1
|
Alzugaray ME, Gavazzi MV, Ronderos JR. Calcium signalling in early divergence of Metazoa: mechanisms involved in the control of muscle-like cell contraction in Hydra plagiodesmica. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our laboratory has previously examined the effect of neuropeptides on the activity of the hypostome of the hydra Hydra plagiodesmica Dioni, 1968 (Cnidaria: Hydrozoa). These results showed that the hypostome, a structure extruded during feeding, responds to myoregulatory peptides and that this mechanism might be regulated by changes in the cytosolic levels of calcium (Ca2+). We analyse now the ways in which Ca2+ modulates hypostome activity during feeding. The use of calcium chelators confirms that Ca2+ is relevant in inducing hypostome extrusion. The assay of compounds that modulate the activity of Ca2+ channels in the endoplasmic reticulum suggests that, beyond the extracellular influx of calcium, intracellular sources of the ion are involved and might include both ryanodine receptors (RyR) and the inositol 1,4,5-trisphosphate receptor (IP3R). Bioinformatic searches based on sequences of RyR and IP3R of humans (Homo sapiens Linnaeus, 1758) show that IP3Rs are present in all groups analysed, including Fungi and Choanoflagellata. Although H. plagiodesmica responds to caffeine and ryanodine, which are known to modulate RyRs, this family of receptors seems not to be predicted in Cnidaria, suggesting that this phylum either lacks these kinds of channels or that they possess a different structure compared with those possessed by other Metazoa.
Collapse
Affiliation(s)
- María Eugenia Alzugaray
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM–UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - María Victoria Gavazzi
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM–UNLP), La Plata, Argentina
| | - Jorge Rafael Ronderos
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM–UNLP), La Plata, Argentina
| |
Collapse
|
2
|
Alzugaray ME, Ronderos JR. Allatoregulatory-like systems and changes in cytosolic Ca 2+ modulate feeding behavior in Hydra. Gen Comp Endocrinol 2018; 258:70-78. [PMID: 28733226 DOI: 10.1016/j.ygcen.2017.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 12/26/2022]
Abstract
Allatotropin (AT) and allatostatin-C (AST-C) are neuropeptides originally characterized by their ability to modulate the secretion of juvenile hormones in insects. Beyond the allatoregulatory function, these neuropeptides are pleiotropic acting as myoregulators not only in insects, but also in other groups of invertebrates. We have previously proposed the existence of AT and AST-C like systems in Hydra sp., a member of the phylum Cnidaria, which is a basal group of Metazoa, sharing a common ancestor with Bilateria. In the present study we analyze the regulatory effects of both peptides on the activity of the hypostome during feeding in Hydra sp. Furthermore, the importance of changes in the cytosolic Ca2+ levels involved in the response of the hypostome were analyzed. Physiological assays showed that while the presence of food or treatment with AT stimulates the extrusion of the hypostome, AST-C has an inhibitory effect on the behavior induced by both, food and AT. These facts suggest that both systems participate in the regulatory mechanisms associated with feeding and, as in insects, AST-C and AT may exert opposite effects. The use of thapsigargin (TG) and nifedipine, two compounds that modify the levels of cytosolic Ca2+, showed that changes in the levels of this ion are involved in the regulation of the activity of the hypostome. Indeed, these results suggest that the two basic mechanisms operating to increase the cytosolic levels of Ca2+ (i.e. the influx from the extracellular space and the release from endoplasmic reticulum) are relevant for the extrusion of the hypostome. Like in insects, the treatment with TG counteracted the effect of AST-C, suggesting that this peptide acts by reducing cytosolic Ca2+ levels. Furthermore, nifedipine prevented the myostimulatory effect of AT, showing that the effect of this peptide depends on the influx of Ca2+ throughout voltage-gated calcium channels. Altogether, these results suggest that the Allatotropin/Orexin and Allatostatin/Somatostatin regulatory systems could represent an ancestral mechanisms regulating hypostome activity and feeding behavior in Cnidaria.
