1
|
Osipov YA, Posukh OV, Kalashnikova DA, Antoshina PA, Laktionov PP, Skrypnik PA, Belyakin SN, Singh PB. H3K9 and H4K20 methyltransferases are directly involved in the heterochromatinization of the paternal chromosomes in male Planococcus citri embryos. Chromosoma 2023; 132:317-328. [PMID: 37700063 DOI: 10.1007/s00412-023-00809-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Using a new method for bulk preparation of early stage embryos, we have investigated the role played by putative Planococcus citri H3K9 and H4K20 histone methyl transferases (HMTases) in regulating heterochromatinization of the imprinted paternal chromosomal set in male embryos. We found that H3K9 and H420 HMTases are required for heterochromatinization of the paternal chromosomes. We present evidence that both HMTases maintain the paternal "imprint" during the cleavage divisions when both parental chromosome sets are euchromatic. A testable model that accommodates our findings is proposed.
Collapse
Affiliation(s)
- Yakov A Osipov
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Str. 2, Novosibirsk, 630090, Russian Federation
- Institute of Molecular and Cellular Biology SD RAS, Lavrentyev Ave., 8/2, 630090, Novosibirsk, Russian Federation
| | - Olga V Posukh
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Str. 2, Novosibirsk, 630090, Russian Federation
- Institute of Molecular and Cellular Biology SD RAS, Lavrentyev Ave., 8/2, 630090, Novosibirsk, Russian Federation
| | - Darya A Kalashnikova
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Str. 2, Novosibirsk, 630090, Russian Federation
- Institute of Molecular and Cellular Biology SD RAS, Lavrentyev Ave., 8/2, 630090, Novosibirsk, Russian Federation
| | - Polina A Antoshina
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Str. 2, Novosibirsk, 630090, Russian Federation
- Institute of Molecular and Cellular Biology SD RAS, Lavrentyev Ave., 8/2, 630090, Novosibirsk, Russian Federation
| | - Petr P Laktionov
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Str. 2, Novosibirsk, 630090, Russian Federation
- Institute of Molecular and Cellular Biology SD RAS, Lavrentyev Ave., 8/2, 630090, Novosibirsk, Russian Federation
| | - Polina A Skrypnik
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Str. 2, Novosibirsk, 630090, Russian Federation
- Institute of Molecular and Cellular Biology SD RAS, Lavrentyev Ave., 8/2, 630090, Novosibirsk, Russian Federation
| | - Stepan N Belyakin
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Str. 2, Novosibirsk, 630090, Russian Federation.
| | - Prim B Singh
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Str. 2, Novosibirsk, 630090, Russian Federation.
- Nazarbayev University School of Medicine, 5/1 Kerei, Zhanibek Khandar Street, 010000, Nur-Sultan, Kazakhstan.
| |
Collapse
|
2
|
Singh PB, Shloma VV, Belyakin SN. Maternal regulation of chromosomal imprinting in animals. Chromosoma 2019; 128:69-80. [PMID: 30719566 PMCID: PMC6536480 DOI: 10.1007/s00412-018-00690-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 11/29/2022]
Abstract
Chromosomal imprinting requires an epigenetic system that "imprints" one of the two parental chromosomes such that it results in a heritable (cell-to-cell) change in behavior of the "imprinted" chromosome. Imprinting takes place when the parental genomes are separate, which occurs during gamete formation in the respective germ-lines and post-fertilization during the period when the parental pro-nuclei lie separately within the ooplasm of the zygote. In the mouse, chromosomal imprinting is regulated by germ-line specific DNA methylation. But the methylation machinery in the respective germ-lines does not discriminate between imprinted and non-imprinted regions. As a consequence, the mouse oocyte nucleus contains over a thousand oocyte-specific germ-line differentially methylated regions (gDMRs). Upon fertilization, the sperm provides a few hundred sperm-specific gDMRs of its own. Combined, there are around 1600 imprinted and non-imprinted gDMRs in the pro-nuclei of the newly fertilized zygote. It is a remarkable fact that beginning in the maternal ooplasm, there are mechanisms that manage to preserve DNA methylation at ~ 26 known imprinted gDMRs in the face of the ongoing genome-wide DNA de-methylation that characterizes pre-implantation development. Specificity is achieved through the binding of KRAB-zinc finger proteins to their cognate recognition sequences within the gDMRs of imprinted genes. This in turn nucleates the assembly of localized heterochromatin-like complexes that preserve methylation at imprinted gDMRs through recruitment of the maintenance methyl transferase Dnmt1. These studies have shown that a germ-line imprint may cause parent-of-origin-specific behavior only if "licensed" by mechanisms that operate post-fertilization. Study of the germ-line and post-fertilization contributions to the imprinting of chromosomes in classical insect systems (Coccidae and Sciaridae) show that the ooplasm is the likely site where imprinting takes place. By comparing molecular and genetic studies across these three species, we suggest that mechanisms which operate post-fertilization play a key role in chromosomal imprinting phenomena in animals and conserved components of heterochromatin are shared by these mechanisms.
