1
|
Coconi Linares N, Li X, Dilokpimol A, de Vries RP. Comparative characterization of nine novel GH51, GH54 and GH62 α-l-arabinofuranosidases from Penicillium subrubescens. FEBS Lett 2022; 596:360-368. [PMID: 35014696 DOI: 10.1002/1873-3468.14278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/07/2022]
Abstract
α-l-Arabinofuranosidases (ABFs) are important enzymes in plant biomass degradation with a wide range of applications. The ascomycete fungus Penicillium subrubescens has more α-l-arabinofuranosidase-encoding genes in its genome compared to other Penicillia. We characterized nine ABFs from glycoside hydrolase (GH) families GH51, GH54 and GH62 from this fungus and demonstrated that they have highly diverse specificity and activity levels, indicating that the expansion was accompanied by diversification of the enzymes. Comparison of the substrate preference of the enzymes to the expression of the corresponding genes when the fungus was grown on either of two plant biomass substrates did not show a clear correlation, suggesting a more complex regulatory system governing l-arabinose release from plant biomass by P. subrubescens.
Collapse
Affiliation(s)
- Nancy Coconi Linares
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Xinxin Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| |
Collapse
|
2
|
Lemaire A, Duran Garzon C, Perrin A, Habrylo O, Trezel P, Bassard S, Lefebvre V, Van Wuytswinkel O, Guillaume A, Pau-Roblot C, Pelloux J. Three novel rhamnogalacturonan I- pectins degrading enzymes from Aspergillus aculeatinus: Biochemical characterization and application potential. Carbohydr Polym 2020; 248:116752. [DOI: 10.1016/j.carbpol.2020.116752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
|
3
|
McGregor NGS, Artola M, Nin-Hill A, Linzel D, Haon M, Reijngoud J, Ram A, Rosso MN, van der Marel GA, Codée JDC, van Wezel GP, Berrin JG, Rovira C, Overkleeft HS, Davies GJ. Rational Design of Mechanism-Based Inhibitors and Activity-Based Probes for the Identification of Retaining α-l-Arabinofuranosidases. J Am Chem Soc 2020; 142:4648-4662. [PMID: 32053363 PMCID: PMC7068720 DOI: 10.1021/jacs.9b11351] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Identifying
and characterizing the enzymes responsible for an observed
activity within a complex eukaryotic catabolic system remains one
of the most significant challenges in the study of biomass-degrading
systems. The debranching of both complex hemicellulosic and pectinaceous
polysaccharides requires the production of α-l-arabinofuranosidases
among a wide variety of coexpressed carbohydrate-active enzymes. To
selectively detect and identify α-l-arabinofuranosidases
produced by fungi grown on complex biomass, potential covalent inhibitors
and probes which mimic α-l-arabinofuranosides were
sought. The conformational free energy landscapes of free α-l-arabinofuranose and several rationally designed covalent α-l-arabinofuranosidase inhibitors were analyzed. A synthetic
route to these inhibitors was subsequently developed based on a key
Wittig–Still rearrangement. Through a combination of kinetic
measurements, intact mass spectrometry, and structural experiments,
the designed inhibitors were shown to efficiently label the catalytic
nucleophiles of retaining GH51 and GH54 α-l-arabinofuranosidases.
Activity-based probes elaborated from an inhibitor with an aziridine
warhead were applied to the identification and characterization of
α-l-arabinofuranosidases within the secretome of A. niger grown on arabinan. This method was extended to
the detection and identification of α-l-arabinofuranosidases
produced by eight biomass-degrading basidiomycete fungi grown on complex
biomass. The broad applicability of the cyclophellitol-derived activity-based
probes and inhibitors presented here make them a valuable new tool
in the characterization of complex eukaryotic carbohydrate-degrading
systems and in the high-throughput discovery of α-l-arabinofuranosidases.
Collapse
Affiliation(s)
- Nicholas G S McGregor
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, U.K
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Alba Nin-Hill
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica) & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Daniël Linzel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Mireille Haon
- INRA, Aix Marseille University, Biodiversité et Biotechnologie Fongiques (BBF), UMR1163, F-13009 Marseille, France
| | - Jos Reijngoud
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Arthur Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Marie-Noëlle Rosso
- INRA, Aix Marseille University, Biodiversité et Biotechnologie Fongiques (BBF), UMR1163, F-13009 Marseille, France
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Jean-Guy Berrin
- INRA, Aix Marseille University, Biodiversité et Biotechnologie Fongiques (BBF), UMR1163, F-13009 Marseille, France
| | - Carme Rovira
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica) & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020 Barcelona, Spain
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
4
|
Zheng F, Liu J, Basit A, Miao T, Jiang W. Insight to Improve α-L-Arabinofuranosidase Productivity in Pichia pastoris and Its Application on Corn Stover Degradation. Front Microbiol 2018; 9:3016. [PMID: 30631307 PMCID: PMC6315152 DOI: 10.3389/fmicb.2018.03016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
α-L-arabinofuranosidase (ARA) with enhanced specific activity and in large amounts, is needed for a variety of industrial applications. To improve ARA production with engineered methylotrophic yeast Pichia pastoris, a genetically modified ara gene from Aspergillus niger ND-1 was investigated. Through codon optimization and rational replacement of α-factor signal peptide with the native propeptide (MFSRRNLVALGLAATVSA), ARA production was improved from 2.61 ± 0.13 U/mL to 14.37 ± 0.22 U/mL in shaking flask culture (a 5.5-fold increase). Results of N-terminal sequencing showed that secreted active ARA of recombinant strain p-oARA had theoretical initial five amino acids (GPCDI) comparable to the mature sequences of α-oARA (EAEAG) and αp-oARA (NLVAL). The kinetic values have been determined for ARA of recombinant strain p-oARA (Vmax = 747.55 μmol/min/mg, Km = 5.36 mmol/L), optimal activity temperature 60°C and optimal pH 4.0. Scaling up of ARA production by p-oARA in a 7.5-L fermentor resulted in remarkably high extracellular ARA specific activity (479.50 ± 12.83 U/mg) at 168 h, and maximal production rate 164.47 ± 4.40 U/mL. In studies of corn stover degradation activity, degree of synergism for ARA and xylanase was 32.4% and enzymatic hydrolysis yield for ARA + xylanase addition was 15.9% higher than that of commercial cellulase, indicating significant potential of ARA for catalytic conversion of corn stover to fermentable sugars for biofuel production.
Collapse
Affiliation(s)
- Fengzhen Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junquan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Abdul Basit
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ting Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Solid-state cultivation of recombinant Aspergillus nidulans to co-produce xylanase, arabinofuranosidase, and xylooligosaccharides from soybean fibre. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Gruben BS, Mäkelä MR, Kowalczyk JE, Zhou M, Benoit-Gelber I, De Vries RP. Expression-based clustering of CAZyme-encoding genes of Aspergillus niger. BMC Genomics 2017; 18:900. [PMID: 29169319 PMCID: PMC5701360 DOI: 10.1186/s12864-017-4164-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/05/2017] [Indexed: 11/29/2022] Open
Abstract
Background The Aspergillus niger genome contains a large repertoire of genes encoding carbohydrate active enzymes (CAZymes) that are targeted to plant polysaccharide degradation enabling A. niger to grow on a wide range of plant biomass substrates. Which genes need to be activated in certain environmental conditions depends on the composition of the available substrate. Previous studies have demonstrated the involvement of a number of transcriptional regulators in plant biomass degradation and have identified sets of target genes for each regulator. In this study, a broad transcriptional analysis was performed of the A. niger genes encoding (putative) plant polysaccharide degrading enzymes. Microarray data focusing on the initial response of A. niger to the presence of plant biomass related carbon sources were analyzed of a wild-type strain N402 that was grown on a large range of carbon sources and of the regulatory mutant strains ΔxlnR, ΔaraR, ΔamyR, ΔrhaR and ΔgalX that were grown on their specific inducing compounds. Results The cluster analysis of the expression data revealed several groups of co-regulated genes, which goes beyond the traditionally described co-regulated gene sets. Additional putative target genes of the selected regulators were identified, based on their expression profile. Notably, in several cases the expression profile puts questions on the function assignment of uncharacterized genes that was based on homology searches, highlighting the need for more extensive biochemical studies into the substrate specificity of enzymes encoded by these non-characterized genes. The data also revealed sets of genes that were upregulated in the regulatory mutants, suggesting interaction between the regulatory systems and a therefore even more complex overall regulatory network than has been reported so far. Conclusions Expression profiling on a large number of substrates provides better insight in the complex regulatory systems that drive the conversion of plant biomass by fungi. In addition, the data provides additional evidence in favor of and against the similarity-based functions assigned to uncharacterized genes. Electronic supplementary material The online version of this article (10.1186/s12864-017-4164-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Birgit S Gruben
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Miia R Mäkelä
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Helsinki, Finland
| | - Joanna E Kowalczyk
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Current affiliation: ATGM, Avans University of Applied Sciences, Lovensdijkstraat 61-63, 4818, AJ, Breda, The Netherlands
| | - Isabelle Benoit-Gelber
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Current affiliation: Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| | - Ronald P De Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands. .,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands. .,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Secreted Alpha-N-Arabinofuranosidase B Protein Is Required for the Full Virulence of Magnaporthe oryzae and Triggers Host Defences. PLoS One 2016; 11:e0165149. [PMID: 27764242 PMCID: PMC5072668 DOI: 10.1371/journal.pone.0165149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/09/2016] [Indexed: 12/23/2022] Open
Abstract
Rice blast disease caused by Magnaporthe oryzae is one of the most devastating fungal diseases of rice and results in a huge loss of rice productivity worldwide. During the infection process, M. oryzae secretes a large number of glycosyl hydrolase proteins into the host apoplast to digest the cell wall and facilitate fungal ingression into host tissues. In this study, we identified a novel arabinofuranosidase-B (MoAbfB) protein that is secreted by M. oryzae during fungal infection. Deletion of MoAbfB from M. oryzae resulted in reduced disease severity in rice. Biochemical assays revealed that the MoAbfB protein exhibited arabinofuranosidase activity and caused degradation of rice cell wall components. Interestingly, pre-treatment of rice with the MoAbfB protein inhibited fungal infection by priming defence gene expression. Our findings suggest that MoAbfB secretion affects M. oryzae pathogenicity by breaking down the host cell wall, releasing oligosaccharides that may be recognized by the host to trigger innate immune responses.
