1
|
Dereli I, Telychko V, Papanikos F, Raveendran K, Xu J, Boekhout M, Stanzione M, Neuditschko B, Imjeti NS, Selezneva E, Tuncay H, Demir S, Giannattasio T, Gentzel M, Bondarieva A, Stevense M, Barchi M, Schnittger A, Weir JR, Herzog F, Keeney S, Tóth A. Seeding the meiotic DNA break machinery and initiating recombination on chromosome axes. Nat Commun 2024; 15:2941. [PMID: 38580643 PMCID: PMC10997794 DOI: 10.1038/s41467-024-47020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.
Collapse
Affiliation(s)
- Ihsan Dereli
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Vladyslav Telychko
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Frantzeskos Papanikos
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Kavya Raveendran
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Jiaqi Xu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
| | - Michiel Boekhout
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marcello Stanzione
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Benjamin Neuditschko
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500, Krems, Austria
| | - Naga Sailaja Imjeti
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Elizaveta Selezneva
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Hasibe Tuncay
- Department of Developmental Biology, University of Hamburg, 22609, Hamburg, Germany
| | - Sevgican Demir
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Teresa Giannattasio
- University of Rome "Tor Vergata", Section of Anatomy, Via Montpellier, 1, 00133, Rome, Italy
| | - Marc Gentzel
- Core Facility Mass Spectrometry & Proteomics, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Anastasiia Bondarieva
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Michelle Stevense
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Marco Barchi
- University of Rome "Tor Vergata", Section of Anatomy, Via Montpellier, 1, 00133, Rome, Italy
- Saint Camillus International University of Health Sciences, Rome, Italy
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, 22609, Hamburg, Germany
| | - John R Weir
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Franz Herzog
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500, Krems, Austria
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Casey AE, Daish TJ, Grutzner F. Identification and characterisation of synaptonemal complex genes in monotremes. Gene 2015; 567:146-53. [PMID: 25981592 DOI: 10.1016/j.gene.2015.04.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022]
Abstract
The platypus and echidna are the only extant species belonging to the clade of monotremata, the most basal mammalian lineage. The platypus is particularly well known for its mix of mammalian and reptilian characteristics and work in recent years has revealed this also extends to the genetic level. Amongst the monotreme specific features is the unique multiple sex chromosome system (5X4Y in the echidna and 5X5Y in the platypus), which forms a chain in meiosis. This raises questions about sex chromosome organisation at meiosis, including whether there has been changes in genes coding for synaptonemal complex proteins which are involved in homologous synapsis. Here we investigate the key structural components of the synaptonemal complex in platypus and echidna, synaptonemal complex proteins 1, 2 and 3 (SYCP1, SYCP2 and SYCP3). SYCP1 and SYCP2 orthologues are present, conserved and expressed in platypus testis. SYCP3 in contrast is highly diverged, but key residues required for self-association are conserved, while those required for tetramer stabilisation and DNA binding are missing. We also discovered a second SYCP3-like gene (SYCP3-like) in the same region. Comparison with the recently published Y-borne SYCP3 amino acid sequences revealed that SYCP3Y is more similar to SYCP3 in other mammals than the monotreme autosomal SYCP3. It is currently unclear if these changes in the SYCP3 gene repertoire are related to meiotic organisation of the extraordinary monotreme sex chromosome system.
Collapse
Affiliation(s)
- Aaron E Casey
- The Robinson Institute, School of Molecular and Biomedical Science, University of Adelaide, Gate 8 Victoria Drive, Adelaide, South Australia 5005, Australia.
| | - Tasman J Daish
- The Robinson Institute, School of Molecular and Biomedical Science, University of Adelaide, Gate 8 Victoria Drive, Adelaide, South Australia 5005, Australia
| | - Frank Grutzner
- The Robinson Institute, School of Molecular and Biomedical Science, University of Adelaide, Gate 8 Victoria Drive, Adelaide, South Australia 5005, Australia
| |
Collapse
|
3
|
Kidane D, Jonason AS, Gorton TS, Mihaylov I, Pan J, Keeney S, de Rooij DG, Ashley T, Keh A, Liu Y, Banerjee U, Zelterman D, Sweasy JB. DNA polymerase beta is critical for mouse meiotic synapsis. EMBO J 2010; 29:410-23. [PMID: 20019666 PMCID: PMC2824467 DOI: 10.1038/emboj.2009.357] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 10/26/2009] [Indexed: 11/08/2022] Open
Abstract
We have shown earlier that DNA polymerase beta (Pol beta) localizes to the synaptonemal complex (SC) during Prophase I of meiosis in mice. Pol beta localizes to synapsed axes during zygonema and pachynema, and it associates with the ends of bivalents during late pachynema and diplonema. To test whether these localization patterns reflect a function for Pol beta in recombination and/or synapsis, we used conditional gene targeting to delete the PolB gene from germ cells. We find that Pol beta-deficient spermatocytes are defective in meiotic chromosome synapsis and undergo apoptosis during Prophase I. We also find that SPO11-dependent gammaH2AX persists on meiotic chromatin, indicating that Pol beta is critical for the repair of SPO11-induced double-strand breaks (DSBs). Pol beta-deficient spermatocytes yielded reduced steady-state levels of the SPO11-oligonucleotide complexes that are formed when SPO11 is removed from the ends of DSBs, and cytological experiments revealed that chromosome-associated foci of replication protein A (RPA), RAD51 and DMC1 are less abundant in Pol beta-deficient spermatocyte nuclei. Localization of Pol beta to meiotic chromosomes requires the formation of SPO11-dependent DSBs. Taken together, these findings strongly indicate that Pol beta is required at a very early step in the processing of meiotic DSBs, at or before the removal of SPO11 from DSB ends and the generation of the 3' single-stranded tails necessary for subsequent strand exchange. The chromosome synapsis defects and Prophase I apoptosis of Pol beta-deficient spermatocytes are likely a direct consequence of these recombination defects.