Collapse
Affiliation(s)
- Prim B Singh
- Nazarbayev University School of Medicine, 5/1 Kerei, Zhanibek Khandar Street, Astana, Z05K4F4, Kazakhstan.
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov str. 2, Novosibirsk, 630090, Russian Federation.
| | - Victor V Shloma
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov str. 2, Novosibirsk, 630090, Russian Federation
- Genomics Laboratory, Institute of Molecular and Cellular Biology SD RAS, Lavrentyev ave, 8/2, Novosibirsk, 630090, Russian Federation
| | - Stepan N Belyakin
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov str. 2, Novosibirsk, 630090, Russian Federation
- Genomics Laboratory, Institute of Molecular and Cellular Biology SD RAS, Lavrentyev ave, 8/2, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
3
|
|
4
|
Frías-Lasserre D, Villagra CA. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Front Microbiol 2017; 8:2483. [PMID: 29312192 PMCID: PMC5744636 DOI: 10.3389/fmicb.2017.02483] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Neo-Darwinian explanations of organic evolution have settled on mutation as the principal factor in producing evolutionary novelty. Mechanistic characterizations have been also biased by the classic dogma of molecular biology, where only proteins regulate gene expression. This together with the rearrangement of genetic information, in terms of genes and chromosomes, was considered the cornerstone of evolution at the level of natural populations. This predominant view excluded both alternative explanations and phenomenologies that did not fit its paradigm. With the discovery of non-coding RNAs (ncRNAs) and their role in the control of genetic expression, new mechanisms arose providing heuristic power to complementary explanations to evolutionary processes overwhelmed by mainstream genocentric views. Viruses, epimutation, paramutation, splicing, and RNA editing have been revealed as paramount functions in genetic variations, phenotypic plasticity, and diversity. This article discusses how current epigenetic advances on ncRNAs have changed the vision of the mechanisms that generate variation, how organism-environment interaction can no longer be underestimated as a driver of organic evolution, and how it is now part of the transgenerational inheritance and evolution of species.
Collapse
Affiliation(s)
- Daniel Frías-Lasserre
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | |
Collapse
|
5
|
Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals. J Biosci 2016; 41:759-786. [DOI: 10.1007/s12038-016-9650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Bargaje R, Alam MP, Patowary A, Sarkar M, Ali T, Gupta S, Garg M, Singh M, Purkanti R, Scaria V, Sivasubbu S, Brahmachari V, Pillai B. Proximity of H2A.Z containing nucleosome to the transcription start site influences gene expression levels in the mammalian liver and brain. Nucleic Acids Res 2012; 40:8965-78. [PMID: 22821566 PMCID: PMC3467062 DOI: 10.1093/nar/gks665] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nucleosome positioning maps of several organisms have shown that Transcription Start Sites (TSSs) are marked by nucleosome depleted regions flanked by strongly positioned nucleosomes. Using genome-wide nucleosome maps and histone variant occupancy in the mouse liver, we show that the majority of genes were associated with a single prominent H2A.Z containing nucleosome in their promoter region. We classified genes into clusters depending on the proximity of H2A.Z to the TSS. The genes with no detectable H2A.Z showed lowest expression level, whereas H2A.Z was positioned closer to the TSS of genes with higher expression levels. We confirmed this relation between the proximity of H2A.Z and expression level in the brain. The proximity of histone variant H2A.Z, but not H3.3 to the TSS, over seven consecutive nucleosomes, was correlated with expression. Further, a nucleosome was positioned over the TSS of silenced genes while it was displaced to expose the TSS in highly expressed genes. Our results suggest that gene expression levels in vivo are determined by accessibility of the TSS and proximity of H2A.Z.