Collapse
|
8
|
Identification and Characterization of a Novel Galactofuranose-Specific β-D-Galactofuranosidase from Streptomyces Species. PLoS One 2015; 10:e0137230. [PMID: 26340350 PMCID: PMC4560423 DOI: 10.1371/journal.pone.0137230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/14/2015] [Indexed: 12/02/2022] Open
Abstract
β-D-galactofuranose (Galf) is a component of polysaccharides and glycoconjugates and its transferase has been well analyzed. However, no β-D-galactofuranosidase (Galf-ase) gene has been identified in any organism. To search for a Galf-ase gene we screened soil samples and discovered a strain, identified as a Streptomyces species by the 16S ribosomal RNA gene analysis, that exhibits Galf-ase activity for 4-nitrophenyl β-D-galactofuranoside (pNP-β-D-Galf) in culture supernatants. By draft genome sequencing of the strain, named JHA19, we found four candidate genes encoding Galf-ases. Using recombinant proteins expressed in Escherichia coli, we found that three out of four candidates displayed the activity of not only Galf-ase but also α-L-arabinofuranosidase (Araf-ase), whereas the other one showed only the Galf-ase activity. This novel Galf-specific hydrolase is encoded by ORF1110 and has an optimum pH of 5.5 and a Km of 4.4 mM for the substrate pNP-β-D-Galf. In addition, this enzyme was able to release galactose residue from galactomannan prepared from the filamentous fungus Aspergillus fumigatus, suggesting that natural polysaccharides could be also substrates. By the BLAST search using the amino acid sequence of ORF1110 Galf-ase, we found that there are homolog genes in both prokaryotes and eukaryotes, indicating that Galf-specific Galf-ases widely exist in microorganisms.
Collapse
|
9
|
Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization. Sci Rep 2015; 5:13592. [PMID: 26314379 PMCID: PMC4552001 DOI: 10.1038/srep13592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/31/2015] [Indexed: 11/15/2022] Open
Abstract
Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant materials for biofuels. Filamentous fungi are ubiquitous organisms and major plant biomass degraders. Single colonies of some fungal species can colonize massive areas as large as five soccer stadia. During growth, the mycelium encounters heterogeneous carbon sources. Here we assessed whether substrate heterogeneity is a major determinant of spatial gene expression in colonies of Aspergillus niger. We analyzed whole-genome gene expression in five concentric zones of 5-day-old colonies utilizing sugar beet pulp as a complex carbon source. Growth, protein production and secretion occurred throughout the colony. Genes involved in carbon catabolism were expressed uniformly from the centre to the periphery whereas genes encoding plant biomass degrading enzymes and nitrate utilization were expressed differentially across the colony. A combined adaptive response of carbon-catabolism and enzyme production to locally available monosaccharides was observed. Finally, our results demonstrate that A. niger employs different enzymatic tools to adapt its metabolism as it colonizes complex environments.
Collapse
|
10
|
Heterologous expression and characterization of α-l-arabinofuranosidase 4 from Penicillium purpurogenum and comparison with the other isoenzymes produced by the fungus. Fungal Biol 2015; 119:641-7. [DOI: 10.1016/j.funbio.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 11/18/2022]
|
11
|
Overexpression, purification and characterisation of homologous α-l-arabinofuranosidase and endo-1,4-β-d-glucanase in Aspergillus vadensis. ACTA ACUST UNITED AC 2014; 41:1697-708. [DOI: 10.1007/s10295-014-1512-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/16/2014] [Indexed: 11/26/2022]
Abstract
Abstract
In the recent past, much research has been applied to the development of Aspergillus, most notably A. niger and A. oryzae, as hosts for recombinant protein production. In this study, the potential of another species, Aspergillus vadensis, was examined. The full length gDNA encoding two plant biomass degrading enzymes, i.e. α-l-arabinofuranosidase (abfB) (GH54) and endo-1,4-β-d-glucanase (eglA) (GH12) from A. vadensis were successfully expressed using the gpdA promoter from A. vadensis. Both enzymes were produced extracellularly in A. vadensis as soluble proteins and successfully purified by affinity chromatography. The effect of culture conditions on the expression of abfB in A. vadensis was examined and optimised to give a yield of 30 mg/L when grown on a complex carbon source such as wheat bran. Characterization of the purified α-l-arabinofuranosidase from A. vadensis showed an optimum pH and temperature of pH 3.5 and 60 °C which concur with those previously reported for A. niger AbfB. Comparative analysis to A. niger AbfA demonstrated interesting differences in temperate optima, pH stability and substrate specificities. The endo-1,4-β-d-glucanase from A. vadensis exhibited a pH and temperature optimum of pH 4.5 and 50 °C, respectively. Comparative biochemical analysis to the orthologous EglA from A. niger presented similar pH and substrate specificity profiles. However, significant differences in temperature optima and stability were noted.
Collapse
|
12
|
Gonçalves TA, Damásio ARL, Segato F, Alvarez TM, Bragatto J, Brenelli LB, Citadini APS, Murakami MT, Ruller R, Paes Leme AF, Prade RA, Squina FM. Functional characterization and synergic action of fungal xylanase and arabinofuranosidase for production of xylooligosaccharides. BIORESOURCE TECHNOLOGY 2012; 119:293-299. [PMID: 22750495 DOI: 10.1016/j.biortech.2012.05.062] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Plant cell wall degrading enzymes are key technological components in biomass bioconversion platforms for lignocellulosic materials transformation. Cost effective production of enzymes and identification of efficient degradation routes are two economic bottlenecks that currently limit the use of renewable feedstocks through an environmental friendly pathway. The present study describes the hypersecretion of an endo-xylanase (GH11) and an arabinofuranosidase (GH54) by a fungal expression system with potential biotechnological application, along with comprehensive characterization of both enzymes, including spectrometric analysis of thermal denaturation, biochemical characterization and mode of action description. The synergistic effect of these enzymes on natural substrates such as sugarcane bagasse, demonstrated the biotechnological potential of using GH11 and GH54 for production of probiotic xylooligosaccharides from plant biomass. Our findings shed light on enzymatic mechanisms for xylooligosaccharide production, as well as provide basis for further studies for the development of novel enzymatic routes for use in biomass-to-bioethanol applications.
Collapse
Affiliation(s)
- T A Gonçalves
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cordente AG, Curtin CD, Varela C, Pretorius IS. Flavour-active wine yeasts. Appl Microbiol Biotechnol 2012; 96:601-18. [PMID: 22940803 PMCID: PMC3466427 DOI: 10.1007/s00253-012-4370-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/11/2012] [Accepted: 08/13/2012] [Indexed: 11/26/2022]
Abstract
The flavour of fermented beverages such as beer, cider, saké and wine owe much to the primary fermentation yeast used in their production, Saccharomyces cerevisiae. Where once the role of yeast in fermented beverage flavour was thought to be limited to a small number of volatile esters and higher alcohols, the discovery that wine yeast release highly potent sulfur compounds from non-volatile precursors found in grapes has driven researchers to look more closely at how choice of yeast can influence wine style. This review explores recent progress towards understanding the range of ‘flavour phenotypes’ that wine yeast exhibit, and how this knowledge has been used to develop novel flavour-active yeasts. In addition, emerging opportunities to augment these phenotypes by engineering yeast to produce so-called grape varietal compounds, such as monoterpenoids, will be discussed.
