1
|
Jia L, Yang Y, Zhai H, He S, Xin G, Zhao N, Zhang H, Gao S, Liu Q. Production and characterization of a novel interspecific somatic hybrid combining drought tolerance and high quality of sweet potato and Ipomoea triloba L. PLANT CELL REPORTS 2022; 41:2159-2171. [PMID: 35943560 DOI: 10.1007/s00299-022-02912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A novel interspecific somatic hybrid combining drought tolerance and high quality of sweet potato and Ipomoea triloba L. was obtained and its genetic and epigenetic variations were studied. Somatic hybridization can be used to overcome the cross-incompatibility between sweet potato (Ipomoea batatas (L.) Lam.) and its wild relatives and transfer useful and desirable genes from wild relatives to cultivated plants. However, most of the interspecific somatic hybrids obtained to date cannot produce storage roots and do not exhibit agronomic characters. In the present study, a novel interspecific somatic hybrid, named XT1, was obtained through protoplast fusion between sweet potato cv. Xushu 18 and its wild relative I. triloba. This somatic hybrid produced storage roots and exhibited significantly higher drought tolerance and quality compared with its cultivated parent Xushu 18. Transcriptome and real-time quantitative PCR (qRT-PCR) analyses revealed that the well-known drought stress-responsive genes in XT1 and I. triloba were significantly up-regulated under drought stress. The genomic structural reconstructions between the two genomes of the fusion parents in XT1 were confirmed using genomic in situ hybridization (GISH) and specific nuclear and cytoplasmic DNA markers. The DNA methylation variations were characterized by methylation-sensitive amplified polymorphism (MSAP). This study not only reveals the significance of somatic hybridization in the genetic improvement of sweet potato but also provides valuable materials and knowledge for further investigating the mechanism of storage root formation in sweet potato.
Collapse
Affiliation(s)
- Licong Jia
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Yufeng Yang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Guosheng Xin
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Tomiczak K. Molecular and cytogenetic description of somatic hybrids between Gentiana cruciata L. and G. tibetica King. J Appl Genet 2020; 61:13-24. [PMID: 31734861 PMCID: PMC6968988 DOI: 10.1007/s13353-019-00530-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/02/2022]
Abstract
Somatic hybridization provides an opportunity to create cells with new genetic constitution. Here, the interspecific somatic hybrid plants regenerated in vitro following fusion of cell suspension-derived protoplasts of tetraploid Cross Gentian (Gentiana cruciata L., 2n = 52) with protoplasts released from mesophyll tissue of another tetraploid species, Tibetan Gentian (G. tibetica King, 2n = 52), were studied. According to the results of genome analyses with AFLP, ISSR, and CAPS markers, all somatic hybrids were genetically closer to "suspension" fusion partner G. cruciata than to "mesophyll" partner G. tibetica, but they got G. tibetica chloroplasts. Chromosome counting revealed little variation in the number of chromosomes in hybrid's cells (2n = 88 or 2n = 90), although all plants possessed similar nuclear DNA content which remained stable even after 2 years of in vitro culture. Fluorescence in situ hybridization (FISH) showed that hybrids possessed 4 to 7 chromosomes bearing 5S rDNA sites and 6 or 7 chromosomes with 35S rDNA sites. A part of FISH signals was smaller than those observed in the parental species, which could indicate the loss of rDNA sequences. Genomic in situ hybridization (GISH) showed the predominance of the number of G. cruciata chromosomes over chromosomes of G. tibetica. However, a significant level of cross-hybridization was observed for about one-third of hybrid chromosomes, indicating a high degree of homeology between the genomes of G. cruciata and G. tibetica.
Collapse
Affiliation(s)
- Karolina Tomiczak
- Department of Conservation Biology of Plants, Polish Academy of Sciences Botanical Garden - Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973, Warsaw, Poland.
| |
Collapse
|
3
|
Wang J, Zhao C, Liu C, Xia G, Xiang F. Introgression of Swertia mussotii gene into Bupleurum scorzonerifolium via somatic hybridization. BMC PLANT BIOLOGY 2011; 11:71. [PMID: 21513581 PMCID: PMC3098146 DOI: 10.1186/1471-2229-11-71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 04/25/2011] [Indexed: 05/23/2023]
Abstract
BACKGROUND The wild herb Swertia mussotii is a source of the anti-hepatitis compounds swertiamarin, mangiferin and gentiopicroside. Its over-exploitation has raised the priority of producing these compounds heterologously. Somatic hybridization represents a novel approach for introgressing Swertia mussotii genes into a less endangered species. RESULTS Protoplasts derived from calli of Bupleurum scorzonerifolium and S. mussotii were fused to produce 194 putative hybrid cell lines, of which three (all derived from fusions where the S. mussotii protoplasts were pre-treated for 30 s with UV light) later differentiated into green plants. The hybridity of the calli was confirmed by a combination of isozyme, RAPD and chromosomal analysis. The hybrid calli genomes were predominantly B. scorzonerifolium. GISH analysis of mitotic chromosomes confirmed that the irradiation of donor protoplasts increased the frequency of chromosome elimination and fragmentation. RFLP analysis of organellar DNA revealed that mitochondrial and chloroplast DNA of both parents coexisted and recombined in some hybrid cell lines. Some of the hybrid calli contained SmG10H from donor, and produced swertiamarin, mangiferin and certain volatile compounds characteristic of S. mussotii. The expression of SmG10H (geraniol 10-hydroxylase) was associated with the heterologous accumulation of swertiamarin. CONCLUSIONS Somatic hybrids between B. scorzonerifolium and S. mussotii were obtained, hybrids selected all contained introgressed nuclear and cytoplasmic DNA from S. mussotii; and some produced more mangiferin than the donor itself. The introgression of SmG10H was necessary for the accumulation of swertiamarin.