Collapse
Affiliation(s)
- Rhishikesh Bargaje
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi 110 007, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mealybug chromosome cycle as a paradigm of epigenetics. GENETICS RESEARCH INTERNATIONAL 2012; 2012:867390. [PMID: 22567404 PMCID: PMC3335642 DOI: 10.1155/2012/867390] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/07/2011] [Accepted: 12/26/2011] [Indexed: 01/22/2023]
Abstract
Recently, epigenetics has had an ever-growing impact on research not only for its intrinsic interest but also because it has been implied in biological phenomena, such as tumor emergence and progression. The first epigenetic phenomenon to be described in the early 1960s was chromosome imprinting in some insect species (sciaridae and coccoideae). Here, we discuss recent experimental results to dissect the phenomenon of imprinted facultative heterochromatinization in Lecanoid coccids (mealybugs). In these insect species, the entire paternally derived haploid chromosome set becomes heterochromatic during embryogenesis in males. We describe the role of known epigenetic marks, such as DNA methylation and histone modifications, in this phenomenon. We then discuss the models proposed to explain the noncanonical chromosome cycle of these species.
Collapse
|
8
|
Datta S, Alam MP, Majumdar SS, Mehta AK, Maiti S, Wadhwa N, Brahmachari V. Nucleosomal occupancy and CGG repeat expansion: a comparative analysis of triplet repeat region from mouse and human fragile X mental retardation gene 1. Chromosome Res 2011; 19:445-55. [PMID: 21499798 DOI: 10.1007/s10577-011-9206-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
Abstract
The expansion of CGG repeats in the 5'-untranslated region (5'UTR) of FMR1 gene is the molecular basis of fragile X syndrome in most of the patients. The nature of the flanking sequences in addition to the length and interruption pattern of repeats is predicted to influence CGG repeat instability in the FMR1 gene. We investigated nucleosome occupancy as a contributor to CGG repeat instability in a transgenic mouse model containing unstable (CGG)(26,) from human FMR1 cloned downstream of nucleosome-excluding sequence. We observe that the transgene has an open chromatin structure compared to the stable endogenous mouse Fmr1 within the same nucleus. CGG repeats in mouse Fmr1 are flanked by nucleosomes unlike the repeats in the transgene in all the tissues examined. Further in vitro chromatin reconstitution experiments show that DNA fragment without the SV40ori/EPR (nucleosome-excluding sequence) forms more stable chromatin than the one containing it, despite having the same number of CGG repeats. The correlation between nucleosomal organisation of the FMR1 gene and CGG repeat instability was supported by significantly lower frequency of repeat expansion in mice containing an identical transgene without the SV40ori/EPR. Our studies demonstrate that flanking DNA sequences can influence repeat instability through modulation of nucleosome occupancy in the region.
Collapse
Affiliation(s)
- Sonal Datta
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | | | | | | | | | | | | |
Collapse
|
9
|
Khosla S, Mendiratta G, Brahmachari V. Genomic imprinting in the mealybugs. Cytogenet Genome Res 2006; 113:41-52. [PMID: 16575162 DOI: 10.1159/000090814] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2005] [Accepted: 08/08/2005] [Indexed: 11/19/2022] Open
Abstract
The coccid insects (Hemiptera; Sternorrhyncha; Aphidiformes; Coccoidea; Pseudococcidae) are well suited to study not only the mechanisms of genomic imprinting but also facultative heterochromatization, a phenomenon well exemplified by inactivation of the X chromosome in female mammals. Coccids show sex-specific heterochromatization of an entire set of chromosomes and transcriptional silencing of all the paternally contributed chromosomes in males. Thus, genomic imprinting and the resultant differential regulation operate on 50% of the genome in contrast to the single X chromosome in female mammals. A significant insight into the phenomenon of genomic imprinting has come from very elegant cytological analysis of the coccid system. Recently, efforts have been made to dissect out at the molecular level the phenomenon of genomic imprinting in these insects. The present review summarizes both of these aspects. In light of the accruing experimental evidence for chromatin-based differences in the maternal and paternal genomes, it appears that the mealybug system may provide evidence for stable maintenance of chromatin code not only through mitosis but also through meiosis.