Collapse
Affiliation(s)
- María Eugenia Alzugaray
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata FCNyM - UNLP), La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Jorge Rafael Ronderos
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata FCNyM - UNLP), La Plata, Argentina.
| |
Collapse
|
3
|
Cai Y, Manio MM, Leung GP, Xu A, Tang EH, Vanhoutte PM. Thyroid hormone affects both endothelial and vascular smooth muscle cells in rat arteries. Eur J Pharmacol 2015; 747:18-28. [DOI: 10.1016/j.ejphar.2014.11.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 02/04/2023]
|
4
|
Chan CKY, Mak J, Gao Y, Man RYK, Vanhoutte PM. Endothelium-derived NO, but not cyclic GMP, is required for hypoxic augmentation in isolated porcine coronary arteries. Am J Physiol Heart Circ Physiol 2011; 301:H2313-21. [PMID: 21984543 DOI: 10.1152/ajpheart.00258.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study investigated the mechanism underlying the transient potentiation of vasoconstriction by hypoxia in isolated porcine coronary arteries. Isometric tension was measured in rings with or without endothelium. Hypoxia (Po(2) <30 mmHg) caused a transient further increase in tension (hypoxic augmentation) in contracted (with U46619) preparations. The hypoxic response was endothelium dependent and abolished by inhibitors of nitric oxide synthase [N(ω)-nitro-L-arginine methyl ester (L-NAME)] or soluble guanylyl cyclase (ODQ and NS2028). The addition of DETA NONOate (nitric oxide donor) in the presence of L-NAME restored the hypoxic augmentation, suggesting the involvement of the nitric oxide pathway. However, the same was not observed after incubation with 8-bromo-cyclic GMP, atrial natriuretic peptide, or isoproterenol. Assay of the cyclic GMP content showed no change upon exposure to hypoxia in preparations with and without endothelium. Incubation with protein kinase G and protein kinase A inhibitors did not inhibit the hypoxic augmentation. Thus the hypoxic augmentation is dependent on nitric oxide and soluble guanylyl cyclase but independent of cyclic GMP. The hypoxic augmentation persisted in calcium-free buffer and in the presence of nifedipine, ruling out a role for extracellular calcium influx. Hypoxia did not alter the intracellular calcium concentration, as measured by confocal fluorescence microscopy. This observation and the findings that hypoxic augmentation is enhanced by thapsigargin (sarco/endoplasmic reticulum calcium ATPase inhibitor) and inhibited by HA1077 or Y27632 (Rho kinase inhibitors) demonstrate the involvement of calcium sensitization in the phenomenon.
Collapse
Affiliation(s)
- Calvin K Y Chan
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
5
|
Dunn T, Montgomery E, Syed N. An action potential-induced and ryanodine sensitive calcium transient dynamically regulates transmitter release at synapses betweenLymnaeaneurons. Synapse 2009; 63:61-8. [DOI: 10.1002/syn.20579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Balghi H, Sebille S, Constantin B, Patri S, Thoreau V, Mondin L, Mok E, Kitzis A, Raymond G, Cognard C. Mini-dystrophin expression down-regulates overactivation of G protein-mediated IP3 signaling pathway in dystrophin-deficient muscle cells. ACTA ACUST UNITED AC 2006; 127:171-82. [PMID: 16446505 PMCID: PMC2151485 DOI: 10.1085/jgp.200509456] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present here evidence for the enhancement of an inositol 1,4,5-trisphosphate (IP3) mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(−)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, we demonstrated that calcium rise, induced by the perifusion of a solution containing a high potassium concentration, was higher in SolC1(−) than in SolD(+) myotubes. The analysis of amplitude and kinetics of the calcium increase in SolC1(−) and in SolD(+) myotubes during the exposure with SR Ca2+ channel inhibitors (ryanodine and 2-APB) suggested the presence of two mechanisms of SR calcium release: (1) a fast SR calcium release that depended on ryanodine receptors and (2) a slow SR calcium release mediated by IP3 receptors. Detection analyses of mRNAs (reverse transcriptase [RT]-PCR) and proteins (Western blot and immunolocalization) demonstrated the presence of the three known isoforms of IP3 receptors in both SolC1(−) and SolD(+) myotubes. Furthermore, analysis