Collapse
Affiliation(s)
- Antonio G. Cordente
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064 Australia
| | - Christopher D. Curtin
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064 Australia
| | - Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064 Australia
| | - Isak S. Pretorius
- University of South Australia, GPO Box 2471, Adelaide, SA 5001 Australia
| |
Collapse
|
14
|
Andersen MR, Giese M, de Vries RP, Nielsen J. Mapping the polysaccharide degradation potential of Aspergillus niger. BMC Genomics 2012; 13:313. [PMID: 22799883 PMCID: PMC3542576 DOI: 10.1186/1471-2164-13-313] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger.
Collapse
Affiliation(s)
- Mikael R Andersen
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
15
|
Chimphango AFA, Rose SH, van Zyl WH, Görgens JF. Production and characterisation of recombinant α-l-arabinofuranosidase for production of xylan hydrogels. Appl Microbiol Biotechnol 2012; 95:101-12. [DOI: 10.1007/s00253-012-4018-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/11/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
|
16
|
Sakamoto T, Inui M, Yasui K, Hosokawa S, Ihara H. Substrate specificity and gene expression of two Penicillium chrysogenum α-l-arabinofuranosidases (AFQ1 and AFS1) belonging to glycoside hydrolase families 51 and 54. Appl Microbiol Biotechnol 2012; 97:1121-30. [DOI: 10.1007/s00253-012-3978-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 11/29/2022]
|
17
|
d-Xylose concentration-dependent hydrolase expression profiles and the function of CreA and XlnR in Aspergillus niger. Appl Environ Microbiol 2012; 78:3145-55. [PMID: 22344641 DOI: 10.1128/aem.07772-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus niger is an important organism for the production of industrial enzymes such as hemicellulases and pectinases. The xylan-backbone monomer, d-xylose, is an inducing substance for the coordinate expression of a large number of polysaccharide-degrading enzymes. In this study, the responses of 22 genes to low (1 mM) and high (50 mM) d-xylose concentrations were investigated. These 22 genes encode enzymes that function as xylan backbone-degrading enzymes, accessory enzymes, cellulose-degrading enzymes, or enzymes involved in the pentose catabolic pathway in A. niger. Notably, genes encoding enzymes that have a similar function (e.g., xylan backbone degradation) respond in a similar manner to different concentrations of d-xylose. Although low d-xylose concentrations provoke the greatest change in transcript levels, in particular, for hemicellulase-encoding genes, transcript formation in the presence of high concentrations of d-xylose was also observed. Interestingly, a high d-xylose concentration is favorable for certain groups of genes. Furthermore, the repressing influence of CreA on the transcription and transcript levels of a subset of these genes was observed regardless of whether a low or high concentration of d-xylose was used. Interestingly, the decrease in transcript levels of certain genes on high d-xylose concentrations is not reflected by the transcript level of their activator, XlnR. Regardless of the d-xylose concentration applied and whether CreA was functional, xlnR was constitutively expressed at a low level.
Collapse
|
18
|
Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 2011; 91:1477-92. [PMID: 21785931 PMCID: PMC3160556 DOI: 10.1007/s00253-011-3473-2] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/27/2011] [Accepted: 07/10/2011] [Indexed: 02/01/2023]
Abstract
Enzymatic degradation of plant polysaccharides has many industrial applications, such as within the paper, food, and feed industry and for sustainable production of fuels and chemicals. Cellulose, hemicelluloses, and pectins are the main components of plant cell wall polysaccharides. These polysaccharides are often tightly packed, contain many different sugar residues, and are branched with a diversity of structures. To enable efficient degradation of these polysaccharides, fungi produce an extensive set of carbohydrate-active enzymes. The variety of the enzyme set differs between fungi and often corresponds to the requirements of its habitat. Carbohydrate-active enzymes can be organized in different families based on the amino acid sequence of the structurally related catalytic modules. Fungal enzymes involved in plant polysaccharide degradation are assigned to at least 35 glycoside hydrolase families, three carbohydrate esterase families and six polysaccharide lyase families. This mini-review will discuss the enzymes needed for complete degradation of plant polysaccharides and will give an overview of the latest developments concerning fungal carbohydrate-active enzymes and their corresponding families.
Collapse
|
19
|
Zietsman AJ, de Klerk D, van Rensburg P. Coexpression of α-l-arabinofuranosidase and β-glucosidase in Saccharomyces cerevisiae. FEMS Yeast Res 2010; 11:88-103. [DOI: 10.1111/j.1567-1364.2010.00694.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Ravanal MC, Callegari E, Eyzaguirre J. Novel bifunctional alpha-L-arabinofuranosidase/xylobiohydrolase (ABF3) from Penicillium purpurogenum. Appl Environ Microbiol 2010; 76:5247-53. [PMID: 20562284 PMCID: PMC2916492 DOI: 10.1128/aem.00214-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 06/09/2010] [Indexed: 11/20/2022] Open
Abstract
The soft rot fungus Penicillium purpurogenum grows on a variety of natural substrates and secretes various isoforms of xylanolytic enzymes, including three arabinofuranosidases. This work describes the biochemical properties as well as the nucleotide and amino acid sequences of arabinofuranosidase 3 (ABF3). This enzyme has been purified to homogeneity. It is a glycosylated monomer with a molecular weight of 50,700 and can bind cellulose. The enzyme is active with p-nitrophenyl alpha-L-arabinofuranoside and p-nitrophenyl beta-D-xylopyranoside with a K(m) of 0.65 mM and 12 mM, respectively. The enzyme is active on xylooligosaccharides, yielding products of shorter length, including xylose. However, it does not hydrolyze arabinooligosaccharides. When assayed with polymeric substrates, little arabinose is liberated from arabinan and debranched arabinan; however, it hydrolyzes arabinose and releases xylooligosaccharides from arabinoxylan. Sequencing both ABF3 cDNA and genomic DNA reveals that this gene does not contain introns and that the open reading frame is 1,380 nucleotides in length. The deduced mature protein is composed of 433 amino acids residues and has a calculated molecular weight of 47,305. The deduced amino acid sequence has been validated by mass spectrometry analysis of peptides from purified ABF3. A total of 482 bp of the promoter were sequenced; putative binding sites for transcription factors such as CreA (four), XlnR (one), and AreA (three) and two CCAAT boxes were found. The enzyme has two domains, one similar to proteins of glycosyl hydrolase family 43 at the amino-terminal end and a family 6 carbohydrate binding module at the carboxyl end. ABF3 is the first described modular family 43 enzyme from a fungal source, having both alpha-L-arabinofuranosidase and xylobiohydrolase functionalities.
Collapse
Affiliation(s)
- María Cristina Ravanal
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile, BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota
| | - Eduardo Callegari
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile, BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota
| | - Jaime Eyzaguirre
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile, BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
21
|
Guais O, Tourrasse O, Dourdoigne M, Parrou JL, Francois JM. Characterization of the family GH54 α-l-arabinofuranosidases in Penicillium funiculosum, including a novel protein bearing a cellulose-binding domain. Appl Microbiol Biotechnol 2010; 87:1007-21. [DOI: 10.1007/s00253-010-2532-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/26/2010] [Accepted: 02/28/2010] [Indexed: 11/29/2022]
|
22
|
Puchart V, Vrsanská M, Mastihubová M, Topakas E, Vafiadi C, Faulds CB, Tenkanen M, Christakopoulos P, Biely P. Substrate and positional specificity of feruloyl esterases for monoferuloylated and monoacetylated 4-nitrophenyl glycosides. J Biotechnol 2007; 127:235-43. [PMID: 16901567 DOI: 10.1016/j.jbiotec.2006.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/20/2006] [Accepted: 06/26/2006] [Indexed: 11/25/2022]
Abstract
4-Nitrophenyl glycosides of 2-, 3-, and 5-O-(E)-feruloyl- and 2- and 5-O-acetyl-alpha-L-arabinofuranosides and of 2-, 3-, and 4-O-(E)-feruloyl- and 2-, 3- and 4-O-acetyl-beta-D-xylopyranosides, compounds mimicking natural substrates, were used to investigate substrate and positional specificity of type-A, -B, and -C feruloyl esterases. All the feruloyl esterases behave as true feruloyl esterases showing negligible activity on sugar acetates. Type-A enzymes, represented by AnFaeA from Aspergillus niger and FoFaeII from Fusarium oxysporum, are specialized for deferuloylation of primary hydroxyl groups, with a very strong preference for hydrolyzing 5-O-feruloyl-alpha-L-arabinofuranoside. On the contrary, type-B and -C feruloyl esterases, represented by FoFaeI from F. oxysporum and TsFaeC from Talaromyces stipitatus, acted on almost all ferulates with exception of 4- and 3-O-feruloyl-beta-D-xylopyranoside. 5-O-Feruloyl-alpha-L-arabinofuranoside was the best substrate for both TsFaeC and FoFaeI, although catalytic efficiency of the latter enzyme toward 2-O-feruloyl-alpha-L-arabinofuranoside was comparable. In comparison with acetates, the corresponding ferulates served as poor substrates for the carbohydrate esterase family 1 feruloyl esterase from Aspergillus oryzae. The enzyme hydrolyzed all alpha-L-arabinofuranoside and beta-D-xylopyranoside acetates. It behaved as a non-specific acetyl esterase rather than a feruloyl esterase, with a preference for 2-O-acetyl-beta-D-xylopyranoside.
