1
|
Seki S, Ohura K, Miyazaki T, Naser AA, Takabayashi S, Tsutsumi E, Tokumoto T. The Mc4r gene is responsible for the development of experimentally induced testicular teratomas. Sci Rep 2023; 13:6756. [PMID: 37127675 PMCID: PMC10151343 DOI: 10.1038/s41598-023-32784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/02/2023] [Indexed: 05/03/2023] Open
Abstract
Teratomas in mice, composed of different tissue types, are derived from primordial germ cells in the fetal gonads. Previously, we identified a locus responsible for experimental testicular teratoma (ETT) formation on chromosome 18, referred to as ett1. The strongest candidate sequence in the ett1 locus was found to be a missense mutation in the melanocortin 4 receptor (Mc4r), Mc4rG25S. We established a strain with a point mutation in the Mc4r gene in the ETT-nonsusceptible LT strain, called LT- Mc4rG25S, by genome editing. Surprisingly, highly developed ovarian teratomas (OTs), rather than testicular teratomas, appeared in the LT-Mc4rG25S strain. The results demonstrated that Mc4r is also one of the genes responsible for OT formation and suggested that missense mutations in Mc4r promote teratoma formation in both sexes. In this study, we performed ETT experiments in different host-graft combinations of the LT-Mc4rG25S and LT strains. Furthermore, the expression of MC4R in germ cells in the testis was demonstrated. Expression of Mc4r in testis was also confirmed by RT-PCR. The results demonstrated that MC4R is expressed in germ cells in the testis and that a point mutation in the Mc4r gene is responsible for ETT formation.
Collapse
Affiliation(s)
- Syunsuke Seki
- Department of Bioscience, Faculty of Science, Shizuoka University, Shizuoka, 422, Japan
| | - Kaoru Ohura
- Department of Bioscience, Faculty of Science, Shizuoka University, Shizuoka, 422, Japan
| | - Takehiro Miyazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan
| | - Abdullah An Naser
- Department of Bioscience, Faculty of Science, Shizuoka University, Shizuoka, 422, Japan
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Eisei Tsutsumi
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Toshinobu Tokumoto
- Department of Bioscience, Faculty of Science, Shizuoka University, Shizuoka, 422, Japan.
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan.
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
2
|
Zhang Y, Li Y, Chachad D, Liu B, Godavarthi JD, Williams-Villalobo A, Lasisi L, Xiong S, Matin A. In silico analysis of DND1 and its co-expressed genes in human cancers. Biochem Biophys Rep 2022; 29:101206. [PMID: 35059511 PMCID: PMC8760529 DOI: 10.1016/j.bbrep.2022.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 10/31/2022] Open
Abstract
Dead-End (DND1) is an RNA-binding protein involved in translational regulation. Defects in DND1 gene causes germ cell tumors and sterility in rodents. Experimental studies with human somatic cancer cells indicate that DND1 has anti-proliferative and pro-apoptotic function in some while oncogenic function in other cells. We examined The Cancer Genome Atlas data for gene alterations and gene expression changes in DND1 in a variety of human cancers. We found that DND1 is amplified, deleted or mutated in multiple human cancers. In different cancers, DND1 alteration correlates with increased diagnosis age of patients, shift in tumor spectrum or change of tumor sites and in some cases is significantly associated with worse survival for cancer patients. For 15 cancers, we retrieved expression data of thousands of genes that co-expressed with DND1. We found that these cancers contain different percentage of genes that are positively or negatively co-expressed with DND1. Ingenuity Pathway Analysis was performed to explore the biological implications of these genes. More than 10 canonical pathways were identified and each cancer type exhibits unique pathway profiles. Comparison analysis across all 15 cancer types showed that some cancers exhibit strikingly similar profiles of DND1-correlated signaling pathway activation or suppression. Our data reinforce the notion that the biological role of DND1 is cell-type specific and suggest that DND1 may play opposing role by exerting anti-proliferative effects in some cancer cells while being pro-proliferative in others. Our study provides valuable insights to direct experimental investigations of DND1 function in somatic cancers. DND1 is altered with different frequencies in multiple human cancers. DND1 changes in cancers correlate with clinical outcomes including worse prognosis. DND1 is co-expressed with a large number of genes across multiple cancer types. DND1 correlates with activation or suppression of canonical biological pathways.