Collapse
Affiliation(s)
- Dawit Kidane
- Departments of Therapeutic Radiology and Genetics and The Yale Comprehensive Cancer Center, New Haven, CT, USA
| | - Alan S Jonason
- Departments of Therapeutic Radiology and Genetics and The Yale Comprehensive Cancer Center, New Haven, CT, USA
| | - Timothy S Gorton
- Departments of Therapeutic Radiology and Genetics and The Yale Comprehensive Cancer Center, New Haven, CT, USA
| | - Ivailo Mihaylov
- Departments of Therapeutic Radiology and Genetics and The Yale Comprehensive Cancer Center, New Haven, CT, USA
| | - Jing Pan
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Dirk G de Rooij
- Amsterdam Center for Reproductive Medicine, Amsterdam, The Netherlands
| | - Terry Ashley
- Departments of Therapeutic Radiology and Genetics and The Yale Comprehensive Cancer Center, New Haven, CT, USA
| | - Agnes Keh
- Departments of Therapeutic Radiology and Genetics and The Yale Comprehensive Cancer Center, New Haven, CT, USA
| | - Yanfeng Liu
- Departments of Therapeutic Radiology and Genetics and The Yale Comprehensive Cancer Center, New Haven, CT, USA
| | - Urmi Banerjee
- Departments of Therapeutic Radiology and Genetics and The Yale Comprehensive Cancer Center, New Haven, CT, USA
| | - Daniel Zelterman
- Departments of Therapeutic Radiology and Genetics and The Yale Comprehensive Cancer Center, New Haven, CT, USA
| | - Joann B Sweasy
- Departments of Therapeutic Radiology and Genetics and The Yale Comprehensive Cancer Center, New Haven, CT, USA
| |
Collapse
|
4
|
Lhuissier FGP, Offenberg HH, Wittich PE, Vischer NOE, Heyting C. The mismatch repair protein MLH1 marks a subset of strongly interfering crossovers in tomato. THE PLANT CELL 2007; 19:862-76. [PMID: 17337626 PMCID: PMC1867368 DOI: 10.1105/tpc.106.049106] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 01/30/2007] [Accepted: 02/09/2007] [Indexed: 05/14/2023]
Abstract
In most eukaryotes, the prospective chromosomal positions of meiotic crossovers are marked during meiotic prophase by protein complexes called late recombination nodules (LNs). In tomato (Solanum lycopersicum), a cytological recombination map has been constructed based on LN positions. We demonstrate that the mismatch repair protein MLH1 occurs in LNs. We determined the positions of MLH1 foci along the 12 tomato chromosome pairs (bivalents) during meiotic prophase and compared the map of MLH1 focus positions with that of LN positions. On all 12 bivalents, the number of MLH1 foci was approximately 70% of the number of LNs. Bivalents with zero MLH1 foci were rare, which argues against random failure of detecting MLH1 in the LNs. We inferred that there are two types of LNs, MLH1-positive and MLH1-negative LNs, and that each bivalent gets an obligate MLH1-positive LN. The two LN types are differently distributed along the bivalents. Furthermore, cytological interference among MLH1 foci was much stronger than interference among LNs, implying that MLH1 marks the positions of a subset of strongly interfering crossovers. Based on the distances between MLH1 foci or LNs, we propose that MLH1-positive and MLH1-negative LNs stem from the same population of weakly interfering precursors.
Collapse
Affiliation(s)
- Franck G P Lhuissier
- Wageningen University and Research Centre, Molecular Genetics Group, NL-6703BD Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
5
|
Osman K, Sanchez-Moran E, Higgins JD, Jones GH, Franklin FCH. Chromosome synapsis in Arabidopsis: analysis of the transverse filament protein ZYP1 reveals novel functions for the synaptonemal complex. Chromosoma 2006; 115:212-9. [PMID: 16421735 DOI: 10.1007/s00412-005-0042-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 11/26/2022]
Abstract
With respect to history, plants have provided an ideal system for cytogenetical analysis of the synaptonemal complex (SC). However, until recently, the identification of the genes that encode the SC in plants has proved elusive. In recent years, Arabidopsis thaliana was developed as a model system for plant meiosis research. As a result, there was substantial progress in the isolation of meiotic genes and this has recently led to the isolation of the first plant SC gene, ZYP1. The ZYP1 gene encodes a transverse filament (TF) protein that is predicted to have structural similarity to TF proteins found in other organisms. Analysis of plants deficient in ZYP1 expression has provided important insights into the function of the SC in plants. Loss of ZYP1 has only a limited effect on the overall level of recombination. However, it is associated with extensive nonhomologous recombination leading to multivalent formation at metaphase I. This phenomenon was not previously reported in other organisms. It is important to note that cytological analysis of the ZYP1 deficient lines indicates that SC formation is not required for the imposition of crossover interference.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | |
Collapse
|
6
|
Chung SSW, Cuzin F, Rassoulzadegan M, Wolgemuth DJ. Primary spermatocyte-specific Cre recombinase activity in transgenic mice. Transgenic Res 2005; 13:289-94. [PMID: 15359605 PMCID: PMC3778662 DOI: 10.1023/b:trag.0000034716.73957.f7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have evaluated the specificity of Cre recombinase activity in transgenic mice expressing Cre under the control of the synatonemal complex protein 1 (Sycp1) gene promoter. Sycp1Cre mice were crossed with the ROSA26 reporter line R26R, to monitor the male germ cell stage-specificity of Cre activity as well as to verify that Cre was not active previously during development of other tissues. X-gal staining detected Cre-mediated recombination only in testis. Detailed histological examination indicated that weak Cre-mediated recombination occurred as early as in zygotene spermatocytes at stage XI of the cycle of the seminiferous epithelium. Robust expression of X-gal was detected in early to mid-late spermatocytes at stages V-VIII. We conclude that this transgenic line is a powerful tool for deleting genes of interest specifically during male meiosis.