of the kinetics of the rise in calcium revealed that the slow IP3-dependent release may be increased in the SolC1(−) as compared to the SolD(+), suggesting an inhibitory effect of mini-dystrophin in this signaling pathway. Upon incubation with pertussis toxin (PTX), an inhibitory effect similar to that of the IP3R inhibitor (2-APB) was observed on K+-evoked calcium release. This result suggests the involvement of a Gi protein upstream of the IP3 pathway in these stimulation conditions. A hypothetical model is depicted in which both Gi protein and IP3 production could be involved in K+-evoked calcium release as well as a possible interaction with mini-dystrophin. Our findings demonstrate the existence of a potential relationship between mini-dystrophin and SR calcium release as well as a regulatory role of mini-dystrophin on intracellular signaling.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Calcium/metabolism
- Calcium Channels/analysis
- Calcium Channels/chemistry
- Calcium Channels/drug effects
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Channels/physiology
- Calcium Signaling
- Cell Line
- Down-Regulation
- Dystrophin/analysis
- Dystrophin/deficiency
- Dystrophin/genetics
- Dystrophin/physiology
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- GTP-Binding Proteins/physiology
- Gene Expression
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Mice
- Mice, Inbred C3H
- Microscopy, Confocal
- Muscle Fibers, Skeletal/metabolism
- Pertussis Toxin/pharmacology
- Potassium/pharmacology
- RNA, Messenger/analysis
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ryanodine Receptor Calcium Release Channel/physiology
Collapse
Affiliation(s)
- Haouaria Balghi
- Institut de Physiologie et Biologie Cellulaires, CNRS UMR 6187, Université de Poitiers, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Araya R, Liberona JL, Cárdenas JC, Riveros N, Estrada M, Powell JA, Carrasco MA, Jaimovich E. Dihydropyridine receptors as voltage sensors for a depolarization-evoked, IP3R-mediated, slow calcium signal in skeletal muscle cells. J Gen Physiol 2003; 121:3-16. [PMID: 12508050 PMCID: PMC2217318 DOI: 10.1085/jgp.20028671] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dihydropyridine receptor (DHPR), normally a voltage-dependent calcium channel, functions in skeletal muscle essentially as a voltage sensor, triggering intracellular calcium release for excitation-contraction coupling. In addition to this fast calcium release, via ryanodine receptor (RYR) channels, depolarization of skeletal myotubes evokes slow calcium waves, unrelated to contraction, that involve the cell nucleus (Jaimovich, E., R. Reyes, J.L. Liberona, and J.A. Powell. 2000. Am. J. Physiol. Cell Physiol. 278:C998-C1010). We tested the hypothesis that DHPR may also be the voltage sensor for these slow calcium signals. In cultures of primary rat myotubes, 10 micro M nifedipine (a DHPR inhibitor) completely blocked the slow calcium (fluo-3-fluorescence) transient after 47 mM K(+) depolarization and only partially reduced the fast Ca(2+) signal. Dysgenic myotubes from the GLT cell line, which do not express the alpha(1) subunit of the DHPR, did not show either type of calcium transient following depolarization. After transfection of the alpha(1) DNA into the GLT cells, K(+) depolarization induced slow calcium transients that were similar to those present in normal C(2)C(12) and normal NLT cell lines. Slow calcium transients in transfected cells were blocked by nifedipine as well as by the G protein inhibitor, pertussis toxin, but not by ryanodine, the RYR inhibitor. Since slow Ca(2+) transients appear to be mediated by IP(3), we measured the increase of IP(3) mass after K(+) depolarization. The IP(3) transient seen in control cells was inhibited by nifedipine and was absent in nontransfected dysgenic cells, but alpha(1)-transfected cells recovered the depolarization-induced IP(3) transient. In normal myotubes, 10 micro M nifedipine, but not ryanodine, inhibited c-jun and c-fos mRNA increase after K(+) depolarization. These results suggest a role for DHPR-mediated calcium signals in regulation of early gene expression. A model of excitation-transcription coupling is presented in which both G proteins and IP(3) appear as important downstream mediators after sensing of depolarization by DHPR.