Collapse
|
3
|
Zhang Y, Godavarthi JD, Williams-Villalobo A, Polk S, Matin A. The Role of DND1 in Cancers. Cancers (Basel) 2021; 13:cancers13153679. [PMID: 34359581 PMCID: PMC8345090 DOI: 10.3390/cancers13153679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The Ter mutation in Dead-End 1 (Dnd1), Dnd1Ter, which leads to a premature stop codon, has been determined to be the cause for primordial germ cell deficiency, accompanied with a high incidence of congenital testicular germ cell tumors (TGCTs) or teratomas in the 129/Sv-Ter mice. As an RNA-binding protein, DND1 can bind the 3'-untranslated region (3'-UTR) of mRNAs and function in translational regulation. DND1 can block microRNA (miRNA) access to the 3'-UTR of target mRNAs, thus inhibiting miRNA-mediated mRNA degradation and up-regulating translation or can also function to degrade or repress mRNAs. Other mechanisms of DND1 activity include promoting translation initiation and modifying target protein activity. Although Dnd1Ter mutation causes spontaneous TGCT only in male 129 mice, it can also cause ovarian teratomas in mice when combined with other genetic defects or cause germ cell teratomas in both genders in the WKY/Ztm rat strain. Furthermore, studies on human cell lines, patient cancer tissues, and the use of human cancer genome analysis indicate that DND1 may possess either tumor-suppressive or -promoting functions in a variety of somatic cancers. Here we review the involvement of DND1 in cancers, including what appears to be its emerging role in somatic cancers.
Collapse
Affiliation(s)
- Yun Zhang
- Correspondence: (Y.Z.); (A.M.); Tel.: +1-713-313-7557 (Y.Z.); +1-713-313-7160 (A.M.)
| | | | | | | | - Angabin Matin
- Correspondence: (Y.Z.); (A.M.); Tel.: +1-713-313-7557 (Y.Z.); +1-713-313-7160 (A.M.)
| |
Collapse
|
4
|
Nicholls PK, Page DC. Germ cell determination and the developmental origin of germ cell tumors. Development 2021; 148:239824. [PMID: 33913479 DOI: 10.1242/dev.198150] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In each generation, the germline is tasked with producing somatic lineages that form the body, and segregating a population of cells for gametogenesis. During animal development, when do cells of the germline irreversibly commit to producing gametes? Integrating findings from diverse species, we conclude that the final commitment of the germline to gametogenesis - the process of germ cell determination - occurs after primordial germ cells (PGCs) colonize the gonads. Combining this understanding with medical findings, we present a model whereby germ cell tumors arise from cells that failed to undertake germ cell determination, regardless of their having colonized the gonads. We propose that the diversity of cell types present in these tumors reflects the broad developmental potential of migratory PGCs.