Collapse
Affiliation(s)
- Sanny S. W. Chung
- Department of Genetics and Development, Columbia University Medical Center, 630 W, 168th street, New York, NY 10032, USA
| | | | | | - Debra J. Wolgemuth
- Department of Genetics and Development, Columbia University Medical Center, 630 W, 168th street, New York, NY 10032, USA
- Department of Obstetrics and Gynecology, Columbia University Medical Center, 630 W, 168th street, New York, NY 10032, USA
- The Center for Reproductive Sciences, Columbia University Medical Center, 630 W, 168th street, New York, NY 10032, USA
- The Institute of Human Nutrition, Columbia University Medical Center, 630 W, 168th street, New York, NY 10032, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 630 W, 168th street, New York, NY 10032, USA
- Author for correspondence:
| |
Collapse
|
7
|
Abstract
The synaptonemal complex (SC) is a protein lattice that resembles railroad tracks and connects paired homologous chromosomes in most meiotic systems. The two side rails of the SC, known as lateral elements (LEs), are connected by proteins known as transverse filaments. The LEs are derived from the axial elements of the chromosomes and play important roles in chromosome condensation, pairing, transverse filament assembly, and prohibiting double-strand breaks (DSBs) from entering into recombination pathways that involve sister chromatids. The proteins that make up the transverse filaments of the SC also play a much earlier role in committing a subset of DSBs into a recombination pathway, which results in the production of reciprocal meiotic crossovers. Sites of crossover commitment can be observed as locations where the SC initiates and as immunostaining foci for a set of proteins required for the processing of DSBs to mature crossovers. In most (but not all) organisms it is the establishment of sites marking such crossover-committed DSBs that facilitates completion of synapsis (full-length extension of the SC). The function of the mature full-length SC may involve both the completion of meiotic recombination at the DNA level and the exchange of the axial elements of the two chromatids involved in the crossover. However, the demonstration that the sites of crossover formation are designated prior to SC formation, and the finding that these sites display interference, argues against a role of the mature SC in mediating the process of interference. Finally, in at least some organisms, modifications of the SC alone are sufficient to ensure meiotic chromosome segregation in the complete absence of meiotic recombination.
Collapse
Affiliation(s)
- Scott L Page
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
8
|
van der Laan R, Uringa EJ, Wassenaar E, Hoogerbrugge JW, Sleddens E, Odijk H, Roest HP, de Boer P, Hoeijmakers JHJ, Grootegoed JA, Baarends WM. Ubiquitin ligase Rad18Sc localizes to the XY body and to other chromosomal regions that are unpaired and transcriptionally silenced during male meiotic prophase. J Cell Sci 2004; 117:5023-33. [PMID: 15383616 DOI: 10.1242/jcs.01368] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In replicative damage bypass (RDB) in yeast, the ubiquitinconjugating enzyme RAD6 interacts with the ubiquitin ligase RAD18. In the mouse, these enzymes are represented by two homologs of RAD6, HR6a and HR6b, and one homolog of RAD18, Rad18Sc. Expression of these genes and the encoded proteins is ubiquitous, but there is relatively high expression in the testis. We have studied the subcellular localization by immunostaining Rad18Sc and other RDB proteins in mouse primary spermatocytes passing through meiotic prophase in spermatogenesis. The highest Rad18Sc protein level is found at pachytene and diplotene, and the protein localizes mainly to the XY body, a subnuclear region that contains the transcriptionally inactivated X and Y chromosomes. In spermatocytes that carry translocations for chromosomes 1 and 13, Rad18Sc protein concentrates on translocation bivalents that are not fully synapsed. The partly synapsed bivalents are often localized in the vicinity of the XY body, and show a very low level of RNA polymerase II, indicating that the chromatin is in a silent configuration similar to transcriptional silencing of the XY body. Thus, Rad18Sc localizes to unsynapsed and silenced chromosome segments during the male meiotic prophase. All known functions of RAD18 in yeast are related to RDB. However, in contrast to Rad18Sc, expression of UBC13 and polη, known to be involved in subsequent steps of RDB, appears to be diminished in the XY body and regions containing the unpaired translocation bivalents. Taken together, these observations suggest that the observed subnuclear localization of Rad18Sc may involve a function outside the context of RDB. This function is probably related to a mechanism that signals the presence of unsynapsed chromosomal regions and subsequently leads to transcriptional silencing of these regions during male meiotic prophase.