Collapse
Affiliation(s)
- Roberto Araya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 6530499, Chile
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Vali S, Carlsen R, Pessah I, Gorin F. Role of the sarcoplasmic reticulum in regulating the activity-dependent expression of the glycogen phosphorylase gene in contractile skeletal muscle cells. J Cell Physiol 2000; 185:184-99. [PMID: 11025440 DOI: 10.1002/1097-4652(200011)185:2<184::aid-jcp3>3.0.co;2-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nerve-evoked contractile activity in skeletal muscle regulates transcript and protein levels of many metabolic genes in a coordinate fashion, including the muscle isozyme of glycogen phosphorylase (MGP). Cellular signaling mechanisms mediating the activity-dependent modulation of MGP transcript levels were investigated in a spontaneously contractile rat skeletal muscle cell line (Rmo). Mechanisms regulating MGP mRNA levels in Rmo myotubes were compared with those previously shown to modulate the gene encoding the alpha subunit of the acetylcholine receptor (alphaAChR). Reducing the resting membrane potential from -78 to -30 mV, either electrochemically (KCl) or by increasing Na(+) permeability (veratridine): (1) prevented activation of transverse tubules, (2) impeded calcium release by the sarcoplasmic reticulum (SR), and (3) blocked Rmo contractility. MGP mRNA levels decreased to 30% of control levels and alphaAChR levels increased to 350% following 24 h of depolarization. Differing mechanisms appear to mediate this voltage-dependent regulation of MGP and alphaAChR. Inhibition of SR calcium efflux selectively decreased MGP mRNA levels by 30-50% when using dantrolene, thapsigargin, or a dose of ryanodine shown to inactivate Ca(2+)-induced SR Ca(2+) release (CICR). By contrast, blockade of voltage sensors in transverse tubules with nifedipine, a dihydroaminopyridine (DHAP) antagonist, selectively increased alphaAChR mRNA levels by twofold. These data indicate that the voltage-dependent regulation of AChR gene expression differs from that modulating the MGP gene. KCl-induced depolarization and dantrolene both inhibit pulsatile SR Ca(2+) efflux in Rmo myotubes, but by differing mechanisms. Depolarization and dantrolene comparably reduced MGP mRNA levels and decreased MGP transcript stability from a t(1/2) of 24 h to 14.5 and 16 h, respectively. Reduced transcript stability can account for the observed reduction in mRNA levels of MGP in noncontractile Rmo myotubes and could be a significant regulatory mechanism in skeletal muscle that coordinates the activity-dependent expression of MGP with other glycogenolytic genes.
Collapse
Affiliation(s)
- S Vali
- Department of Neurology, Center for the Neurosciences, School of Medicine, University of California, Davis, California, USA
| | | | | | | |
Collapse
|
9
|
Posterino GS, Lamb GD. Effect of nifedipine on depolarization-induced force responses in skinned skeletal muscle fibres of rat and toad. J Muscle Res Cell Motil 1998; 19:53-65. [PMID: 9477377 DOI: 10.1007/bf03257390] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of the dihydropyridine, nifedipine, on excitation-contraction coupling was compared in toad and rat skeletal muscle, using the mechanically skinned fibre technique, in order to understand better the apparently disparate results of previous studies and to examine recent proposals on the importance of certain intracellular factors in determining the efficacy of dihydropyridines. In twitch fibres from the iliofibularis muscle of the toad, 10 microM nifedipine completely inhibited depolarization-induced force responses within 30 s, without interfering with direct activation of the Ca(2+)-release channels by caffeine application or reduction of myoplasmic [Mg2+]. At low concentrations of nifedipine, inhibition was considerably augmented by repeated depolarizations, with half-maximal inhibition occurring at < 0.1 microM nifedipine. In contrast, in rat extensor digitorum longus (EDL) fibres 1 microM nifedipine had virtually no effect on depolarization-induced force responses, and 10 microM nifedipine caused only approximately 25% reduction in the responses, even upon repeated depolarizations. In rat fibres, 10 microM nifedipine shifted the steady-state force inactivation curve to more negative potentials by < 11 mV, whereas in toad fibres the potent inhibitory effect of nifedipine indicated a much larger shift. The inhibitory effect of nifedipine in rat fibres was little, if at all, increased by the absence of Ca2+ in the transverse tubular (t-) system, provided that the Ca2+ was replaced with sufficient Mg2+. The presence of the reducing agents dithiothreitol (10 mM) or glutathione (10 mM) in the solution bathing a toad skinned fibre did not reduce the inhibitory effect of nifedipine, suggesting that the potency of nifedipine in toad skinned fibres was not due to the washout of intracellular reducing agents. The results are considered in terms of a model that can account for the markedly different effects of nifedipine on the two putative functions of the dihydropyridine receptor, as both t-system calcium channel and a voltage-sensor controlling Ca2+ release.