Collapse
Affiliation(s)
- Vladimír Puchart
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sakamoto T. Fungal Exo-acting Enzymes with Novel Catalytic Properties. J Appl Glycosci (1999) 2006. [DOI: 10.5458/jag.53.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
24
|
Koseki T, Okuda M, Sudoh S, Kizaki Y, Iwano K, Aramaki I, Matsuzawa H. Role of two alpha-L-arabinofuranosidases in arabinoxylan degradation and characteristics of the encoding genes from shochu koji molds, Aspergillus kawachii and Aspergillus awamori. J Biosci Bioeng 2005; 96:232-41. [PMID: 16233515 DOI: 10.1016/s1389-1723(03)80187-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 05/19/2003] [Indexed: 11/28/2022]
Abstract
Two different alpha-L-arabinofuranosidases from Aspergillus kawachii were purified and characterized. The two enzymes acted synergically with xylanase in the degradation of arabinoxylan and resulted in an increase in the amount of ferulic acid release by feruloyl esterase. Both enzymes were acidophilic and acid stable enzymes which had an optimum pH of 4.0 and were stable at pH 3.0-7.0. The general properties of the enzymes including pH optima and pH stability were similar to those of Aspergillus awamori. These results suggest that the alpha-L-arabinofuranosidases contribute to an increase in cereal utilization and formation of aroma in shochu brewing. Two different genes encoding alpha-L-arabinofuranosidases from A. kawachii, designated as AkabfA and AkabjB, and those from A. awamori, designated as AwabfA and AwabjB, were also cloned and characterized. The difference between the sequences of AkabfA and AwabfA was only one nucleotide, resulting in an amino acid difference in the sequence, and the enzymes were assigned to family 51 of glycoside hydrolases. On the other hand, the differences between the sequences of AkabjB and AwabjB and between their encoding proteins were two nucleotides and one amino acid residue, respectively, and the enzymes were assigned to family 54 of glycoside hydrolases. On comparison of the abfA and abjB genes among A. kawachii, A. awamori, and A. niger, the relationship between the two genes for A. kawachii and A. awamori was much closer than those between A. niger and the others. Northern analyses showed that transcription of AkabfB was greater than that of AkabfA in the presence of L-arabitol and L-arabinose, and that transcriptions of both genes were not induced in the presence of sucrose and glucose.
Collapse
Affiliation(s)
- Takuya Koseki
- National Research Institute of Brewing 3-7-1 Kagamiyama, Higashi-hiroshima 739-0046, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Matsumura K, Obata H, Hata Y, Kawato A, Abe Y, Akita O. Isolation and characterization of a novel gene encoding alpha-L-arabinofuranosidase from Aspergillus oryzae. J Biosci Bioeng 2005; 98:77-84. [PMID: 16233670 DOI: 10.1016/s1389-1723(04)70246-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
We cloned and characterized a novel gene (abfA) encoding alpha-L-arabinofuranosidase (alpha-L-AFase) from Aspergillus oryzae. One clone homologous to the alpha-L-AFase gene of Thermotoga maritima was found in an expressed sequence tag (EST) library of A. oryzae and a corresponding gene was isolated. Molecular analysis showed that the abfA gene carried six exons interrupted by five introns and had an open reading frame encoding 481 amino acid residues. The amino acid sequence similarity at active sites to the alpha-L-AFases from other organisms indicated that the alpha-L-AFase encoded by abfA was classified as a family 51 glycoside hydrolase. When the abfA was overexpressed in the homologous hyperexpression system of A. oryzae, a large amount of alpha-L-AFase was produced as intracellular protein. The apparent molecular mass of the purified enzyme was estimated to be 228,000 by gel filtration and that of its subunit as 55,000 by SDS-PAGE, suggesting that the enzyme is a tetramer. The enzyme hydrolyzed p-nitrophenyl-alpha-L-arabinofuranoside but not other p-nitrophenyl glycosides. These results demonstrated that the abfA gene encodes a functional alpha-L-AFase.
Collapse
Affiliation(s)
- Kengo Matsumura
- Research Institute, Gekkeikan Sake Co. Ltd., 300 Katahara-cho, Fushimi-ku, Kyoto 612-8361, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Sakamoto T, Fujita T, Kawasaki H. Transglycosylation catalyzed by a Penicillium chrysogenum exo-1,5-α-l-arabinanase. Biochim Biophys Acta Gen Subj 2004; 1674:85-90. [PMID: 15342117 DOI: 10.1016/j.bbagen.2004.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 06/03/2004] [Accepted: 06/04/2004] [Indexed: 11/27/2022]
Abstract
Penicillium chrysogenum exo-arabinanase (Abnx), which releases arabinobiose from the nonreducing terminus of alpha-1,5-L-arabinan, was found to possess trans-arabinobiosylation activity on various acceptors, such as aliphatic alcohols, sugars, and sugar alcohols. Abnx was found to prefer primary hydroxyl groups in polyhydric alcohols as acceptors over primary hydroxyl groups in monohydric alcohols. Among the 21 different compounds tested, glycerol was the best acceptor for the enzyme. The transfer product of glycerol was identified as O-alpha-L-arabinosyl-(1-->5)-O-alpha-L-arabinosyl-(1-->1)-glycerol on the basis of the spectral data, fast atom bombardment-mass and 1H- and 13C-NMR. Unlike endo-arabinanases, Abnx catalyzed the hydrolysis of linear arabinan without inverting the anomeric configuration.
Collapse
Affiliation(s)
- Tatsuji Sakamoto
- Laboratory of Fermentation Chemistry, Division of Applied Biochemistry, Graduate School of Agriculture and Biological Science, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531, Japan
| | | | | |
Collapse
|
27
|
Sakamoto T, Ihara H, Shibano A, Kasai N, Inui H, Kawasaki H. Molecular characterization of a Penicillium chrysogenum
exo-1,5-α-L
-arabinanase that is structurally distinct from other arabinan-degrading enzymes. FEBS Lett 2004; 560:199-204. [PMID: 14988022 DOI: 10.1016/s0014-5793(04)00106-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2003] [Accepted: 12/16/2003] [Indexed: 11/17/2022]
Abstract
The nucleotide sequence of the abnx cDNA gene, which encodes an exo-arabinanase (Abnx) of Penicillium chrysogenum 31B, was determined. Abnx was found to be structurally distinct from known arabinan-degrading enzymes based on its amino acid sequence and a hydrophobic cluster analysis. The protein in the protein database with the highest similarity to Abnx was the Neurospora crassa conserved hypothetical protein. The abnx cDNA gene product expressed in Escherichia coli catalyzed the release of arabinobiose from alpha-1,5-L-arabinan. The activity of the recombinant Abnx towards a series of arabino-oligosaccharides, as expressed by k(cat)/K(m) value, was greatest with arabinohexaose.
Collapse
Affiliation(s)
- Tatsuji Sakamoto
- Division of Applied Biochemistry, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Osaka 599-8531, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Sakamoto T, Kawasaki H. Purification and properties of two type-B alpha-L-arabinofuranosidases produced by Penicillium chrysogenum. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1621:204-10. [PMID: 12726996 DOI: 10.1016/s0304-4165(03)00058-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two distinct extracellular alpha-L-arabinofuranosidases (AFases; EC 3.2.1.55) were purified from the culture filtrate of Penicillium chrysogenum 31B. The molecular masses of the enzymes were estimated to be 79 kDa (AFQ1) and 52 kDa (AFS1) by SDS-PAGE. Both enzymes had their highest activities at 50 degrees C and were stable up to 50 degrees C. Enzyme activities of AFQ1 and AFS1 were highest at pH 4.0 to 6.5 and pH 3.3 to 5.0, respectively. Addition of 10 mg/ml arabinose to the reaction mixture decreased the AFS1 activity but hardly affected AFQ1. Both enzymes displayed broad substrate specificities; they released arabinose from branched arabinan, debranched arabinan, arabinoxylan, arabinogalactan, and arabino-oligosaccharides. AFS1 also showed low activity towards p-nitrophenyl-beta-D-xylopyranoside. An exo-arabinanase, which catalyzes the release of arabinobiose from linear arabinan at the nonreducing terminus, acted synergistically with both enzymes to produce L-arabinose from branched arabinan.