Collapse
Affiliation(s)
- Roald van der Laan
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, University Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Eijpe M, Offenberg H, Jessberger R, Revenkova E, Heyting C. Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC3. J Cell Biol 2003; 160:657-70. [PMID: 12615909 PMCID: PMC2173354 DOI: 10.1083/jcb.200212080] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Accepted: 01/21/2003] [Indexed: 11/25/2022] Open
Abstract
In meiotic prophase, the sister chromatids of each chromosome develop a common axial element (AE) that is integrated into the synaptonemal complex (SC). We analyzed the incorporation of sister chromatid cohesion proteins (cohesins) and other AE components into AEs. Meiotic cohesin REC8 appeared shortly before premeiotic S phase in the nucleus and formed AE-like structures (REC8-AEs) from premeiotic S phase on. Subsequently, meiotic cohesin SMC1beta, cohesin SMC3, and AE proteins SCP2 and SCP3 formed dots along REC8-AEs, which extended and fused until they lined REC8-AEs along their length. In metaphase I, SMC1beta, SMC3, SCP2, and SCP3 disappeared from the chromosome arms and accumulated around the centromeres, where they stayed until anaphase II. In striking contrast, REC8 persisted along the chromosome arms until anaphase I and near the centromeres until anaphase II. We propose that REC8 provides a basis for AE formation and that the first steps in AE assembly do not require SMC1beta, SMC3, SCP2, and SCP3. Furthermore, SMC1beta, SMC3, SCP2, and SCP3 cannot provide arm cohesion during metaphase I. We propose that REC8 then provides cohesion. RAD51 and/or DMC1 coimmunoprecipitates with REC8, suggesting that REC8 may also provide a basis for assembly of recombination complexes.
Collapse
Affiliation(s)
- Maureen Eijpe
- Molecular Genetics Group, Botanical Center, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, Netherlands
| | | | | | | | | |
Collapse
|
10
|
Izadyar F, Den Ouden K, Creemers LB, Posthuma G, Parvinen M, De Rooij DG. Proliferation and differentiation of bovine type A spermatogonia during long-term culture. Biol Reprod 2003; 68:272-81. [PMID: 12493723 DOI: 10.1095/biolreprod.102.004986] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The present study was aimed at developing a method for long-term culture of bovine type A spermatogonia. Testes from 5-mo-old calves were used, and pure populations of type A spermatogonia were isolated. Cells were cultured in minimal essential medium (MEM) or KSOM (potassium-rich medium prepared according to the simplex optimization method) and different concentrations of fetal calf serum (FCS) for 2-4 wk at 32 degrees C or 37 degrees C. Culture in MEM resulted in more viable cells and more proliferation than culture in KSOM, and better results were obtained at 37 degrees C than at 32 degrees C. After 1 wk of culture in the absence of serum, only 20% of the cells were alive. However, in the presence of 2.5% FCS, approximately 80% of cells were alive and proliferating. Higher concentrations of FCS only enhanced numbers of somatic cells. In long-term culture, spermatogonia continued to proliferate, and eventually, type A spermatogonial colonies were formed. The majority of colonies consisted mostly of groups of cells connected by intercellular bridges. Most of the cells in these colonies underwent differentiation because they were c-kit positive, and ultimately, cells with morphological and molecular characteristics of spermatocytes and spermatids were formed. Occasionally, large round colonies consisting of single, c-kit-negative, type A spermatogonia (presumably spermatogonial stem cells) were observed. For the first time to our knowledge, a method has been developed to allow proliferation and differentiation of highly purified type A spermatogonia, including spermatogonial stem cells during long-term culture.
Collapse
Affiliation(s)
- Fariborz Izadyar
- Department of Endocrinology, Faculty of Biology, University Medical Center Utrecht, 3548 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Tay J, Richter JD. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell 2001; 1:201-13. [PMID: 11702780 DOI: 10.1016/s1534-5807(01)00025-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CPEB is a sequence-specific RNA binding protein that regulates translation during vertebrate oocyte maturation. Adult female CPEB knockout mice contained vestigial ovaries that were devoid of oocytes; ovaries from mid-gestation embryos contained oocytes that were arrested at the pachytene stage. Male CPEB null mice also contained germ cells arrested at pachytene. The germ cells from the knockout mice harbored fragmented chromatin, suggesting a possible defect in homologous chromosome adhesion or synapsis. Two CPE-containing synaptonemal complex protein mRNAs, which interact with CPEB in vitro and in vivo, contained shortened poly(A) tails and mostly failed to sediment with polysomes in the null mice. Synaptonemal complexes were not detected in these animals. CPEB therefore controls germ cell differentiation by regulating the formation of the synaptonemal complex.
Collapse
Affiliation(s)
- J Tay
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | |
Collapse
|
12
|
Jansen J, Olsen AK, Wiger R, Naegeli H, de Boer P, van Der Hoeven F, Holme JA, Brunborg G, Mullenders L. Nucleotide excision repair in rat male germ cells: low level of repair in intact cells contrasts with high dual incision activity in vitro. Nucleic Acids Res 2001; 29:1791-800. [PMID: 11292852 PMCID: PMC31314 DOI: 10.1093/nar/29.8.1791] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The acquisition of genotoxin-induced mutations in the mammalian germline is detrimental to the stable transfer of genomic information. In somatic cells, nucleotide excision repair (NER) is a major pathway to counteract the mutagenic effects of DNA damage. Two NER subpathways have been identified, global genome repair (GGR) and transcription-coupled repair (TCR). In contrast to somatic cells, little is known regarding the expression of these pathways in germ cells. To address this basic question, we have studied NER in rat spermatogenic cells in crude cell suspension, in enriched cell stages and within seminiferous tubules after exposure to UV or N-acetoxy-2-acetylaminofluorene. Surprisingly, repair in spermatogenic cells was inefficient in the genome overall and in transcriptionally active genes indicating non-functional GGR and TCR. In contrast, extracts from early/mid pachytene cells displayed dual incision activity in vitro as high as extracts from somatic cells, demonstrating that the proteins involved in incision are present and functional in premeiotic cells. However, incision activities of extracts from diplotene cells and round spermatids were low, indicating a stage-dependent expression of incision activity. We hypothesize that sequestering of NER proteins by mispaired regions in DNA involved in synapsis and recombination may underlie the lack of NER activity in premeiotic cells.