Collapse
Affiliation(s)
- Peter K Nicholls
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - David C Page
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Naser AA, Miyazaki T, Wang J, Takabayashi S, Pachoensuk T, Tokumoto T. MC4R mutant mice develop ovarian teratomas. Sci Rep 2021; 11:3483. [PMID: 33568756 PMCID: PMC7876032 DOI: 10.1038/s41598-021-83001-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023] Open
Abstract
Teratomas in mice, composed of different tissue types, are derived from primordial germ cells (PGCs) in the foetal gonads. The strongest candidate gene in the testicular teratoma locus (Ter) responsible for testicular teratoma formation was identified as mutation in Dnd1, Dnd1R178*. However, the phenotype of mice with a mutated Dnd1 gene was germ cell loss. This suggests that other genes are involved in teratoma formation. Testicular teratomas can also be induced experimentally (experimentally testicular teratomas: ETTs) in 129/Sv mice by transplanting E12.5 foetal testes into adult testes. Previously, we mapped the ett1 locus, which is the locus responsible for ETT formation on chromosome 18. By exome sequence analysis of the 129 and LTXBJ (LT) strains, we identified a missense mutation in the melanocortin 4 receptor (MC4R) gene among 8 genes in the ett1 region. The missense mutation causes a substitution of glycine 25 by serine. Thus, this gene is a candidate for ETT formation. We established the LT-ett1 congenic strain, which introduced the locus responsible for ETT formation genetically into the genomes of a testicular teratoma non-susceptible strain. In this study, we crossed LT-ett1 and a previously established LT-Ter strain to establish the double congenic strain LT-Ter-ett1. Also, we established a strain with a point mutation in the MC4R gene of the LT strain by genome editing, LT-MC4RG25S. Furthermore, double genetically modified strain LT-Ter-MC4RG25S was established to address the relation between Ter and MC4R. Surprisingly, highly developed ovarian teratomas (OTs), instead of testicular teratomas, appeared not only in the LT-Ter-MC4RG25S and LT-MC4RG25S strains but also in the LT-ett1 and LT-Ter-ett1 strains. The incidence of OT formation was high in double genetically modified strains. The results demonstrated that MC4R is one of the genes responsible for OT formation. It was suggested that the effect of the missense mutation in MC4R on teratoma formation was promoted by abnormal germ cell formation by the mutation in DND1.
Collapse
Affiliation(s)
- Abdullah An Naser
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takehiro Miyazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan
| | - Jun Wang
- Department of Bioscience, Faculty of Science, Shizuoka University, Shizuoka, 422, Japan
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Theeranukul Pachoensuk
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Bioscience, Faculty of Science, Shizuoka University, Shizuoka, 422, Japan.
| |
Collapse
|
6
|
Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias. Proc Natl Acad Sci U S A 2016; 113:E5425-33. [PMID: 27582469 DOI: 10.1073/pnas.1604773113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Testicular tumors, the most common cancer in young men, arise from abnormalities in germ cells during fetal development. Unconventional inheritance for testicular germ cell tumor (TGCT) risk both in humans and mice implicates epigenetic mechanisms. Apolipoprotein B mRNA-editing enzyme complex 1 (APOBEC1) cytidine deaminase and Deadend-1, which are involved in C-to-U RNA editing and microRNA-dependent mRNA silencing, respectively, are potent epigenetic modifiers of TGCT susceptibility in the genetically predisposed 129/Sv inbred mouse strain. Here, we show that partial loss of either APOBEC1 complementation factor (A1CF), the RNA-binding cofactor of APOBEC1 in RNA editing, or Argonaute 2 (AGO2), a key factor in the biogenesis of certain noncoding RNAs, modulates risk for TGCTs and testicular abnormalities in both parent-of-origin and conventional genetic manners. In addition, non-Mendelian inheritance was found among progeny of A1cf and Ago2 mutant intercrosses but not in backcrosses and without fetal loss. Together these findings suggest nonrandom union of gametes rather than meiotic drive or preferential lethality. Finally, this survey also suggested that A1CF contributes to long-term reproductive performance. These results directly implicate the RNA-binding proteins A1CF and AGO2 in the epigenetic control of germ-cell fate, urogenital development, and gamete functions.
