform fish, and in the past all attempts have failed to characterize, on a molecular level, homologous Epd proteins in higher vertebrates. Therefore, rainbow trout (Oncorhynchus mykiss) Epds, which represent the predominant proteins of the cerebrospinal fluid, have been N-terminally sequenced and the encoding cDNA subsequently cloned using the polymerase chain reaction. Surprisingly, only 40-42% of the amino acids are identical with the corresponding sequences from goldfish (Carassius auratus), and no convincing immunological cross-reactivity is observed with an antiserum raised against purified Epds from C. auratus. O. mykiss possesses two highly homologous genes encoding Epds (Om-I, Om-II), a feature typical of a quasi-tetraploid species. Western analysis, using two specific antibodies against Epds from O. mykiss, revealed a variety of different glycosylation variants. In contrast to C. auratus, Epds from O. mykiss probably do not form disulfide-linked dimers. The structure of one Epd gene and its flanking regions have been determined for the Atlantic salmon (Salmo salar). Six exons were deduced by comparison with the corresponding cDNA sequence from O. mykiss (almost 98% homology with Om-II).
Collapse
Affiliation(s)
- A Müller-Schmid
- Max-Planck-Institut für Psychiatrie, Abteilung Neurochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
39
|
Fánge R. 1 Fish Blood Cells. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s1546-5098(08)60008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
40
|
Bernardi G, Bernardi G. Compositional patterns in the nuclear genome of cold-blooded vertebrates. J Mol Evol 1990; 31:265-81. [PMID: 2124275 DOI: 10.1007/bf02101122] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNA preparations obtained from 122 species of fishes, 5 species of amphibians, and 13 species of reptiles were investigated in their compositional properties by analytical equilibrium centrifugation in CsCl density gradients. These species represented 21 orders of Osteichthyes, 3 orders of Chondrichthyes, 2 orders of amphibians, and 3 orders of reptiles. Modal buoyant densities of fish DNAs ranged from 1.696 to 1.707 g/cm3, the vast majority of values falling, however, between 1.699 and 1.704 g/cm3, which is the range covered by the DNAs of amphibians and reptiles. In all cases, DNA bands in CsCl were only weakly asymmetrical and only very rarely were accompanied by separate satellite bands (mostly on the GC-rich side). Intermolecular compositional heterogeneities were low in the vast majority of cases, and, like CsCl band asymmetries, at least partially due to cryptic or poorly resolved satellites. The present findings indicate, therefore, that DNAs from cold-blooded vertebrates are characterized by a number of common properties, namely a very wide spectrum of modal buoyant densities, low intermolecular compositional heterogeneities, low CsCl band asymmetries, and, in most cases, small amounts of satellite DNAs. In the case of fish DNAs a negative correlation was found between the GC level and the haploid size (c value) of the genome. If polyploidization is neglected, this phenomenon appears to be mainly due to the fact that increases and decreases in GC are associated with contraction and expansion phenomena, respectively, of intergenic noncoding sequences, which are GC poor relative to coding sequences.
Collapse
Affiliation(s)
- G Bernardi
- Laboratoire de Génétique Moléculaire, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
41
|
Morizot DC, Schultz RJ, Wells RS. Assignment of six enzyme loci to multipoint linkage groups in fishes of the genus Poeciliopsis (Poeciliidae): designation of linkage groups III-V. Biochem Genet 1990; 28:83-95. [PMID: 2344350 DOI: 10.1007/bf00554823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Three new linkage groups of enzyme loci are described using Poeciliopsis monacha x P. viriosa-derived interspecific backcross hybrids. Comparison to known linkage groups of the confamilial genus Xiphophorus shows homology between Xiphophorus linkage group I and Poeciliopsis linkage group III, Xiphophorus linkage group II and Poeciliopsis linkage group I, and Xiphophorus linkage group IV and Poeciliopsis linkage group IV. Comparison of the gene content of other fish, amphibians, and mammal syntenic groups suggests retention of plesiomorphic vertebrate gene arrangements in at least two poeciliid linkage groups. Expansion of the Poeciliopsis gene map should be of utility in the identification of tumor regulatory genes through demonstration of linkage to biochemical markers.