Collapse
Affiliation(s)
- J Jansen
- MGC-Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
de Vries SS, Baart EB, Dekker M, Siezen A, de Rooij DG, de Boer P, te Riele H. Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev 1999; 13:523-31. [PMID: 10072381 PMCID: PMC316502 DOI: 10.1101/gad.13.5.523] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Members of the mammalian mismatch repair protein family of MutS and MutL homologs have been implicated in postreplicative mismatch correction and chromosome interactions during meiotic recombination. Here we demonstrate that mice carrying a disruption in MutS homolog Msh5 show a meiotic defect, leading to male and female sterility. Histological and cytological examination of prophase I stages in both sexes revealed an extended zygotene stage, characterized by impaired and aberrant chromosome synapsis, that was followed by apoptotic cell death. Thus, murine Msh5 promotes synapsis of homologous chromosomes in meiotic prophase I.
Collapse
Affiliation(s)
- S S de Vries
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Sage J, Martin L, Meuwissen R, Heyting C, Cuzin F, Rassoulzadegan M. Temporal and spatial control of the Sycp1 gene transcription in the mouse meiosis: regulatory elements active in the male are not sufficient for expression in the female gonad. Mech Dev 1999; 80:29-39. [PMID: 10096061 DOI: 10.1016/s0925-4773(98)00191-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcription controls active at the initial stages of meiosis are clearly key elements in the regulation of germinal differentiation. Transcription of the Sycp1 gene (synaptonemal complex protein 1) starts as early as the leptotene and zygotene stages. Constructs with Sycp1 5' upstream sequences directed the expression of reporter genes to pachytene spermatocytes in transgenic mice. A short fragment encompassing the transcription start (n.t. -54 to +102) was sufficient for stage-specific expression in the adult male and for temporal regulation during development. Upstream enhancer element(s) quantitatively regulating expression were localized in the region between -54 and -260. The gene is normally expressed both in the male and female gonads, but none of the promoter sequences active in the testis allowed the expression of reporter genes during meiosis in the ovary.
Collapse
Affiliation(s)
- J Sage
- Unité INSERM 470, University of Nice, France
| | | | | | | | | | | |
Collapse
|
15
|
Offenberg HH, Schalk JA, Meuwissen RL, van Aalderen M, Kester HA, Dietrich AJ, Heyting C. SCP2: a major protein component of the axial elements of synaptonemal complexes of the rat. Nucleic Acids Res 1998; 26:2572-9. [PMID: 9592139 PMCID: PMC147596 DOI: 10.1093/nar/26.11.2572] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the axial elements of synaptonemal complexes (SCs) of the rat, major protein components have been identified, with relative electrophoretic mobilities (M rs) of 30 000-33 000 and 190 000. Using monoclonal anti-SC antibodies, we isolated cDNA fragments which encode the 190 000 M r component of rat SCs. The translation product predicted from the nucleotide sequence of the cDNA, called SCP2 (for synaptonemal complex protein 2), is a basic protein (pI = 8.0) with a molecular mass of 173 kDa. At the C-terminus, a stretch of approximately 50 amino acid residues is predicted to be capable of forming coiled-coil structures. SCP2 contains two clusters of S/T-P motifs, which are common in DNA-binding proteins. These clusters flank the central, most basic part of the protein (pI = 9.5). Three of the S/T-P motifs are potential target sites for p34(cdc2) protein kinase. In addition, SCP2 has eight potential cAMP/cGMP-dependent protein kinase target sites. The gene encoding SCP2 is transcribed specifically in the testis, in meiotic prophase cells. At the amino acid sequence and secondary structural level, SCP2 shows some similarity to the Red1 protein, which is involved in meiotic recombination and the assembly of axial elements of SCs in yeast. We speculate that SCP2 is a DNA-binding protein involved in the structural organization of meiotic prophase chromosomes.
Collapse
Affiliation(s)
- H H Offenberg
- Department of Genetics, Agricultural University, Dreijenlaan 2, NL-6703 HA Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Tarsounas M, Pearlman RE, Gasser PJ, Park MS, Moens PB. Protein-protein interactions in the synaptonemal complex. Mol Biol Cell 1997; 8:1405-14. [PMID: 9285814 PMCID: PMC276165 DOI: 10.1091/mbc.8.8.1405] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In mammalian systems, an approximately M(r) 30,000 Cor1 protein has been identified as a major component of the meiotic prophase chromosome cores, and a M(r) 125,000 Syn1 protein is present between homologue cores where they are synapsed and form the synaptonemal complex (SC). Immunolocalization of these proteins during meiosis suggests possible homo- and heterotypic interactions between the two as well as possible interactions with yet unrecognized proteins. We used the two-hybrid system in the yeast Saccharomyces cerevisiae to detect possible protein-protein associations. Segments of hamsters Cor1 and Syn1 proteins were tested in various combinations for homo- and heterotypic interactions. In the cause of Cor1, homotypic interactions involve regions capable of coiled-coil formation, observation confirmed by in vitro affinity coprecipitation experiments. The two-hybrid assay detects no interaction of Cor1 protein with central and C-terminal fragments of Syn1 protein and no homotypic interactions involving these fragments of Syn1. Hamster Cor1 and Syn1 proteins both associate with the human ubiquitin-conjugation enzyme Hsubc9 as well as with the hamster Ubc9 homologue. The interactions between SC proteins and the Ubc9 protein may be significant for SC disassembly, which coincides with the repulsion of homologs by late prophase I, and also for the termination of sister centromere cohesiveness at anaphase II.