Collapse
|
7
|
Miyazaki T, Ikeda Y, Kubo I, Suganuma S, Fujita N, Itakura M, Hayashi T, Takabayashi S, Katoh H, Ohira Y, Sato M, Noguchi M, Tokumoto T. Identification of genomic locus responsible for experimentally induced testicular teratoma 1 (ett1) on mouse Chr 18. Mamm Genome 2014; 25:317-26. [PMID: 24997020 DOI: 10.1007/s00335-014-9529-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022]
Abstract
Spontaneous testicular teratomas (STTs) composed by various kinds of tissues are derived from primordial germ cells (PGCs) in the fetal testes of the mouse. In contrast, intra-testicular grafts of the mouse strain (129/Sv-Ter (+/+)) fetal testes possessed the ability to develop the experimental testicular teratomas (ETTs), indistinguishable from the STTs at a morphological level. In this study, linkage analysis was performed for exploration of possible candidate genes involving in ETT development using F2 intercross fetuses derived from [LTXBJ × 129/Sv-Ter (+/+)] F1 hybrids. Linkage analysis with selected simple sequence length polymorphisms along chromosomes 18 and 19, which have been expected to contain ETT-susceptibility loci, demonstrated that a novel recessive candidate gene responsible for ETT development is located in 1.1 Mb region between the SSLP markers D18Mit81 and D18Mit184 on chromosome 18 in the 129/Sv-Ter (+/+) genetic background. Since this locus is different from the previously known loci (including Ter, pgct1, and Tgct1) for STT development, we named this novel gene "experimental testicular teratoma 1 (ett1)". To resolve the location of ett1 independently from other susceptibility loci, ett1 loci was introduced in a congenic strain in which the distal segment of chromosome 18 in LTXBJ strain mice had been replaced by a 1.99 Mbp genomic segment of the 129/Sv-Ter (+/+) mice. Congenic males homozygous for the ett1 loci were confirmed to have the ability to form ETTs, indicating that this locus contain the gene responsible for ETTs. We listed candidate genes included in this region, and discussed about their possible involvement in induction of ETTs.
Collapse
Affiliation(s)
- Takehiro Miyazaki
- Biological Science Course, Graduate School of Science, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Primordial Germ Cell Technologies for Avian Germplasm Cryopreservation and Investigating Germ Cell Development. J Poult Sci 2012. [DOI: 10.2141/jpsa.011161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Northrup E, Eisenblätter R, Glage S, Rudolph C, Dorsch M, Schlegelberger B, Hedrich HJ, Zschemisch NH. Loss of Dnd1 facilitates the cultivation of genital ridge-derived rat embryonic germ cells. Exp Cell Res 2011; 317:1885-94. [PMID: 21570390 DOI: 10.1016/j.yexcr.2011.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/31/2011] [Accepted: 04/26/2011] [Indexed: 11/27/2022]
Abstract
Pluripotent cells referred to as embryonic germ cells (EGCs) can be derived from the embryonic precursors of the mature gametes: the primordial germ cells (PGCs). A homozygous mutation (ter) of the dead-end homolog 1 gene (Dnd1) in the rat causes gonadal teratocarcinogenesis and sterility due to neoplastic transformation and loss of germ cells. We mated heterozygous ter/+ WKY-Dnd1(ter)/Ztm rats and were able to cultivate the first genital ridge-derived EGCs of the rat embryo at day 14.5 post coitum (pc). Genotyping revealed that ten EGC lines were Dnd1 deficient, while only one wild type cell line had survived in culture. This suggests that the inactivation of the putative tumor suppressor gene Dnd1 facilitates the immortalization of late EGCs in vitro. Injection of the wild type EGCs into blastocysts resulted in the first germ-line competent chimeras. These new pluripotent rat EGCs offer an innovative approach for studies on germ cell tumor development as well as a new tool for genetic manipulations in rats.
Collapse
Affiliation(s)
- Emily Northrup
- Institute of Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Saga Y. Mouse germ cell development during embryogenesis. Curr Opin Genet Dev 2008; 18:337-41. [PMID: 18625315 DOI: 10.1016/j.gde.2008.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Revised: 06/10/2008] [Accepted: 06/14/2008] [Indexed: 10/21/2022]
Abstract
The discrimination and differentiation of germ cells from somatic cells is a fundamental issue during development. The early specification of mouse primordial germ cells (PGCs) is achieved by the induction of Blimp1, a key regulator of germ cells. Nanos3 is one of the genes activated in early PGCs and prevents apoptosis during their migration stage. Once PGCs enter the embryonic gonads, they differentiate according to the somatic sex of the organism. During this process, Nanos2 plays an important role as it promotes male germ cell pathway by suppressing the female fate. In this review, the process of germ cell development in the mouse is discussed with a particular focus on the functions of the key proteins, Blimp1, Nanos, and Dead end1.