Collapse
Affiliation(s)
- G S Posterino
- School of Zoology, La Trobe University, Bundoora, Victoria, Australia
| | | |
Collapse
|
10
|
Constantin B, Cognard C, Raymond G. Myoblast fusion requires cytosolic calcium elevation but not activation of voltage-dependent calcium channels. Cell Calcium 1996; 19:365-74. [PMID: 8793176 DOI: 10.1016/s0143-4160(96)90109-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many studies of in vitro skeletal myogenesis have demonstrated that fusion of myoblasts into multinucleated myotubes is regulated by calcium-dependent processes. Calcium ions appear to be necessary at the outer face of the membrane, and an additional internal calcium increase seems required to promote fusion of aligned myoblasts. It has been proposed that a calcium influx could take place prior to fusion and that this may be mediated by voltage-dependent calcium channels. Previously, we showed that two types of voltage-dependent calcium currents were expressed in multinucleated myotubes but not in rat myoblasts growing in primary culture before the withdrawal of the growth medium. We also showed that the previous formation of multinucleated synticia was not a prerequisite of developmental appearance of calcium currents, suggesting that the two events were time-correlated but not sequentially dependent. These features led us to investigate changes in internal calcium activity and the possible appearance of voltage-dependent calcium influx pathways just after the promotion of fusion by the change of culture medium. The results confirm that a rise in cytosolic calcium activity occurs slightly before fusion in confluent myoblasts and remained in newly formed myotubes. Reducing this elevation by internal calcium buffering lowered myoblast fusion and, reciprocally, blocking cell fusion prevented calcium increase. Treatment with the organic calcium channel blockers nifedipine (5 microM) and PN 200-110 (1 microM) did not alter cytosolic calcium changes nor cell fusion, and voltage-dependent calcium currents were never observed by the perforated patch-clamp technique in aligned fusion-competent myoblasts. Other voltage-operated mechanisms of calcium rise were not detected since depolarization with hyperpotassium solutions failed to elicit increases in intracellular calcium. On the contrary, acetylcholine was able to promote extracellular calcium-dependent calcium transients. Our results confirm the requirement of an increase in resting calcium during fusion, but do not support the hypothesis of an influx through voltage-dependent channels or other voltage-operated pathways. The elevation of internal calcium activity may result from other mechanisms, such as a cholinergic action for example.
Collapse
Affiliation(s)
- B Constantin
- Laboratory of General Physiology, URA CNRS 1869, University of Poitiers, France
| | | | | |
Collapse
|
11
|
Fratacci MD, Shimahara T, Bournaud R, Atlan G. cAMP-dependent modulation of L-type calcium currents in mouse diaphragmatic cells. RESPIRATION PHYSIOLOGY 1996; 104:1-9. [PMID: 8865376 DOI: 10.1016/0034-5687(96)00031-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The regulation of calcium channels by cAMP-dependent phosphorylation was investigated in the diaphragm muscle. Experiments were performed on dissociated costal diaphragmatic cells from 16- to 17-day-old fetal mice. The ionic current through calcium channels was measured using the whole cell clamp technique with barium as the charge carrier. A depolarizing pulse delivered from a holding potential of -80 mV elicited a low-threshold dihydropyridine (DHP)-insensitive T-type current and a high-threshold DHP-sensitive L-type current. Agents that either increase intracellular cAMP levels (forskolin, 10(-4) M, and dibutyryladenosine 3'-5' cyclic monophosphate, 10(-4) M) or inhibit cAMP degradation (theophylline, 10(-4) M) produced relative increases in L-type current amplitude of 24.4 +/- 13.8%, 13.4 +/- 4.6%, and 15.9 +/- 2.8% (p < 0.05), respectively. Current intensity increased after application of the beta-adrenergic agonist isoproterenol (10(-5) M, 16.5 +/- 3.6%, P < 0.005). None of these agents affected the T-type current. These results suggest that L-type calcium channel activities of the diaphragm muscle are regulated by cAMP-dependent phosphorylation.