Collapse
Affiliation(s)
- M Tarsounas
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
17
|
Scherthan H, Weich S, Schwegler H, Heyting C, Härle M, Cremer T. Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol 1996; 134:1109-25. [PMID: 8794855 PMCID: PMC2120985 DOI: 10.1083/jcb.134.5.1109] [Citation(s) in RCA: 323] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The preconditions and early steps of meiotic chromosome pairing were studied by fluorescence in situ hybridization (FISH) with chromosome-specific DNA probes to mouse and human testis tissue sections. Premeiotic pairing of homologous chromosomes was not detected in spermatogonia of the two species. FISH with centromere- and telomere-specific DNA probes in combination with immunostaining (IS) of synaptonemal complex (SC) proteins to testis sections of prepuberal mice at days 4-12 post partum was performed to study sequentially the meiotic pairing process. Movements of centromeres and then telomeres to the nuclear envelope, and of telomeres along the nuclear envelope leading to the formation of a chromosomal bouquet were detected during mouse prophase. At the bouquet stage, pairing of a mouse chromosome-8-specific probe was observed. SC-IS and simultaneous telomere FISH revealed that axial element proteins appear as large aggregates in mouse meiocytes when telomeres are attached to the nuclear envelope. Axial element formation initiates during tight telomere clustering and transverse filament-IS indicated the initiation of synapsis during this stage. Comparison of telomere and centromere distribution patterns of mouse and human meiocytes revealed movements of centromeres and then telomeres to the nuclear envelope and subsequent bouquet formation as conserved motifs of the pairing process. Chromosome painting in human spermatogonia revealed compacted, largely mutually exclusive chromosome territories. The territories developed into long, thin threads at the onset of meiotic prophase. Based on these results a unified model of the pairing process is proposed.
Collapse
Affiliation(s)
- H Scherthan
- Department of Human Genetics and Human Biology, University of Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Synaptonemal complexes (SCs) are zipper-like structures which are assembled between homologous chromosomes during the prophase of the first meiotic division. Their assembly and disassembly correlate with the successive chromatin rearrangements of meiotic prophase, namely the condensation, pairing, recombination and disjunction of homologous chromosomes. It was originally thought that SCs created the preconditions for the homologous crossing over of chromosomes by bringing corresponding parts of homologous chromosomes in close apposition. However, this view has been gradually undermined during recent years, and ideas about the roles of SCs have radically changed. SCs are now considered to be structures that both control the number and distribution of reciprocal exchanges between homologous chromosomes (cross-overs) and convert cross-overs into functional chiasmata. How SCs fulfil these roles remains to be elucidated.
Collapse
Affiliation(s)
- C Heyting
- Department of Genetics, Agricultural University, Wageningen, The Netherlands.
| |
Collapse
|
19
|
Schmit AC, Endlé MC, Lambert AM. The perinuclear microtubule-organizing center and the synaptonemal complex of higher plants share a common antigen: its putative transfer and role in meiotic chromosomal ordering. Chromosoma 1996; 104:405-13. [PMID: 8601335 DOI: 10.1007/bf00352264] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recognition of homologous chromosomes during meiotic prophase is associated in most cases with the formation of the synaptonemal complex along the length of the chromosome. Telomeres, located at the nuclear periphery, are preferential initiation sites for the assembly of the synaptonemal complex. In most eukaryotic cells, telomeres cluster in a restricted area, leading to the "bouquet" configuration in leptotene-zygotene, while this typical organization progressively disappears in late zygotene-pachytene. We wondered whether such striking changes in the intranuclear ordering and pairing of meiotic chromosomes during the progression of prophase I could be correlated with activity of the centrosome and/or microtubule-organizing center (MTOC). Plant cells may be used as a model of special interest for this study as the whole nuclear surface acts as an MTOC, unlike other cell types where MTOCs are restricted to centrosomes or spindle pole bodies. Using a monoclonal antibody (mAb 6C6) raised against isolated calf centrosomes we found that the 6C6 antigen is present over the entire surface of the plant meiotic nucleus, in early prophase I, before chromosomal pairing. At zygotene, short fragments of chromosomes become stained near the nuclear envelope and within the nucleus. At pachytene, after complete synapsis, the labeling specifically concentrates within the synaptonemal complexes, although the nuclear surface is no longer reactive. Ultrastructural localization using immunogold labeling indicates that the 6C6 antigen is colocalized with the synaptonemal complex structures. Later in metaphase I, the antigen is found at the kinetochores. Our data favor the idea that the 6C6 antigen may function as a particular "chromosomal passenger-like" protein. These observations shed new light on the molecular organization of the plant synaptonemal complex and on the redistribution of cytoskeleton-related antigens during initiation of meiosis. They suggest that antigens of MTOCs are relocated to chromosomes during the synapsis process starting at telomeres and contribute to the spatial arrangement of meiotic chromosomes. Such cytoskeleton-related antigens may acquire different functions depending on their localization, which is cell-cycle regulated.
Collapse
Affiliation(s)
- A C Schmit
- Institut de Biologie Moléculaire des Plantes du C.N.R.S., UPR 406, Université Louis Pasteur, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
20
|
Lammers JH, van Aalderen M, Peters AH, van Pelt AA, de Rooij DG, de Boer P, Offenberg HH, Dietrich AJ, Heyting C. A change in the phosphorylation pattern of the 30000-33000 Mr synaptonemal complex proteins of the rat between early and mid-pachytene. Chromosoma 1995; 104:154-63. [PMID: 8529454 DOI: 10.1007/bf00352179] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The lateral elements (LEs) of synaptonemal complexes (SCs) of the rat contain major components with relative electrophoretic mobilities (Mr s) of 30000-33000, which are the products of a single gene. After one-dimensional separation of SC proteins on polyacrylamide-SDS gels, these components show up as two major bands, whereas upon two-dimensional electrophoresis they are resolved in at least 24 spots, which focus at pH 6.5 to 9.5. In this paper we show that these spots represent phosphorylation variants. For the analysis of the phosphorylation of the 30000- to 33000-Mr SC components during progression through meiotic prophase, we developed a procedure for isolation of fractions of testicular cells of the rat that are enriched in separate stages of meiotic prophase. Analysis of the 30000- to 33000-Mr SC components in these fractions by two-dimensional electrophoresis and immunoblotting showed that phosphorylated variants of the 30000- to 33000-Mr SC proteins occur throughout meiotic prophase. However, the extent of phosphorylation changes between early and mid-pachytene, when one phosphate group is probably added to each of the variants.