Collapse
Affiliation(s)
- Yumiko Saga
- Division of Mammalian Development, National Institute of Genetics, Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
11
|
Hammond S, Zhu R, Youngren KK, Lam J, Anderson P, Matin A. Chromosome X modulates incidence of testicular germ cell tumors in Ter mice. Mamm Genome 2007; 18:832-8. [PMID: 18049836 PMCID: PMC2647741 DOI: 10.1007/s00335-007-9075-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 10/16/2007] [Indexed: 01/07/2023]
Abstract
Germ cell tumor development in humans has been proposed to be part of testicular dysgenesis syndrome (TDS), which manifests as undescended testes, sterility, hypospadias, and, in extreme cases, as germ cell tumors. Males of the Ter mouse strain show interesting parallels to TDS because they either lack germ cells and are sterile or develop testicular germ cell tumors. We found that these defects in Ter mice are due to mutational inactivation of the Dead-end (Dnd1) gene. Here we report that chromosome X modulates germ cell tumor development in Ter mice. We tested whether the X or the Y chromosome influences tumor incidence. We used chromosome substitution strains to generate two new mouse strains: 129-Ter/Ter that carry either a C57BL/6J (B6)-derived chromosome (Chr) X or Y. We found that Ter/Ter males with B6-Chr X, but not B6-Chr Y, showed a significant shift in propensity from testicular tumor development to sterile testes phenotype. Thus, our studies provide unambiguous evidence that genetic factors from Chr X modulate the incidence of germ cell tumors in mice with inactivated Dnd1.
Collapse
Affiliation(s)
- Shirley Hammond
- Department of Cancer Genetics, University of Texas, MD Anderson Cancer Center, Houston, Texas 77005, USA
| | | | | | | | | | | |
Collapse
|
12
|
Youngren KK, Coveney D, Peng X, Bhattacharya C, Schmidt LS, Nickerson ML, Lamb BT, Deng JM, Behringer RR, Capel B, Rubin EM, Nadeau JH, Matin A. The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 2005; 435:360-4. [PMID: 15902260 PMCID: PMC1421521 DOI: 10.1038/nature03595] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 03/24/2005] [Indexed: 01/20/2023]
Abstract
In mice, the Ter mutation causes primordial germ cell (PGC) loss in all genetic backgrounds. Ter is also a potent modifier of spontaneous testicular germ cell tumour (TGCT) susceptibility in the 129 family of inbred strains, and markedly increases TGCT incidence in 129-Ter/Ter males. In 129-Ter/Ter mice, some of the remaining PGCs transform into undifferentiated pluripotent embryonal carcinoma cells, and after birth differentiate into various cells and tissues that compose TGCTs. Here, we report the positional cloning of Ter, revealing a point mutation that introduces a termination codon in the mouse orthologue (Dnd1) of the zebrafish dead end (dnd) gene. PGC deficiency is corrected both with bacterial artificial chromosomes that contain Dnd1 and with a Dnd1-encoding transgene. Dnd1 is expressed in fetal gonads during the critical period when TGCTs originate. DND1 has an RNA recognition motif and is most similar to the apobec complementation factor, a component of the cytidine to uridine RNA-editing complex. These results suggest that Ter may adversely affect essential aspects of RNA biology during PGC development. DND1 is the first protein known to have an RNA recognition motif directly implicated as a heritable cause of spontaneous tumorigenesis. TGCT development in the 129-Ter mouse strain models paediatric TGCT in humans. This work will have important implications for our understanding of the genetic control of TGCT pathogenesis and PGC biology.