Collapse
Affiliation(s)
- M D Fratacci
- INSERM, U296, Faculté de Médecine, Créteil, France
| | | | | | | |
Collapse
|
12
|
Patterson M, Constantin B, Cognard C, Raymond G. Properties of calcium currents and contraction in cultured rat diaphragm muscle. Pflugers Arch 1995; 430:837-45. [PMID: 7478941 DOI: 10.1007/bf00386184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The characterization of calcium currents and contraction simultaneously measured in cultured rat diaphragm muscle cells was carried out in the present study. Whole-cell patch-clamp experiments were designed to further elucidate the mechanism of excitation-contraction (E-C) coupling in diaphragm which, though generally considered a skeletal-type muscle, has been reported to exhibit properties indicative of a cardiac-like E-C coupling mechanism. Normalized current/voltage (I/V) curves for two concentrations of external calcium (2.5 and 5 mM) were obtained from diaphragm myoballs. Both curves showed peaks corresponding to the activation of a T-type calcium current and a dihydropyridine-sensitive L-type calcium current. The normalized curve for the voltage dependence of the activation of contraction in diaphragm myoballs followed a typical Boltzmann-type relationship to the peak of contraction. Thereafter, the curve declined in a manner that was more pronounced in diaphragm compared to that measured in additional experiments using cultured rat limb muscle myoballs. This effect could be interpreted in terms of a more pronounced participation of the L-type current in E-C coupling in cultured diaphragm muscle. An increased likelihood of cultured diaphragm muscle to undergo depletion of sarcoplasmic reticular calcium stores during repetitive stimulation, or a heightened propensity for the voltage sensor for E-C coupling in diaphragm to enter the inactive state could also explain this effect. Maximal contractile activity was only slightly affected when the L-type current was blocked by externally applied cadmium (2 mM) or cobalt (3 mM), suggesting that a pronounced calcium-current-dependent component of contraction is unlikely in cultured diaphragm muscle. These results show that T- and L-type calcium channels are expressed in cultured rat diaphragm muscle cells and that, in contrast to cardiac muscle, the entry of calcium ions via L-type voltage-dependent calcium channels is not a prerequisite for contraction. Differences in the voltage sensitivity of contraction, observed at depolarized membrane potentials in cultured rat diaphragm and limb muscle cells, suggest that the voltage sensor for E-C coupling in diaphragm might more readily enter an inactivated configuration - possibly by a mechanism which is dependent on the concentration of external calcium.
Collapse
Affiliation(s)
- M Patterson
- Laboratory of General Physiology, URA CNRS 1869, University of Poitiers, 40, avenue du Recteur Pineau, F-86022 Poitiers Cedex, France
| | | | | | | |
Collapse
|
13
|
Melzer W, Herrmann-Frank A, Lüttgau HC. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:59-116. [PMID: 7742348 DOI: 10.1016/0304-4157(94)00014-5] [Citation(s) in RCA: 406] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- W Melzer
- Department of Cell Physiology, Ruhr-University, Bochum, Germany
| | | | | |
Collapse
|
14
|
Abstract
Catecholamines and insulin have been reported to hyperpolarize skeletal muscle fibers via stimulation of the electrogenic Na-K pump (Flatman and Clausen, 1979, Nature, 281:580-581). Therefore, the electrogenic Na-K pump current was investigated in cultured colcemid-treated rat skeletal myoballs using whole-cell voltage clamp. Skeletal muscles were taken from newborn rat hindlegs, trypsin digested, and cultured. By day 7, all myoblast cells fused into myotubes. After treatment with the microtubule disrupter colcemid (10(-7) M) for 2 days, some of the myotubes became transformed into spherical myoballs, having an average diameter of 41.2 +/- 1.5 microns (n = 21). The resting membrane potential averaged -56.8 +/- 1.7 mV (n = 40). Ouabain (1 mM) quickly depolarized the myoballs to -51.1 +/- 1.1 mV (n = 27), showing the existence