Collapse
Affiliation(s)
- T Sakamoto
- Division of Applied Biochemistry, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Osaka 599-8531, Japan.
| | | |
Collapse
|
29
|
de Groot MJL, van de Vondervoort PJI, de Vries RP, vanKuyk PA, Ruijter GJG, Visser J. Isolation and characterization of two specific regulatory Aspergillus niger mutants shows antagonistic regulation of arabinan and xylan metabolism. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1183-1191. [PMID: 12724380 DOI: 10.1099/mic.0.25993-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper describes two Aspergillus niger mutants (araA and araB) specifically disturbed in the regulation of the arabinanase system in response to the presence of L-arabinose. Expression of the three known L-arabinose-induced arabinanolytic genes, abfA, abfB and abnA, was substantially decreased or absent in the araA and araB strains compared to the wild-type when incubated in the presence of L-arabinose or L-arabitol. In addition, the intracellular activities of L-arabitol dehydrogenase and L-arabinose reductase, involved in L-arabinose catabolism, were decreased in the araA and araB strains. Finally, the data show that the gene encoding D-xylulose kinase, xkiA, is also under control of the arabinanolytic regulatory system. L-Arabitol, most likely the true inducer of the arabinanolytic and L-arabinose catabolic genes, accumulated to a high intracellular concentration in the araA and araB mutants. This indicates that the decrease of expression of the arabinanolytic genes was not due to lack of inducer accumulation. Therefore, it is proposed that the araA and araB mutations are localized in positive-acting components of the regulatory system involved in the expression of the arabinanase-encoding genes and the genes encoding the L-arabinose catabolic pathway.
Collapse
Affiliation(s)
- Marco J L de Groot
- Section Molecular Genetics of Industrial Micro-organisms, Wageningen University, Dreijenlaan 2, NL-6703HA Wageningen, The Netherlands
| | - Peter J I van de Vondervoort
- Section Molecular Genetics of Industrial Micro-organisms, Wageningen University, Dreijenlaan 2, NL-6703HA Wageningen, The Netherlands
| | - Ronald P de Vries
- Section Molecular Genetics of Industrial Micro-organisms, Wageningen University, Dreijenlaan 2, NL-6703HA Wageningen, The Netherlands
| | - Patricia A vanKuyk
- Section Molecular Genetics of Industrial Micro-organisms, Wageningen University, Dreijenlaan 2, NL-6703HA Wageningen, The Netherlands
| | - George J G Ruijter
- Section Molecular Genetics of Industrial Micro-organisms, Wageningen University, Dreijenlaan 2, NL-6703HA Wageningen, The Netherlands
| | - Jaap Visser
- Section Molecular Genetics of Industrial Micro-organisms, Wageningen University, Dreijenlaan 2, NL-6703HA Wageningen, The Netherlands
| |
Collapse
|
30
|
Carvallo M, de Ioannes P, Navarro C, Chavez R, Peirano A, Bull P, Eyzaguirre J. Characterization of an alpha-L-arabinofuranosidase gene (abf1) from Penicillium purpurogenum and its expression. MYCOLOGICAL RESEARCH 2003; 107:388-94. [PMID: 12825509 DOI: 10.1017/s0953756203007603] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An alpha-L-arabinofuranosidase gene (abf1) from Penicillium purpurogenum was identified and sequenced. abf1 has an open reading frame of 1518 bp, does not contain introns and codes for a protein of 506 amino acids. The deduced mature protein has a molecular mass of 49.6 KDa, and its sequence is homologous to arabinofuranosidases of glycosyl hydrolase family 54. Southern blots suggest that abf1 is a single copy gene. Putative sequences for the binding of the transcriptional regulators XlnR, CreA, PacC, AlcR and AreA are present in the promoter. Northern-blot analysis shows that abf1 is expressed at neutral but not at alkaline or acidic pH values. The presence of binding sites for regulatory elements in the promoter region has been compared to the genes of other fungal enzymes belonging to the same family. This is the first characterization of an abf gene from a Penicillium species.
Collapse
Affiliation(s)
- Marcela Carvallo
- Laboratorio de Bioquimíca, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
31
|
de Vries RP, Jansen J, Aguilar G, Parenicová L, Joosten V, Wülfert F, Benen JAE, Visser J. Expression profiling of pectinolytic genes from Aspergillus niger. FEBS Lett 2002; 530:41-7. [PMID: 12387863 DOI: 10.1016/s0014-5793(02)03391-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The expression of 26 pectinolytic genes from Aspergillus niger was studied in a wild type strain and a CreA derepressed strain, under 16 different growth conditions, to obtain an expression profile for each gene. These expression profiles were then submitted to cluster analysis to identify subsets of genes with similar expression profiles. With the exception of the feruloyl esterase encoding genes, all genes were expressed in the presence of D-galacturonic acid, polygalacturonate, and/or sugar beet pectin. Despite this general observation five distinct groups of genes were identified. The major group consisted of 12 genes of which the corresponding enzymes act on the pectin backbone and for which the expression, in general, is higher after 8 and 24 h of incubation, than after 2 or 4 h. Two other groups of genes encoding pectin main chain acting enzymes were detected. Two additional groups contained genes encoding L-arabinose and D-galactose releasing enzymes, and ferulic acid releasing enzymes, respectively. The genes encoding beta-galactosidase and the L-arabinose releasing enzymes were not only expressed in the presence of D-galacturonic acid, but also in the presence of L-arabinose, suggesting that they are under the control of two regulatory systems. Similarly, the rhamnogalacturonan acetylesterase encoding gene was not only expressed in the presence of D-galacturonic acid, polygalacturonate and sugar beet pectin, but also in the presence of L-rhamnose. The data presented provides indications for a general pectinolytic regulatory system responding to D-galacturonic acid or a metabolite derived from it. In addition, subsets of pectinolytic genes are expressed in response to the presence of L-arabinose, L-rhamnose or ferulic acid.
Collapse
Affiliation(s)
- Ronald P de Vries
- Molecular Genetics of Industrial Microorganisms, Wageningen University, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
de Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 2001; 65:497-522, table of contents. [PMID: 11729262 PMCID: PMC99039 DOI: 10.1128/mmbr.65.4.497-522.2001] [Citation(s) in RCA: 542] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Degradation of plant cell wall polysaccharides is of major importance in the food and feed, beverage, textile, and paper and pulp industries, as well as in several other industrial production processes. Enzymatic degradation of these polymers has received attention for many years and is becoming a more and more attractive alternative to chemical and mechanical processes. Over the past 15 years, much progress has been made in elucidating the structural characteristics of these polysaccharides and in characterizing the enzymes involved in their degradation and the genes of biotechnologically relevant microorganisms encoding these enzymes. The members of the fungal genus Aspergillus are commonly used for the production of polysaccharide-degrading enzymes. This genus produces a wide spectrum of cell wall-degrading enzymes, allowing not only complete degradation of the polysaccharides but also tailored modifications by using specific enzymes purified from these fungi. This review summarizes our current knowledge of the cell wall polysaccharide-degrading enzymes from aspergilli and the genes by which they are encoded.
Collapse
Affiliation(s)
- R P de Vries
- Molecular Genetics of Industrial Microorganisms, Wageningen University, 6703 HA Wageningen, The Netherlands.
| | | |
Collapse
|
33
|
Tanaka R, Ikeda M, Funatsuki K, Yukioka H, Katoh K, Konno H. Molecular cloning and in situ hybridization of alpha-l-arabinofuranosidase from carrot cells. PHYSIOLOGIA PLANTARUM 2001; 113:392-399. [PMID: 12060285 DOI: 10.1034/j.1399-3054.2001.1130313.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The cDNA of extracellular alpha-l-arabinofuranosidase (alpha-l-AFase, EC 3.2.1.55) secreted from suspension-cultured carrot cells (Daucus carota L. cv. Kintoki) was isolated and characterized. The nucleotide sequence of the cDNA (2.4 kb) revealed an open reading frame consisting of 655 amino acid residues. Sequence homology research showed 28.4% identity to the alpha-l-AFase A protein of Aspergillus niger. The genomic DNA was cloned by PCR, and the nucleotide ligature sequence showed 18 exons and 17 introns. The first intron was upstream of the initiation codon. In situ hybridization revealed that the alpha-l-AFase gene is expressed in the root meristem, elongation zone and the root hair of carrot seedlings, indicating that this enzyme may participate in cell proliferation and development of carrot root cells.