Collapse
|
13
|
Kimura T, Murayama K, Nakamura T, Watanabe S, Umehara H, Tomooka M, Nakano T. Testicular teratomas: back to pluripotent stem cells. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 40:133-50. [PMID: 17153483 DOI: 10.1007/3-540-27671-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Tohru Kimura
- Department of Pathology, Osaka University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Kimura T, Suzuki A, Fujita Y, Yomogida K, Lomeli H, Asada N, Ikeuchi M, Nagy A, Mak TW, Nakano T. Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development 2003; 130:1691-700. [PMID: 12620992 DOI: 10.1242/dev.00392] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The tumor suppressor gene PTEN, which is frequently mutated in human cancers, encodes a lipid phosphatase for phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3] and antagonizes phosphatidylinositol 3 kinase. Primordial germ cells (PGCs), which are the embryonic precursors of gametes, are the source of testicular teratoma. To elucidate the intracellular signaling mechanisms that underlie germ cell differentiation and proliferation, we have generated mice with a PGC-specific deletion of the Pten gene. Male mice that lacked PTEN exhibited bilateral testicular teratoma, which resulted from impaired mitotic arrest and outgrowth of cells with immature characters. Experiments with PTEN-null PGCs in culture revealed that these cells had greater proliferative capacity and enhanced pluripotent embryonic germ (EG) cell colony formation. PTEN appears to be essential for germ cell differentiation and an important factor in testicular germ cell tumor formation.
Collapse
Affiliation(s)
- Tohru Kimura
- Department of Molecular Cell Biology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Takabayashi S, Sasaoka Y, Yamashita M, Tokumoto T, Ishikawa K, Noguchi M. Novel growth factor supporting survival of murine primordial germ cells: evidence from conditioned medium of ter fetal gonadal somatic cells. Mol Reprod Dev 2001; 60:384-96. [PMID: 11599050 DOI: 10.1002/mrd.1101] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ter (teratoma, chromosome 18) mutation causes a deficiency of primordial germ cells (PGCs) in ter/ter embryos from the ter congenic mouse strain at 8.0 days post coitum (dpc). In order to analyse the function of the ter gene, here we examined effects of conditioned medium (CM) from 14.5 dpc testicular and ovarian somatic cells of +/+, +/ter, or ter/ter genotype on mouse PGCs "mixed-cultured" with own somatic cells on feeder cells. The results showed that +/+ and +/ter CM supported survival in 9.5 and 11.5 dpc ICR PGCs but ter/ter CM did not rescue TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling)-positive apoptosis in the PGCs though it did not affect 5-bromo-2-deoxyuridine incorporation in PGCs. This supportive substance in +/+ CM, not ter/ter CM, was characterized as soluble, heat labile, and larger than 30 kDa. We also found that several known growth factors for PGCs and their receptors were expressed in ter/ter testes as well as +/+ testes, suggesting the ter function is independent. Thus, it was concluded that fetal gonadal somatic cells express a novel PGC growth factor (designated as TER Factor) supporting survival of PGCs not somatic cells and that the PGC deficiency in ter/ter testes is caused by a loss of this factor.
Collapse
Affiliation(s)
- S Takabayashi
- Department of Biology and Geosciences, Faculty of Science, Shizuoka University, Ohya 836, Shizuoka 422-8529, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Takabayashi S, Nozaki M, Ishikawa K, Noguchi M. Theter/terGonadal Somatic Cells Cause Apoptosis inter/terPrimordial Germ Cells (PGCs) with Normal Survivability and Proliferation Ability in the Mouse: Evidence from PGC-Somatic Cell “Exchange-Co-Culture”. Zoolog Sci 2001. [DOI: 10.2108/zsj.18.695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Muller AJ, Teresky AK, Levine AJ. A male germ cell tumor-susceptibility-determining locus, pgct1, identified on murine chromosome 13. Proc Natl Acad Sci U S A 2000; 97:8421-6. [PMID: 10890890 PMCID: PMC26963 DOI: 10.1073/pnas.140208197] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inbred 129 strain mice are predisposed to developing male germ cell tumors (GCTs) of the testes. The inherent genetic defects that underlie male GCT susceptibility in the 129 mouse strain are unknown. GCT incidence is increased in 129 strain males that lack functional p53 protein, and we have used this finding to facilitate the generation of panels of GCT-bearing intercross and backcross mice for genetic mapping analysis. A 129 strain locus, designated pgct1, that segregates with the male GCT phenotype has been identified on chromosome 13 near D13Mit188. This region of murine chromosome 13 may be syntenic to a portion of human chromosome 5q that is implicated in male GCT susceptibility in humans.