Collapse
Affiliation(s)
- Junfeng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Shanda Nanlu 27#, Jinan 250100, China
- Crop Germplasm Resources Centre of Shandong, Shandong Academy of Agricultural Sciences, Gongye Beilu 202#, Jinan 250100, China
| | - Cuizhu Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Shanda Nanlu 27#, Jinan 250100, China
| | - Chang Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Shanda Nanlu 27#, Jinan 250100, China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Shanda Nanlu 27#, Jinan 250100, China
| | - Fengning Xiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Shanda Nanlu 27#, Jinan 250100, China
| |
Collapse
|
4
|
Xiang F, Xia G, Zhi D, Wang J, Nie H, Chen H. Regeneration of somatic hybrids in relation to the nuclear and cytoplasmic genomes of wheat and Setaria italica. Genome 2004; 47:680-8. [PMID: 15284872 DOI: 10.1139/g04-023] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Somatic hybridization via PEG (Polyethylene 6000)-mediated protoplast fusion was achieved between two different wheat culture lines (Triticum aestivum L., 'Jinan' 177, T1 and T2) and Setaria italica (L.) P. Beauv. The T1 recipient originated from non-regenerable long-term cell suspensions, while T2 was derived from embryogenic calli with a high regeneration capacity. Donor protoplasts were obtained from embryogenic calli of S. italica (S) (with low regeneration capacity) irradiated with different doses of ultraviolet light. Twenty-three putative hybrid cell lines were produced in fusion combinations with the donor protoplasts treated with UV light for 30 s (combination I) and 1 min (combination II), but only one (from combination II) differentiated into green plants. Three cell lines from combination I and five cell lines from combination II possessed the nuclear genomes of T1, T2, and S. italica as revealed by cytological, isozyme, RAPD, and 5S rDNA spacer sequence analyses. Genomic in situ hybridization (GISH) analysis showed that most hybrid cell lines had 2236 wheat chromosomes, 02 S. italica chromosomes, and 16 wheat S. italica recombinant chromosomes, whereas the regenerable cell line had 4456 wheat chromosomes and 36 recombinant chromosomes, but no intact S. italica chromosomes. RFLP analysis of organellar DNA revealed that mitochondrial and chloroplast DNA of both parents coexisted in all hybrid cell lines and recombined in most hybrid cell lines. These results indicate that the regeneration of hybrid plants involves not only the integration of S. italica nuclear and organellar DNA, but also the genome complementation of T1 and T2.Key words: Triticum aestivum L., Setaria italica (L.) P. Beauv., asymmetric somatic hybridization, UV treatment, hybrid plant, nuclear and cytoplasmic genome.
Collapse
Affiliation(s)
- Fengning Xiang
- School of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| | | | | | | | | | | |
Collapse
|
6
|
Hung CY, Lai YK, Feng TY, Chen CC. Chloroplast segregation in somatic hybrids of Nicotiana plumbaginifolia and N. sylvestris having different ratios of parental nuclear genomes. PLANT CELL REPORTS 1993; 13:83-86. [PMID: 24196292 DOI: 10.1007/bf00235295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/1993] [Revised: 08/24/1993] [Indexed: 06/02/2023]
Abstract
Fusion of mesophyll protoplasts of haploid Nicotiana plumbaginifolia (P) and N. sylvestris (S) resulted in the production of somatic hybrid plants of various ploidy levels. Analysis of the restriction fragment patterns of chloroplast DNA from 118 plants belonging to genome constitutions PS, PPS, PSS, and PPSS revealed that two had a pattern corresponding to a mixture of parental DNA while all the others had the pattern of either N. plumbaginifolia or N. sylvestris. In the latter case, the ratio of the two parental types fits 1∶1 in all the four genome constitutions studied. Since the protoplasts used in the fusion experiment were physiologically similar and the hybrid cells were not deliberately selected, these results suggest that chloroplast segregation in the somatic hybrids is independent of the chloroplast input of the fusion partners and the nuclear background of the fusion products.
Collapse
Affiliation(s)
- C Y Hung
- Department of Botany, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|