Collapse
Affiliation(s)
- Reiji Tanaka
- Shionogi Aburahi Laboratories, 1405 Gotanda, Koka, Shiga, 520-3423, Japan Research Institute for Bioresources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | | | | | | | | | | |
Collapse
|
34
|
vanKuyk PA, de Groot MJ, Ruijter GJ, de Vries RP, Visser J. The Aspergillus niger D-xylulose kinase gene is co-expressed with genes encoding arabinan degrading enzymes, and is essential for growth on D-xylose and L-arabinose. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5414-23. [PMID: 11606204 DOI: 10.1046/j.0014-2956.2001.02482.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Aspergillus niger D-xylulose kinase encoding gene has been cloned by complementation of a strain deficient in D-xylulose kinase activity. Expression of xkiA was observed in the presence of L-arabinose, L-arabitol and D-xylose. Expression of xkiA is not mediated by XLNR, the xylose-dependent positively-acting xylanolytic regulator. Although the expression of xkiA is subject to carbon catabolite repression, the wide domain regulator CREA is not directly involved. The A. niger D-xylulose kinase was purified to homogeneity, and the molecular mass determined using electrospray ionization mass spectrometry agreed with the calculated molecular mass of 62816.6 Da. The activity of XKIA is highly specific for D-xylulose. Kinetic parameters were determined as Km(D-xylulose) = 0.76 mM and Km(ATP) = 0.061 mM. Increased transcript levels of the genes encoding arabinan and xylan degrading enzymes, observed in the xylulose kinase deficient strain, correlate with increased accumulation of L-arabitol and xylitol, respectively. This result supports the suggestion that L-arabitol may be the specific low molecular mass inducer of the genes involved in arabinan degradation. It also suggests a possible role for xylitol in the induction of xylanolytic genes. Conversely, overproduction of XKIA did not reduce the size of the intracellular arabitol and xylitol pools, and therefore had no effect on expression of genes encoding xylan and arabinan degrading enzymes nor on the activity of the enzymes of the catabolic pathway.
Collapse
Affiliation(s)
- P A vanKuyk
- Molecular Genetics of Industrial Microorganisms, Wageningen University, Dreijenlaan 2, Wageningen, the Netherlands
| | | | | | | | | |
Collapse
|
35
|
Tsukagoshi N, Kobayashi T, Kato M. Regulation of the amylolytic and (hemi-)cellulolytic genes in aspergilli. J GEN APPL MICROBIOL 2001; 47:1-19. [PMID: 12483563 DOI: 10.2323/jgam.47.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Filamentous fungi produce high levels of polysaccharide-degrading enzymes and are frequently used for the production of industrial enzymes. Because of the high secretory capacity for enzymes, filamentous fungi are effective hosts for the production of foreign proteins. Genetic studies with Aspergillus nidulans have shown pathway-specific regulatory systems that control a set of genes that must be expressed to catabolize particular substrates. Besides the pathway-specific regulation, wide domain regulatory systems exist that affect a great many individual genes in different pathways. A molecular analysis of various regulated systems has confirmed the formal models derived from purely genetic data. In general, many genes are subject to more than one regulatory system. In this article, we describe two transcriptional activators, AmyR and XlnR, and an enhancer, Hap complex, in view of their regulatory roles in the expression of the amylolytic and (hemi-)cellulolytic genes mainly in aspergilli. The amyR gene has been isolated as a transcriptional activator involved in the expression of amylolytic genes from A. oryzae, A. niger, and A. nidulans, and the xlnR gene, which has been isolated from A. niger and A. oryzae, activates the expression of xylanolytic genes as well as some cellulolytic genes in aspergilli. Both AmyR and XlnR have a typical zinc binuclear cluster DNA-binding domain at their N-terminal regions. Hap complex, a CCAAT-binding complex, enhances the overall promoter activity and increases the expression levels of many fungal genes, including the Taka-amylase A gene. Hap complex comprises three subunits, HapB, HapC, and HapE, in A. nidulans and A. oryzae as well as higher eukaryotes, whereas HAP complex in Saccharomyces cerevisiae and Kluyveromyces lactis has the additional subunit, Hap4p, which is responsible for the transcriptional activation. Hap complex is suggested to enhance transcription by remodeling the chromatin structure. The regulation of gene expression in filamentous fungi of industrial interest could follow basically the same general principles as those discovered in A. nidulans. The knowledge of regulation of gene expression in combination with traditional genetic techniques is expected to be increasingly utilized for strain breeding. Furthermore, this knowledge provides a basis for the rational application of transcriptional regulators for biotechnological processes in filamentous fungi.
Collapse
Affiliation(s)
- Norihiro Tsukagoshi
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
36
|
Abstract
Interest in the alpha-L-arabinofuranosidases has increased in recent years because of their application in the conversion of various hemicellulosic substrates to fermentable sugars for subsequent production of fuel alcohol. Xylanases, in conjunction with alpha-L-arabinofuranosidases and other accessory enzymes, act synergistically to degrade xylan to component sugars. The induction of alpha-L-arabinofuranosidase production, physico-chemical characteristics, substrate specificity, and molecular biology of the enzyme are described. The current state of research and development of the arabinofuranosidases and their role in biotechnology are presented.
Collapse
Affiliation(s)
- B C Saha
- Fermentation Biochemistry Research Unit, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, USA.
| |
Collapse
|
37
|
Kimura I, Yoshioka N, Kimura Y, Tajima S. Cloning, sequencing and expression of an α-l-Arabinofuranosidase from Aspergillus sojae. J Biosci Bioeng 2000; 89:262-6. [PMID: 16232740 DOI: 10.1016/s1389-1723(00)88830-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1999] [Accepted: 12/02/1999] [Indexed: 11/21/2022]
Abstract
The arabinofuranosidase gene was cloned from the cDNA of Aspergillus sojae. It was found to contain an open reading frame composed of 984 base pairs (bp) and to encode 328 amino acid residues (aa). The cDNA sequence suggested that the mature enzyme is preceded by a 26-aa signal sequence and the molecular mass was predicted to be 32,749 Da. The A. sojae arabinofuranosidase consists of a single catalytic domain; it does not have a specific substrate-binding domain such as the xylan-binding domain reported in an arabinofuranosidase from Streptomyces lividans (Vincent, P. et al.: Biochem. J., 322, 845-852, 1997). The deduced amino acid sequence of the catalytic domain of the mature enzyme exhibits extensive identity with the catalytic domains of Streptomyces coelicolor (74%), Aspergillus niger (75%), S. lividans (74%), and Aspergillus tubingensis (75%), which are enzymes that belong to family 62 of the glycosyl hydrolases. The cloned AFdase gene was expressed in Escherichia coli BL21 (DE3) pLysS as a cellulose-binding domain tag fusion protein. The specific activity of the purified recombinant enzyme was 18.6 units/mg protein, which is one-fourth that of the enzyme purified from a solid-state culture of A. sojae.
Collapse
Affiliation(s)
- I Kimura
- Kagawa Prefectural Fermentation and Food Experimental Station, 1351-1 Nouma, Uchinomi-cho, Shouzu-gun, Kagawa 761-4421, Japan
| | | | | | | |
Collapse
|
38
|
Kaneko S, Arimoto M, Ohba M, Kobayashi H, Ishii T, Kusakabe I. Purification and substrate specificities of two alpha-L-arabinofuranosidases from Aspergillus awamori IFO 4033. Appl Environ Microbiol 1998; 64:4021-7. [PMID: 9758835 PMCID: PMC106594 DOI: 10.1128/aem.64.10.4021-4027.1998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
alpha-L-Arabinofuranosidases I and II were purified from the culture filtrate of Aspergillus awamori IFO 4033 and had molecular weights of 81,000 and 62,000 and pIs of 3.3 and 3.6, respectively. Both enzymes had an optimum pH of 4.0 and an optimum temperature of 60 degreesC and exhibited stability at pH values from 3 to 7 and at temperatures up to 60 degrees C. The enzymes released arabinose from p-nitrophenyl-alpha-L-arabinofuranoside, O-alpha-L-arabinofuranosyl-(1-->3)-O-beta-D-xylopyranosyl-(1-->4)-D-x ylopyranose, and arabinose-containing polysaccharides but not from O-beta-D-xylopyranosyl-(1-->2)-O-alpha-L-arabinofuranosyl-(1-->3)-O-b eta-D-xylopyranosyl-(1-->4)-O-beta-D-xylopyranosyl-(1-->4)-D-xylopyra nose. alpha-L-Arabinofuranosidase I also released arabinose from O-beta-D-xylopy-ranosyl-(1-->4)-[O-alpha-L-arabinofuranosyl- (1-->3)]- O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose. However, alpha-L-arabinofuranosidase II did not readily catalyze this hydrolysis reaction. alpha-L-Arabinofuranosidase I hydrolyzed all linkages that can occur between two alpha-L-arabinofuranosyl residues in the following order: (1-->5) linkage > (1-->3) linkage > (1-->2) linkage. alpha-L-Arabinofuranosidase II hydrolyzed the linkages in the following order: (1-->5) linkage > (1-->2) linkage > (1-->3) linkage. alpha-L-Arabinofuranosidase I preferentially hydrolyzed the (1-->5) linkage of branched arabinotrisaccharide. On the other hand, alpha-L-arabinofuranosidase II preferentially hydrolyzed the (1-->3) linkage in the same substrate. alpha-L-Arabinofuranosidase I released arabinose from the nonreducing terminus of arabinan, whereas alpha-L-arabinofuranosidase II preferentially hydrolyzed the arabinosyl side chain linkage of arabinan.