Collapse
Affiliation(s)
- A J Muller
- DuPont Pharmaceuticals, Glenolden, PA 19036; and The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
18
|
Matin A, Collin GB, Asada Y, Varnum D, Nadeau JH. Susceptibility to testicular germ-cell tumours in a 129.MOLF-Chr 19 chromosome substitution strain. Nat Genet 1999; 23:237-40. [PMID: 10508525 DOI: 10.1038/13874] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The identification of genes that control susceptibility to testicular germ-cell tumours (TGCTs), the most common cancer affecting young men, has been difficult. In laboratory mice, TGCTs arise from primordial germ cells in only the 129 inbred strains, and susceptibility is under multigenic control. The spontaneously arising mutation Ter (ref. 5) on mouse chromosome 18 (Refs 6,7) increases TGCT frequency on a 129/Sv background. We originally used Ter in genetic crosses to identify loci that control tumorigenesis. A genome scan of tumour-bearing progeny from backcrosses between the 129/Sv-Ter/+ and MOLF/Ei strains provided modest evidence that MOLF-derived alleles on chromosome 19 enhance development of bilateral TGCTs (ref. 9). To obtain independent evidence for linkage to the MOLF chromosome, we made an autosomal chromosome substitution strain (CSS; or 'consomic strain') in which chromosome 19 of 129/Sv+/+ was replaced by its MOLF-derived homologue. The unusually high frequency of TGCTs in this CSS (even in the absence of the Ter mutation) provides evidence confirming the genome survey results, identifies linkage for a naturally occurring strain variant allele that confers susceptibility to TGCTs and illustrates the power of CSSs in complex trait analysis.
Collapse
Affiliation(s)
- A Matin
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4955, USA
| | | | | | | | | |
Collapse
|
19
|
Peng HQ, Liu L, Goss PE, Bailey D, Hogg D. Chromosomal deletions occur in restricted regions of 5q in testicular germ cell cancer. Oncogene 1999; 18:3277-83. [PMID: 10359533 DOI: 10.1038/sj.onc.1202662] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since the biologic behavior and molecular genetic changes observed in testicular germ cell cancer differ from those seen in more common epithelial tumors, it is likely that hitherto uncharacterized genes play a role in the development of germ cell tumors. Our previous work on testicular germ cell cancer suggested that chromosome 5q might contain one or more novel tumor suppressor genes that play a role in this malignancy. In this study, we performed a high resolution loss of heterozygosity (LOH) study of testicular cancer using 37 informative markers on chromosome 5. We detected allelic losses in 20/48 (42%) specimens and identified three common sites of loss on chromosome 5q14, 5q21 and 5q34-qter, defined respectively by minimal regions of deletion of < or = 1 cM, 10 cM and approximately 20 (cM). Using an overlapping series of YACs and radiation hybrid mapping, we have constructed a physical map of the 5q14 deletion that should aid in the isolation and characterization of the putative tumor suppressor gene located therein.
Collapse
Affiliation(s)
- H Q Peng
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
20
|
Abstract
Spontaneous testicular germ cell tumours in humans and mice are remarkable for their diverse composition. These tumours are usually composed of an extraordinary variety of cell and tissue types including muscle, skin, bone, cartilage, and neuroepithelia. Their diverse composition reflects their origin from totipotent primordial germ cells at about Day 12 of fetal development. Although much is known about the development of these tumours, remarkably little is known about the genetics of the mammalian primordial germ cell lineage or about the genes that control susceptibility to spontaneous testicular germ cell tumours in humans or mice. Conventional genetic analysis of susceptible 129/Sv mice is difficult because of the large number of susceptibility genes and their low penetrance. We are taking advantage of the Ter mutation to simplify the genetic analysis. Various evidence suggests that Ter is neither necessary nor sufficient for tumourigenesis. Instead, Ter acts as a modifier, dramatically increasing tumour incidence from approximately 1% in +/+ males, to approximately 17% in Ter/+ males and approximately 94% in Ter/Ter males. Segregation analysis suggests that Ter increases tumour incidence by requiring some, but perhaps not all, of the 129/Sv-derived susceptibility genes. With standard crosses that segregate for the Ter mutation, identification not only of Ter but also of these 129/Sv-derived susceptibility genes should be possible. In this paper, we review the genetics and development of germ cell tumours in 129/Sv mice, summarize the status of Ter mapping, and provide evidence that different genetic pathways lead to unilateral and bilateral tumours.