Collapse
Affiliation(s)
- J H Lammers
- Department of Genetics, Agricultural University, Dreijenlaan 2, NL-6703 HA Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Anderson LK, Stack SM, Todd RJ, Ellis RP. A monoclonal antibody to lateral element proteins in synaptonemal complexes of Lilium longiflorum. Chromosoma 1994; 103:357-67. [PMID: 7821092 DOI: 10.1007/bf00417884] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To identify synaptonemal complex (SC) proteins in Lilium longiflorum (lily), monoclonal antibodies were generated using mice immunized with isolated pachytene nuclei. While most of the resulting monoclonal antibodies recognized nucleolar or chromatin proteins, one monoclonal antibody (anti-LE) was found that binds to lateral elements. Anti-LE bound more to lateral elements of SCs digested with DNase than to lateral elements that had not been digested with DNase. The opposite pattern of labeling was observed using monoclonal antibodies to lily chromatin and nucleolar proteins. These results indicate that anti-LE is specifically recognizing lateral element proteins and not chromatin or nucleolar proteins surrounding the lateral elements. On immunoblots, anti-LE binds to three pachytene nuclear proteins (Mr 60000, 66000 and 70000), two tetrad (early microspore) nuclear proteins (Mr 60000 and 70000), and two root tip nuclear proteins (Mr 52000 and 60000). However, anti-LE does not bind to proteins from leaf nuclei. Of these four tissues, leaf is the only one that does not have actively dividing cells. This observation suggests that at least some SC proteins are related to nuclear proteins from mitotically active cells.
Collapse
Affiliation(s)
- L K Anderson
- Department of Biology, Colorado State University, Fort Collins 80523
| | | | | | | |
Collapse
|
22
|
Riggs CD. Molecular cloning of cDNAs encoding variants of meiotin-1. A meiotic protein associated with strings of nucleosomes. Chromosoma 1994; 103:251-61. [PMID: 7988286 DOI: 10.1007/bf00352249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Meiotin-1 is a chromatin-associated protein, originally isolated from microsporocytes of Lilium longiflorum, which is found predominantly in cells undergoing meiotic prophase. Chromatin fractionation studies demonstrated that meiotin-1 has an unusual stoichiometry relative to that of histone H1 and the core histones in chromatin fibers. The protein is found less frequently than is histone H1, and appears to be distributed once every 5 to 13 nucleosomes. This distribution may approximate the number of nucleosomes per turn of the chromatin solenoid. A truncated cDNA was identified by immunoscreening of an expression library, and the cDNA was used as a hybridization probe to select a full length cDNA. Variations between the sequence of the predicted polypeptide and sequenced peptides, and variations between the amino acid composition of the protein and the deduced protein indicate that the cDNAs encode minor variants of mature meiotin-1. RNA gel blot hybridization studies reveal that the meiotin-1 mRNA is restricted to anthers in which meiosis is occurring. Computer analysis of the polypeptide deduced from the cDNA indicates that the protein begins with a region highly homologous to the conserved central globular domain of histone H1 molecules. DNA gel blotting experiments demonstrate that homologous sequences exist in the genomes of a fern, a fungus, and both mono- and dicotyledonous plants. Meiotin-1 has been evolutionarily conserved and I propose that it arose from histone H1 to fulfill a role in organizing meiotic chromatin.
Collapse
Affiliation(s)
- C D Riggs
- Department of Botany, University of Toronto, Ontario, Canada
| |
Collapse
|
23
|
The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes. Mol Cell Biol 1994. [PMID: 8289794 DOI: 10.1128/mcb.14.2.1137] [Citation(s) in RCA: 246] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lateral elements of synaptonemal complexes (SCs) of the rat contain major components with relative electrophoretic mobilities (M(r)S) of 30,000 and 33,000. After one-dimensional separation of SC proteins on polyacrylamide-sodium dodecyl sulfate gels, these components show up as two broad bands. These bands contain closely related proteins, as judged from their peptide maps and immunological reactivity. Using affinity-purified polyclonal anti-30,000- and anti-33,000-M(r) component antibodies, we isolated a cDNA encoding at least one of the 30,000- or 33,000-M(r) SC components. The protein predicted from the nucleotide sequence of the cDNA, called SCP3 (for synaptonemal complex protein 3), has a molecular mass of 29.7 kDa and a pI value of 9.4. It has a potential nucleotide binding site and contains stretches that are predicted to be capable of forming coiled-coil structures. In the male rat, the gene encoding SCP3 is transcribed exclusively in the testis. SCP3 has significant amino acid similarity to the pM1 protein, which is one of the predicted products of an X-linked lymphocyte-regulated gene family of the mouse: there are 63% amino acid sequence similarity and 35% amino acid identity between the SCP3 and pM1 proteins. However, SCP3 differs from pM1 in several respects, and whether the proteins fulfill related functions is still an open question.