Collapse
Affiliation(s)
- S Kaneko
- Institute of Applied Biochemistry, University of Tsukuba, 1-1-1 Tennoodai, Tsukuba, Ibaraki 305, Japan
| | | | | | | | | | | |
Collapse
|
39
|
van Peij NN, Gielkens MM, de Vries RP, Visser J, de Graaff LH. The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 1998; 64:3615-9. [PMID: 9758775 PMCID: PMC106473 DOI: 10.1128/aem.64.10.3615-3619.1998] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of genes encoding enzymes involved in xylan degradation and two endoglucanases involved in cellulose degradation was studied at the mRNA level in the filamentous fungus Aspergillus niger. A strain with a loss-of-function mutation in the xlnR gene encoding the transcriptional activator XlnR and a strain with multiple copies of this gene were investigated in order to define which genes are controlled by XlnR. The data presented in this paper show that the transcriptional activator XlnR regulates the transcription of the xlnB, xlnC, and xlnD genes encoding the main xylanolytic enzymes (endoxylanases B and C and beta-xylosidase, respectively). Also, the transcription of the genes encoding the accessory enzymes involved in xylan degradation, including alpha-glucuronidase A, acetylxylan esterase A, arabinoxylan arabinofuranohydrolase A, and feruloyl esterase A, was found to be controlled by XlnR. In addition, XlnR also activates transcription of two endoglucanase-encoding genes, eglA and eglB, indicating that transcriptional regulation by XlnR goes beyond the genes encoding xylanolytic enzymes and includes regulation of two endoglucanase-encoding genes.
Collapse
Affiliation(s)
- N N van Peij
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, NL-6703 HA Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
van Peij NN, Visser J, de Graaff LH. Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol 1998; 27:131-42. [PMID: 9466262 DOI: 10.1046/j.1365-2958.1998.00666.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Complementation by transformation of an Aspergillus niger mutant lacking xylanolytic activity led to the isolation of the xlnR gene. The xlnR gene encodes a polypeptide of 875 amino acids capable of forming a zinc binuclear cluster domain with similarity to the zinc clusters of the GAL4 superfamily of transcription factors. The XlnR-binding site 5'-GGCTAAA-3' was deduced after electrophoretic mobility shift assays, DNase I footprinting and comparison of various xylanolytic promoters. The importance of the second G within the presumed XlnR binding site 5'-GGCTAAA-3' was confirmed in vitro and in vivo. The 5'-GGCTAAA-3' consensus sequence is found within several xylanolytic promoters of various Aspergillus species and Penicillium chrysogenum. Therefore, this sequence may be an important and conserved cis-acting element in induction of xylanolytic genes in filamentous fungi. Our results indicate that XlnR is a transcriptional activator of the xylanolytic system in A. niger.
Collapse
MESH Headings
- Amino Acid Sequence
- Aspergillus niger/enzymology
- Aspergillus niger/genetics
- Aspergillus niger/metabolism
- Base Sequence
- Binding, Competitive
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- DNA Footprinting
- DNA, Fungal/chemistry
- Deoxyribonuclease I
- Electrophoresis, Polyacrylamide Gel
- Fungal Proteins
- Gene Expression Regulation, Enzymologic/physiology
- Gene Expression Regulation, Fungal/physiology
- Molecular Sequence Data
- Mutation
- Promoter Regions, Genetic/genetics
- Restriction Mapping
- Sequence Analysis, DNA
- Trans-Activators/genetics
- Transcription, Genetic
- Transformation, Genetic
- Xylan Endo-1,3-beta-Xylosidase
- Xylans/metabolism
- Xylosidases/chemistry
- Xylosidases/genetics
- Xylosidases/metabolism
- Zinc Fingers/genetics
- Zinc Fingers/physiology
Collapse
Affiliation(s)
- N N van Peij
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, The Netherlands
| | | | | |
Collapse
|
41
|
Ruijter GJG, Vanhanen SA, Gielkens MMC, van de Vondervoort PJI, Visser J. Isolation of Aspergillus niger creA mutants and effects of the mutations on expression of arabinases and L-arabinose catabolic enzymes. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 9):2991-2998. [PMID: 9308182 DOI: 10.1099/00221287-143-9-2991] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aspergillus niger mutants relieved of carbon repression were isolated from an areA parental strain by selection of colonies that exhibited improved growth on a combination of 4-aminobutanoic acid (GABA) and D-glucose. In addition to derepression of the utilization of GABA as a nitrogen source in the presence of D-glucose, three of the four mutants also showed derepression of L-alanine and L-proline utilization. Transformation of the mutants with the A. niger creA gene, encoding the repressor protein CREA, re-established the areA phenotype on GABA/D-glucose, identifying the mutations as creAd. The creA gene mapped on chromosome IV by linkage analysis and contour-clamped homogeneous electric field hybridization. The creA mutants obtained were used to study the involvement of CREA in repression by D-glucose of arabinases and L-arabinose catabolism in A. niger. In wild-type A. niger, alpha-L-arabinofuranosidase A, alpha-L-arabinofuranosidase B, endo-arabinase, L-arabinose reductase and L-arabitol dehydrogenase were induced on L-arabinose, but addition of D-glucose prevented this induction. Repression was relieved to varying degrees in the creA mutants, showing that biosynthesis of arabinases and L-arabinose catabolic enzymes is under control of CREA.
Collapse
Affiliation(s)
- George J G Ruijter
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - Sipo A Vanhanen
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - Marco M C Gielkens
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - Peter J I van de Vondervoort
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - Jaap Visser
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| |
Collapse
|
42
|
Sakamoto T, Yamada M, Kawasaki H, Sakai T. Molecular cloning and nucleotide sequence of an endo-1,5-alpha-L-arabinase gene from Bacillus subtilis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:708-14. [PMID: 9183009 DOI: 10.1111/j.1432-1033.1997.t01-1-00708.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nucleotide sequence of the gene encoding an endo-1,5-alpha-L-arabinase (protopectinase C) of Bacillus subtilis was determined by sequencing fragments amplified by the cassette-ligation-mediated PCR (CLM-PCR). The gene covering the start and stop codon was amplified by PCR with two specific primers, which were designed from the sequence data determined by CLM-PCR. An approximately 1.5-kb amplification product was cloned into the vector pUC119, forming a plasmid termed pPPC. An ORF that encodes the arabinase composed of 324 amino acids including a 33-amino-acid signal peptide was assigned. Comparison of the deduced amino acid sequence of the enzyme with that of an Aspergillus niger endoarabinase showed 37% identity in a 207-amino-acid overlap. The optimal nucleotide sequence for catabolite repression of B. subtilis was found upstream of the structural gene. In a culture of Escherichia coli DH5alpha cells harboring pPPC, no arabinase activity was detected, either intracellularly or extracellularly, suggesting that the B. subtilis promotor is not functional in this transformant. In B. subtilis IFO 3134 strain, production of protopectinase C was repressed by readily metabolizable carbohydrates. In contrast, productivity (total enzyme activity/bacterial growth) of the enzyme was increased about fourfold in the presence of 0.75 M potassium phosphate in the culture medium. The phosphate anion seemed to be involved in the stimulation of protopectinase C production in this stain.
Collapse
Affiliation(s)
- T Sakamoto
- Department of Applied Biological Chemistry, College of Agriculture, Osaka Prefecture University, Sakai, Japan.
| | | | | | | |
Collapse
|
43
|
Beldman G, Schols H, Pitson S, Searle-van Leeuwen M, Voragen A. Arabinans and arabinan degrading enzymes. ADVANCES IN MACROMOLECULAR CARBOHYDRATE RESEARCH 1997. [DOI: 10.1016/s1874-5261(97)80003-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Sánchez-Torres P, González-Candelas L, Ramón D. Expression in a wine yeast strain of the Aspergillus niger abfB gene. FEMS Microbiol Lett 1996; 145:189-94. [PMID: 8961556 DOI: 10.1111/j.1574-6968.1996.tb08576.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A recombinant wine yeast strain has been constructed expressing the gene coding for alpha-L-arabinofuranosidase B from Aspergillus niger under the control of the yeast actin gene promoter. The protein is efficiently secreted by the recombinant yeast, allowing its purification and characterisation. The heterologous alpha-L-arabinofuranosidase B shows similar physico-chemical properties to the native enzyme. The wine produced in microvinification experiments using the recombinant yeast presents the same oenological characteristics as obtained with the untransformed strain. The alpha-L-arabinofuranosidase B protein is detected throughout the fermentation.