Collapse
Affiliation(s)
- S Khosla
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| | | | | |
Collapse
|
10
|
Greally JM, Gray TA, Gabriel JM, Song L, Zemel S, Nicholls RD. Conserved characteristics of heterochromatin-forming DNA at the 15q11-q13 imprinting center. Proc Natl Acad Sci U S A 1999; 96:14430-5. [PMID: 10588722 PMCID: PMC24453 DOI: 10.1073/pnas.96.25.14430] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear matrix binding assays (NMBAs) define certain DNA sequences as matrix attachment regions (MARs), which often have cis-acting epigenetic regulatory functions. We used NMBAs to analyze the functionally important 15q11-q13 imprinting center (IC). We find that the IC is composed of an unusually high density of MARs, located in close proximity to the germ line elements that are proposed to direct imprint switching in this region. Moreover, we find that the organization of MARs is the same at the homologous mouse locus, despite extensive divergence of DNA sequence. MARs of this size are not usually associated with genes but rather with heterochromatin-forming areas of the genome. In contrast, the 15q11-q13 region contains multiple transcribed genes and is unusual for being subject to genomic imprinting, causing the maternal chromosome to be more transcriptionally silent, methylated, and late replicating than the paternal chromosome. We suggest that the extensive MAR sequences at the IC are organized as heterochromatin during oogenesis, an organization disrupted during spermatogenesis. Consistent with this model, multicolor fluorescence in situ hybridization to halo nuclei demonstrates a strong matrix association of the maternal IC, whereas the paternal IC is more decondensed, extending into the nuclear halo. This model also provides a mechanism for spreading of the imprinting signal, because heterochromatin at the IC on the maternal chromosome may exert a suppressive position effect in cis. We propose that the germ line elements at the 15q11-q13 IC mediate their effects through the candidate heterochromatin-forming DNA identified in this study.
Collapse
Affiliation(s)
- J M Greally
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
In Euplotes crassus, most of the micronuclear genome is eliminated during formation of a transcriptionally active macronucleus. To understand how this is mediated throughout the genome, we have examined the chromatin structure of the macronucleus-destined sequences and Tec transposons, which are dispersed in 15,000 copies in the micronuclear genome and completely eliminated during formation of the macronuclear genome. Whereas the macronucleus-destined sequences show a typical pattern of nucleosomal repeats in micrococcal nuclease digests, the Tec element chromatin structure digests to a nucleosome-like repeat pattern that is not typical: the minimum digestion products are approximately 300-600 base pairs, or "subnucleosomal," in size. In addition, the excised, circular forms of the Tec elements are exceedingly resistant to nucleases. Nevertheless, an underlying nucleosomal structure of the Tec elements can be demonstrated from the size differences between repeats in partial micrococcal nuclease digests and by trypsin treatment of nuclei, which results in mononucleosome-sized products. Characterization of the most micrococcal nuclease-resistant DNA indicates that micronuclear telomeres are organized into a chromatin structure with digestion properties identical to those of the Tec elements in the developing macronucleus. Thus, these major repetitive sequence components of the micronuclear genome differ in their chromatin structure from the macronuclear-destined sequences during DNA elimination. The potential role of developmental stage-specific histone variants in this chromatin differentiation is discussed.
Collapse
Affiliation(s)
- C L Jahn
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA.
| |
Collapse
|
12
|
Khosla S, Augustus M, Brahmachari V. Sex-specific organisation of middle repetitive DNA sequences in the mealybug Planococcus lilacinus. Nucleic Acids Res 1999; 27:3745-51. [PMID: 10471745 PMCID: PMC148631 DOI: 10.1093/nar/27.18.3745] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Differential organisation of homologous chromosomes is related to both sex determination and genomic imprinting in coccid insects, the mealybugs. We report here the identification of two middle repetitive sequences that are differentially organised between the two sexes and also within the same diploid nucleus. These two sequences form a part of the male-specific nuclease-resistant chromatin (NRC) fraction of a mealybug Planococcus lilacinus. To understand the phenomenon of differential organisation we have analysed the components of NRC by cloning the DNA sequences present, deciphering their primary sequence, nucleosomal organisation, genomic distri-bution and cytological localisation. Our observations suggest that the middle repetitive sequences within NRC are functionally significant and we discuss their probable involvement in male-specific chromatin organisation.