Collapse
|
24
|
Lammers JH, Offenberg HH, van Aalderen M, Vink AC, Dietrich AJ, Heyting C. The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes. Mol Cell Biol 1994; 14:1137-46. [PMID: 8289794 PMCID: PMC358469 DOI: 10.1128/mcb.14.2.1137-1146.1994] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The lateral elements of synaptonemal complexes (SCs) of the rat contain major components with relative electrophoretic mobilities (M(r)S) of 30,000 and 33,000. After one-dimensional separation of SC proteins on polyacrylamide-sodium dodecyl sulfate gels, these components show up as two broad bands. These bands contain closely related proteins, as judged from their peptide maps and immunological reactivity. Using affinity-purified polyclonal anti-30,000- and anti-33,000-M(r) component antibodies, we isolated a cDNA encoding at least one of the 30,000- or 33,000-M(r) SC components. The protein predicted from the nucleotide sequence of the cDNA, called SCP3 (for synaptonemal complex protein 3), has a molecular mass of 29.7 kDa and a pI value of 9.4. It has a potential nucleotide binding site and contains stretches that are predicted to be capable of forming coiled-coil structures. In the male rat, the gene encoding SCP3 is transcribed exclusively in the testis. SCP3 has significant amino acid similarity to the pM1 protein, which is one of the predicted products of an X-linked lymphocyte-regulated gene family of the mouse: there are 63% amino acid sequence similarity and 35% amino acid identity between the SCP3 and pM1 proteins. However, SCP3 differs from pM1 in several respects, and whether the proteins fulfill related functions is still an open question.
Collapse
Affiliation(s)
- J H Lammers
- Department of Genetics, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Smith A, Benavente R. Identification of a short nuclear lamin protein selectively expressed during meiotic stages of rat spermatogenesis. Differentiation 1992; 52:55-60. [PMID: 1286775 DOI: 10.1111/j.1432-0436.1992.tb00499.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The nuclear lamina is a karyoskeletal structure located at the nuclear periphery and intimately associated with the inner nuclear membrane. It is composed of a multigene family of proteins, the lamins, which show a conspicuous cell type-specific expression pattern. The functional role of lamins has not been definitively established but available information indicates that they are involved in the organization of nuclear envelope and interphase chromatin. Spermatogenesis is characterized, among other features, by stage-specific changes in chromatin organization and function. These changes are accompanied by modifications in the organization and composition of the nuclear lamina. In previous experiments we have determined that rat spermatogenic cells express a lamin closely related, if not identical, to lamin B1 of somatic cells; whereas rat somatic lamins A, C, D and E were not detected. Considering that chromatin reorganizations during spermatogenesis may be directly or indirectly related to changes of the nuclear lamina we have decided to further investigate lamin expression during this process. Here we report on the identification of a 52 kDa protein of the rat which, according to immunocytochemical and biochemical data, appears to be a novel nuclear lamin. Using meiotic stage-specific markers, we have also demonstrated that this short lamin is selectively expressed during meiotic stages of spermatogenesis.
Collapse
Affiliation(s)
- A Smith
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute (Biocenter), University of Würzburg, Federal Republic of Germany
| | | |
Collapse
|
26
|
Dietrich AJ, van Marle J, Heyting C, Vink AC. Ultrastructural evidence for a triple structure of the lateral element of the synaptonemal complex. J Struct Biol 1992; 109:196-200. [PMID: 1296753 DOI: 10.1016/1047-8477(92)90031-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study describes composition and localization of several substructures of the synaptonemal complex (SC) using different techniques. The techniques which were used were surface spreading, critical point drying of isolated SCs, and sectioning of Lowicryl embedded testis material. The lateral elements (LEs) of the SC appear to be composed of three lateral substructures: two morphologically identical major strands and a third strand which is considerably thinner. The thinner strand is localized on the inner side of the two major strands of the lateral element. In late pachytene/early diplotene stages when the SC starts to disintegrate more than three strands can be observed in the LEs. A model is presented and the function of the different substructures is speculated upon.
Collapse
Affiliation(s)
- A J Dietrich
- Institute of Human Genetics, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
27
|
Smith A, Benavente R. Meiosis-specific protein selectively associated with sex chromosomes of rat pachytene spermatocytes. Proc Natl Acad Sci U S A 1992; 89:6938-42. [PMID: 1495983 PMCID: PMC49620 DOI: 10.1073/pnas.89.15.6938] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During the first meiotic prophase of mammalian spermatogenesis, the sex chromosomes X and Y show a characteristic allocyclic behavior with respect to the autosomes. This is particularly evident during pachytene stage when sex chromosomes form the so-called sex vesicle. This structure is characterized by the condensed state of chromatin, transcriptional inactivity, and the limited extension of chromosome pairing, which is usually restricted to a short segment of sex chromosome axial elements. The molecular basis and functional significance of sex vesicle formation during mammalian spermatogenesis remain obscure. Here we report on the identification of a meiosis-specific sex vesicle protein we called XY40. Immunocytochemical localization on rat testis cryosections with a XY40-specific monoclonal antibody revealed that the labeling is confined to the axial elements of sex chromosomes. Biochemical characterization showed that protein XY40 (40 kDa; pI 5.7-5.8) can be extracted from rat pachytene spermatocytes and recovered in particles of 9.5 S with a native molecular mass of approximately 152 kDa. We speculate that protein XY40 may be involved in the allocyclic behavior of sex chromosomes during male meiotic prophase.
Collapse
Affiliation(s)
- A Smith
- Department of Zoology I, University of Würzburg, Federal Republic of Germany
| | | |
Collapse
|
28
|
Giroux CN. Meiosis: components and process in nuclear differentiation. DEVELOPMENTAL GENETICS 1992; 13:387-91. [PMID: 1304421 DOI: 10.1002/dvg.1020130602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- C N Giroux
- Department of Molecular Biology and Genetics, School of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
29
|
Affiliation(s)
- C Heyting
- Department of Genetics, Agricultural University, Wageningen, The Netherlands
| | | |
Collapse
|