Collapse
Affiliation(s)
- P Sánchez-Torres
- Departamento de Biotecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | |
Collapse
|
45
|
Margolles-Clark E, Tenkanen M, Nakari-Setälä T, Penttilä M. Cloning of genes encoding alpha-L-arabinofuranosidase and beta-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 1996; 62:3840-6. [PMID: 8837440 PMCID: PMC168192 DOI: 10.1128/aem.62.10.3840-3846.1996] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A cDNA expression library of Trichoderma reesei RutC-30 was constructed in the yeast Saccharomyces cerevisiae. Two genes, abf1 and bxl1, were isolated by screening the yeast library for extracellular alpha-L-arabinofuranosidase activity with the substrate p-nitrophenyl-alpha-L-arabinofuranoside. The genes abf1 and bxl1 encode 500 and 758 amino acids, respectively, including the signal sequences. The deduced amino acid sequence of ABFI displays high-level similarity to the alpha-L-arabinofuranosidase B of Aspergillus niger, and the two can form a new family of glycosyl hydrolases. The deduced amino acid sequence of BXLI shows similarities to the beta-glucosidases grouped in family 3. The yeast-produced enzymes were tested for enzymatic activities against different substrates. ABFI released L-arabinose from p-nitrophenyl-alpha-L-arabinofuranoside and arabinoxylans and showed some beta-xylosidase activity toward p-nitrophenyl-beta-D-xylopyranoside. BXLI did not release L-arabinose from arabinoxylan. It showed alpha-L-arabinofuranosidase, alpha-L-arabinopyranosidase, and beta-xylosidase activities against p-nitrophenyl-alpha-L-arabinofuranosidase, p-nitrophenyl-alpha-L-arabinopyranoside, and p-nitrophenyl-beta-D- xylopyranoside, respectively, with the last activity being the highest. It was also able to hydrolyze xylobiose and slowly release xylose from polymeric xylan. ABFI and BXLI correspond to a previously purified alpha-L-arabinofuranosidase and a beta-xylosidase from T. reesei, respectively, as confirmed by partial amino acid sequencing of the Trichoderma-produced enzymes. Both enzymes produced in yeasts displayed hydrolytic properties similar to those of the corresponding enzymes purified from T. reesei.
Collapse
|
46
|
Gasparic A, Martin J, Daniel AS, Flint HJ. A xylan hydrolase gene cluster in Prevotella ruminicola B(1)4: sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase and beta-(1,4)-xylosidase activities. Appl Environ Microbiol 1995; 61:2958-64. [PMID: 7487028 PMCID: PMC167572 DOI: 10.1128/aem.61.8.2958-2964.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two genes concerned with xylan degradation were found to be closely linked in the ruminal anaerobe Prevotella ruminicola B(1)4, being separated by an intergenic region of 75 nucleotides. xynA is shown to encode a family F endoxylanase of 369 amino acids, including a putative amino-terminal signal peptide. xynB encodes an enzyme of 319 amino acids, with no obvious signal peptide, that shows 68% amino acid identity with the xsa product of Bacteroides ovatus and 31% amino acid identity with a beta-xylosidase from Clostridium stercorarium; together, these three enzymes define a new family of beta-(1,4)-glycosidases. The activity of the cloned P. ruminicola xynB gene product, but not that of the xynA gene product, shows considerable sensitivity to oxygen. Studied under anaerobic conditions, the XynB enzyme was found to act as an exoxylanase, releasing xylose from substrates including xylobiose, xylopentaose, and birch wood xylan, but was relatively inactive against oat spelt xylan. A high degree of synergy (up to 10-fold stimulation) was found with respect to the release of reducing sugars from oat spelt xylan when XynB was combined with the XynA endoxylanase from P. ruminicola B(1)4 or with endoxylanases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17. Pretreatment with a fungal arabinofuranosidase also stimulated reducing-sugar release from xylans by XynB. In P. ruminicola the XynA and XynB enzymes may act sequentially in the breakdown of xylan.
Collapse
Affiliation(s)
- A Gasparic
- Biotechnical Faculty, University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|
47
|
Belancic A, Scarpa J, Peirano A, Díaz R, Steiner J, Eyzaguirre J. Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes. J Biotechnol 1995; 41:71-9. [PMID: 7640003 DOI: 10.1016/0168-1656(95)00057-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The fungus Penicillium purpurogenum produces several extracellular xylanases. The two major forms (xylanases A and B) have been purified and characterized. After ammonium sulfate precipitation and chromatography in Bio-Gel P 100, xylanase A was further purified by means of DEAE-cellulose, hydroxylapatite and CM-Sephadex, and xylanase B by DEAE-cellulose and CM-Sephadex. Both xylanases showed apparent homogeneity in SDS-polyacrylamide gel electrophoresis. Xylanase A (33 kDa) has an isoelectric point of 8.6, while xylanase B (23 kDa) is isoelectric at pH 5.9. Antisera against both enzymes do not cross-react. The amino terminal sequences of xylanases A and B show no homology. The results obtained suggest that the enzymes are produced by separate genes and they may perform different functions in xylan degradation.
Collapse
Affiliation(s)
- A Belancic
- Laboratorio de Bioquímica, Pontificia Universidad Católica de Chile, Santiago
| | | | | | | | | | | |
Collapse
|
48
|
van der Veen P, Arst HN, Flipphi MJ, Visser J. Extracellular arabinases in Aspergillus nidulans: the effect of different cre mutations on enzyme levels. Arch Microbiol 1994; 162:433-40. [PMID: 7872840 DOI: 10.1007/bf00282109] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The regulation of the syntheses of two arabinan-degrading extracellular enzymes and several intracellular L-arabinose catabolic enzymes was examined in wild-type and carbon catabolite derepressed mutants of Aspergillus nidulans. alpha-L-Arabinofuranosidase B, endoarabinase, L-arabinose reductase, L-arabitol dehydrogenase, xylitol dehydrogenase, and L-xylulose reductase were all inducible to varying degrees by L-arabinose and L-arabitol and subject to carbon catabolite repression by D-glucose. With the exception of L-xylulose reductase, all were clearly under the control of creA, a negative-acting wide domain regulatory gene mediating carbon catabolite repression. Measurements of intracellular enzyme activities and of intracellular concentrations of arabitol and xylitol in mycelia grown on D-glucose in the presence of inducer indicated that carbon catabolite repression diminishes, but does not prevent uptake of inducer. Mutations in creA resulted in an apparently, in some instances very marked, elevated inducibility, perhaps reflecting an element of "self" catabolite repression by the inducing substrate. creA mutations also resulted in carbon catabolite derepression to varying degrees. The regulatory effects of a mutation in creB and in creC, two genes whose roles are unclear, but likely to be indirect, were, when observable, more modest. As with previous data showing the effect of creA mutations on structural gene expression, there were striking instances of phenotypic variation amongst creA mutant alleles and this variation followed no discernible pattern, i.e. it was non-hierarchical. This further supports molecular data obtained elsewhere, indicating a direct role for creA in regulating structural gene expression, and extends the range of activities under creA control.
Collapse
Affiliation(s)
- P van der Veen
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
49
|
Flipphi MJ, Panneman H, van der Veen P, Visser J, de Graaff LH. Molecular cloning, expression and structure of the endo-1,5-alpha-L-arabinase gene of Aspergillus niger. Appl Microbiol Biotechnol 1993; 40:318-26. [PMID: 7764386 DOI: 10.1007/bf00170387] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Secretion of endo-1,5-alpha-L-arabinase A (ABN A) by an Aspergillus niger xylulose kinase mutant upon mycelium transfer to medium containing L-arabitol was immunochemically followed with time to monitor its induction profile. A cDNA expression library was made from polyA+ RNA isolated from the induced mycelium. This library was immunochemically screened and one ABN A specific clone emerged. The corresponding abnA gene was isolated from an A. niger genomic library. Upon Southern blot analysis, a 3.1-kb HindIII fragment was identified and subcloned to result in plasmid pIM950. By means of co-transformation using the A. niger pyrA gene as selection marker, the gene was introduced in both A. niger and A. nidulans uridine auxotrophic mutants. Prototrophic A. niger and A. nidulans transformants overproduced A. niger ABN A upon growth in medium containing sugar beet pulp as the sole carbon source, thereby establishing the identity and functionality of the cloned gene. The DNA sequence of the complete HindIII fragment was determined and the structure of the abnA gene as well as of its deduced gene product were analysed. Gene abnA contains three introns within its structural region and codes for a protein of 321 amino acids. Signal peptide processing results in a mature protein of 302 amino acids with a deduced molecular mass of 32.5 kDa. A. niger abnA is the first gene encoding an ABN to be isolated and characterized.
Collapse
Affiliation(s)
- M J Flipphi
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, The Netherlands
| | | | | | | | | |
Collapse
|