Collapse
Affiliation(s)
- A Matin
- Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
21
|
Threadgill DW, Yee D, Matin A, Nadeau JH, Magnuson T. Genealogy of the 129 inbred strains: 129/SvJ is a contaminated inbred strain. Mamm Genome 1997; 8:390-3. [PMID: 9166580 DOI: 10.1007/s003359900453] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 129 mouse is the most widely used strain in gene targeting experiments. However, numerous substrains exist with demonstrable physiological differences. In this study a set of simple sequence length polymorphisms (SSLPs) was used to determine the relatedness of selected 129 substrains. 129/SvJ was significantly different from the other 129 substrains and is more accurately classified as a recombinant congenic strain (129cX/Sv), being derived from 129/Sv and an unknown strain. This mixed genetic background could complicate gene targeting experiments by reducing homologous recombination efficiency when constructs and ES cells are not derived from the same 129 substrain. Additionally, discrepancies due to different genetic backgrounds may arise when comparing phenotypes of genes targeted in different 129-derived ES cell lines.
Collapse
Affiliation(s)
- D W Threadgill
- Department of Cell Biology, Vanderbilt University School of Medicine, 1161 21st Ave. S, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
22
|
Noguchi M, Watanabe C, Kobayashi T, Kuwashima M, Sakurai T, Katoh H, Moriwaki K. The ter mutation responsible for germ cell deficiency but not testicular nor ovarian teratocarcinogenesis in ter / ter congenic mice. Dev Growth Differ 1996. [DOI: 10.1046/j.1440-169x.1996.00008.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Collin GB, Asada Y, Varnum DS, Nadeau JH. DNA pooling as a quick method for finding candidate linkages in multigenic trait analysis: an example involving susceptibility to germ cell tumors. Mamm Genome 1996; 7:68-70. [PMID: 8903734 DOI: 10.1007/s003359900017] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- G B Collin
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | |
Collapse
|
24
|
Duncan MK, Lieman J, Chada KK. The germ cell deficient locus maps to mouse chromosome 11A2-3. Mamm Genome 1995; 6:697-9. [PMID: 8563166 DOI: 10.1007/bf00354290] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The autosomal recessive mouse mutation, germ cell deficient, gcd, manifests as infertility in both sexes owing to improper migration and/or proliferation of primordial germ cells during embryonic development. Mice harboring this mutation have been hypothesized to be animal models of the human syndromes, premature ovarian failure and Sertoli cell only syndrome. Since the gcd mutation arose from the insertion of over 100 kb of foreign DNA into the chromosome during a transgenic mouse experiment, fluorescent in situ hybridization with the transgene as a probe was used to determine the chromosomal position of the gcd locus. DAPI chromosomal banding in conjunction with double labeling with the alpha 1(I) collagen gene revealed that the gcd locus is situated on mouse Chromosome (Chr) 11A2-3. Two candidate genes, Lif and Oncostatin M, map near the gcd locus; however, Southern blot hybridization analysis revealed no gross rearrangements in these genes in gcd mice. The chromosomal position of the gcd locus will prove valuable in the search for other candidate genes as well as a landmark for positional cloning experiments.
Collapse
Affiliation(s)
- M K Duncan
- National Eye Institute, Laboratory of Molecular and Developmental Biology, Bethesda, Maryland 20892-2730, USA
| | | | | |
Collapse
|
25
|
Sakurai T, Iguchi T, Moriwaki K, Noguchi M. The ter mutation first causes primordial germ cell deficiency in ter/ter mouse embryos at 8 days of gestation. Dev Growth Differ 1995. [DOI: 10.1046/j.1440-169x.1995.t01-2-00007.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|