Collapse
Affiliation(s)
- D C Morizot
- University of Texas M.D. Anderson Cancer Center, Smithville 78957
| | | | | |
Collapse
|
42
|
Abstract
Neoplastic growth is a widespread developmental aberration among multicellular organisms ranging from primitive avertebrates such as coelenterates (Brien, 1961) and annelids (Cooper, 1969) to man. A major goal of the studies concerning neoplasia has been to obtain insight into its cellular and molecular basis, and it has been suggested as early as the beginning of this century that cellular genes are paramount in the etiology of neoplasis. Early support for this idea has been gained by Mendelian strategies applied to a number of experimental systems, such as Xiphophorus. During the last years molecular biology has provided some insight into the genetic mechanisms that might be involved in neoplasia in higher vertebrates, and it has been possible to identify proto-oncogenes as candidates for the agents directing cellular transformation and/or maintainance of the neoplastic state of the cell. The high degree of evolutionary conservation of the proto-oncogenes points to basic functions that these genes normally might have for the cell and at the same time indicates that crucial steps associated with tumorigenesis might take similar pathways in different classes of vertebrates. There are now four main lines of molecular evidence that relate cellular genes to neoplasia: insertional mutagenesis or chromosomal rearrangement that juxtaposes an exogenous or endogenous genetic element which augments gene expression next to a cellular gene, resulting in elevated expression (for review, see Varmus, 1982; Klein, 1983); gene amplification that results in an increase of the copy number and an elevated expression of a particular gene and, to date, has been found in tumors of humans and mice (for overviews, see Schwab et al., 1984; Schwab, 1985; Alitalo and Schwab, 1986); structural alteration of a cellular gene itself which results in the synthesis of an altered protein (Weinberg, 1982; Cooper, 1982); and generation of fusion genes as a result of gene translocation with possibly altered biological activities (for review, see Adams, 1985). It remains to be addressed in future experiments which genetic mechanisms are operative in development of tumors of genetic origin in Xiphophorus.
Collapse
|
43
|
Gourlie B, Lin Y, Price J, DeVries AL, Powers D, Huang RC. Winter flounder antifreeze proteins: a multigene family. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42697-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
WAKAMATSU YUKO, OIKAWA ATSUSHI, OBIKA MASATAKA, HIROBE TOMOHISA, OZATO KENJIRO. Fish Hereditary Melanoma Cell Lines of Different Degrees of Cell Differentiation. (fish/hereditary melanoma/melanoma cell line/pigment cell differentiation). Dev Growth Differ 1984. [DOI: 10.1111/j.1440-169x.1984.00503.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Leipoldt M. Towards an understanding of the molecular mechanisms regulating gene expression during diploidization in phylogenetically polyploid lower vertebrates. Hum Genet 1983; 65:11-8. [PMID: 6357994 DOI: 10.1007/bf00285022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polyploidization and regional gene duplication have occurred frequently during vertebrate evolution, providing the genetic material necessary for creating evolutionary novelties. Mammals, including man, can be regarded as diploid species with a polyploid history of evolution. Polyploidization steps during the phylogeny of mammals probably took place in the genomes of amphibian- or fish-like mammalian ancestors. The polyploid status has subsequently been shaped by the process of diploidization, leading to genomes that are polyploid with respect to the amount of genetic material and the number of gene copies, and diploid with respect to the level of gene expression and chromosomal characteristics. Phylogenetically tetraploid amphibian and teleost species together with their diploid close relatives can be used as a model system to study the effect of polyploidization and the mechanisms of diploidization of a parallel event during early mammalian evolution. Experimental evidence permits the assumption that the diploidization of gene expression in tetraploid cyprinid fish may be functionally correlated with structural modifications of the ribosomal components, RNA and protein. These findings are discussed in the light of reduced protein synthesis in diploidized tetraploid species and a mechanism to explain diploidization during mammalian evolution.
Collapse
|
46
|
Schwab M. Genome organization in Xiphophorus (Poeciliidae; Telostei). MOLECULAR & GENERAL GENETICS : MGG 1982; 188:410-7. [PMID: 6298571 DOI: 10.1007/bf00330042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Morizot DC, Siciliano MJ. Linkage group IV of fish of the genus Xiphophorus (Poeciliidae): assignment of loci coding for pyruvate kinase-1, glucosephosphate isomerase-1, and isocitrate dehydrogenase-1. Biochem Genet 1982; 20:505-18. [PMID: 7115284 DOI: 10.1007/bf00484701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrophoretic variation ascribable to three enzyme loci, coding for a pyruvate kinase (PK1), a glucose phosphate isomerase (GPI1), and an isocitrate dehydrogenase (IDH1), was observed in three species of fish of the genus Xiphophorus. Electrophoretic patterns in F1 hybrid heterozygotes confirmed the dimeric structures of GPI and IDH, and indicated a multimeric structure for pyruvate kinase. Variant alleles at the three loci exhibited normal Mendelian segregation in backcross hybrids. Linkage analyses indicate a gene order and estimated recombination of PK1--10%--GPI1--41%--IDH1. No significant interference or sex- or population-specific recombination difference was detected. This group (designated linkage group IV) was shown to assort independently from the nine loci comprising linkage groups I, II, and III and from 23 other informative markers, within the limits of the data. No conclusions with respect to homology of linkage relationships could be reached, due to the presence of presumably duplicated loci in these fish coding for isozymes whose homology with enzymes in other vertebrate species is as yet unestablished.
Collapse
|
48
|
|
49
|
Mitani H, Egami N. Rejoining of DNA strand breaks after gamma-irradiation in cultured fish cells, CAF-MM1. INTERNATIONAL JOURNAL OF RADIATION BIOLOGY AND RELATED STUDIES IN PHYSICS, CHEMISTRY, AND MEDICINE 1982; 41:85-90. [PMID: 6977509 DOI: 10.1080/09553008214550081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
|