Collapse
Affiliation(s)
- S Khosla
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
13
|
Affiliation(s)
- B Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Germany
| | | | | | | |
Collapse
|
14
|
Bongiorni S, Cintio O, Prantera G. The relationship between DNA methylation and chromosome imprinting in the coccid Planococcus citri. Genetics 1999; 151:1471-8. [PMID: 10101170 PMCID: PMC1460555 DOI: 10.1093/genetics/151.4.1471] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The phenomenon of chromosome, or genomic, imprinting indicates the relevance of parental origin in determining functional differences between alleles, homologous chromosomes, or haploid sets. In mealybug males (Homoptera, Coccoidea), the haploid set of paternal origin undergoes heterochromatization at midcleavage and remains so in most of the tissues. This different behavior of the two haploid sets, which depends on their parental origin, represents one of the most striking examples of chromosome imprinting. In mammals, DNA methylation has been postulated as a possible molecular mechanism to differentially imprint DNA sequences during spermatogenesis or oogenesis. In the present article we addressed the role of DNA methylation in the imprinting of whole haploid sets as it occurs in Coccids. We investigated the DNA methylation patterns at both the molecular and chromosomal level in the mealybug Planococcus citri. We found that in both males and females the paternally derived haploid set is hypomethylated with respect to the maternally derived one. Therefore, in males, it is the paternally derived hypomethylated haploid set that is heterochromatized. Our data suggest that the two haploid sets are imprinted by parent-of-origin-specific DNA methylation with no correlation with the known gene-silencing properties of this base modification.
Collapse
Affiliation(s)
- S Bongiorni
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, 01100 Viterbo, Italy
| | | | | |
Collapse
|
15
|
Buzek J, Riha K, Siroky J, Ebert I, Greilhuber J, Vyskot B. Histone H4 underacetylation in plant facultative heterochromatin. Biol Chem 1998; 379:1235-41. [PMID: 9820584 DOI: 10.1515/bchm.1998.379.10.1235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been recently shown that facultative heterochromatin in some phyla is H4 and H3 histone underacetylated. Here we present H4 acetylation analyses in a monocotyledonous plant species, Gagea lutea, whose pentaploid endosperm nuclei possess prominent facultative heterochromatin regions. This heterochromatin is attributed to three chromosome sets originated from the chalazal polar nucleus of the embryo sac. We have previously shown that some parts of this heterochromatin contain heavily methylated DNA, but not all the heterochromatin is hypermethylated. In this report we demonstrate that this facultative heterochromatin is characterised by a conspicuous depletion of histone H4 acetylation at N-terminal lysine residues 5, 8, and 12, but not 16. Endosperm metaphases stained with antiserum against H4Ac5 indicated some heavily labelled chromosomes, while the others displayed no signal (presumably those coming from the three heterochromatinised chromosome sets). Western blotting analyses have shown that the antisera used, designed to detect human H4 histones, are suitable to recognise specific isoforms of acetylated H4 histones in plants and that the most abundant H4 in G. lutea leaves occurs in its diacetylated isoform. We conclude that flowering plants, similarly to protozoa, yeasts and animals, evolved core histone acetylation/deacetylation as a long-term transcriptional control mechanism to establish and/or transmit epigenetic information on gene expression.
Collapse
Affiliation(s)
- J Buzek
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Imprinting is a genetic mechanism that determines expression or repression of genes according to their parental origin. Some imprinted genes occur in clusters in the genome. Recent work using transgenic mice shows that multiple cis-acting sequences are needed for correct imprinting. Mutation analysis in a normal chromosomal context reveals the importance of imprinting centres for regional establishment or maintenance of imprinting in a cluster. Elements that contribute to the function of imprinting centres and regional propagation of the imprints are CpG-rich differentially methylated regions (that during development retain germline imposed methylation or demethylation), direct repeat clusters, and unusual RNAs (antisense, non-translated etc.). The interaction of these cis elements with transacting factors such as methylase and chromatin factors establishes a hierarchical control system with local and regional effects.
Collapse
Affiliation(s)
- W Reik
- Laboratory of Developmental Genetics and Imprinting, Babraham Institute, Cambridge, UK.
| | | |
Collapse
|
17
|
Greally JM, Guinness ME, McGrath J, Zemel S. Matrix-attachment regions in the mouse chromosome 7F imprinted domain. Mamm Genome 1997; 8:805-10. [PMID: 9337391 DOI: 10.1007/s003359900583] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have mapped the matrix-attachment regions (MARs) in 200 kilobases of the mouse Chromosome (Chr) 7F imprinted domain. MARs are genetic elements known to have effects in cis on methylation at nonimprinted loci. The imprinting of the Igf2 and Ins2 genes is dependent on the transcription of the downstream H19 gene. The transcription of H19 is dependent in turn on its methylation status. The cis-acting regulators of methylation at this site are not known. As MARs are potential regulators not only of methylation but also other elements of genomic imprinting, we mapped the MARs within the 200 kilobases around H19. This report describes the mapping of four MARs from this region.
Collapse
Affiliation(s)
- J M Greally
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|