of an electrogenic Na-K pump in the skeletal myoball preparation. The values for the specific membrane resistance and capacitance were 5.5 +/- 1.0 K omega-cm2 (n = 21) and 3.7 +/- 0.3 microF/cm2 (n = 21), respectively. The pump current averaged 0.28 +/- 0.03 pA/pF (n = 10), with the membrane potential at -60 mV and 10 mM intrapipette Na+. The Na-K pump contribution to resting membrane potential was calculated to be 5.7 mV, matching the ouabain-induced rapid depolarization. When the Na-K pump was stimulated with 50 mM intrapipette Na+, the pump current was about doubled (0.52 +/- 0.08 pA/pF; n = 10). Isoproterenol (1 microM) and 8-Br-cAMP (1 mM) also significantly increased pump current by 50% (0.42 +/- 0.04 pA/pF; n = 9) and 64% (0.46 +/- 0.09 pA/pF; n = 7), respectively. In contrast, although insulin and phorbol ester also increased pump current, this increase was not statistically significant. The ineffectiveness of insulin and phorbol ester may be due to colcemid interfering with Na-K pump translocation from internal vesicles to the sarcolemma.
Collapse
Affiliation(s)
- K X Li
- Department of Physiology and Biophysics, University of Cincinnati College of Medicine, Ohio 45267-0576
| | | |
Collapse
|
15
|
Gülden M, Seibert H, Voss JU. In vitro toxicity screening using cultured rat skeletal muscle cells. II. Agents affecting excitable membranes. Toxicol In Vitro 1994; 8:197-206. [DOI: 10.1016/0887-2333(94)90183-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/1993] [Revised: 05/19/1993] [Indexed: 10/27/2022]
|
16
|
Somasundaram B, Tregear RT. Isoproterenol and GTP gamma S inhibit L-type calcium channels of differentiating rat skeletal muscle cells. J Muscle Res Cell Motil 1993; 14:341-6. [PMID: 8395543 DOI: 10.1007/bf00123099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In adult skeletal muscle, G-proteins have been shown to modulate the calcium channels both directly and through a cAMP-dependent phosphorylating mechanism. We have investigated the action of G-proteins on the L-type calcium current in cultured rat muscle cells (myoballs) under voltage clamp in whole cell or perforated patch modes. Intracellular photolytic release of 200 microM GTP gamma S inhibited the L-type calcium current. Inclusion of 500 microM uncaged GTP gamma S in the patch pipette in the whole cell configuration reduced the calcium current by a similar amount. Under perforated patch conditions external application of 10 microM of the beta-adrenergic agonist isoproterenol also reduced the calcium current. Pretreatment of the cells with pertussis toxin reversed the effect of GTP gamma S and removed that of isoproterenol. We conclude that rat myoballs contain beta-adrenergic receptors that inhibit the L-type calcium current, and that this inhibition is mediated by a pertussis toxin-sensitive G-protein.
Collapse
Affiliation(s)
- B Somasundaram
- ARFC, Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, UK
| | | |
Collapse
|
17
|
Constantin B, Cognard C, Rivet-Bastide M, Raymond G. Activation of a slow outward current by the calcium released during contraction of cultured rat skeletal muscle cells. Pflugers Arch 1993; 423:291-9. [PMID: 7686646 DOI: 10.1007/bf00374408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A slow outward current, activated during depolarization, which induced contraction in whole-cell patch-clamped rat skeletal muscle cells in primary culture [10], was extensively characterized in the present study. This current, Io, was simultaneously recorded with the contraction as a slow outward current during the test pulse, and a slow outward bell-shaped tail after repolarization. Io never appeared below the threshold potential for contraction, and the tail amplitude displayed a similar evolution with peak contraction amplitude as a function of membrane potential. This feature is consistent with the fact that Io was suppressed when contraction was blocked by 5 microM nifedipine [10], and it suggests that Io was dependent on calcium released during contraction. This was confirmed by the fact that the presence of 10 mM EGTA in the patch pipette prevented the development of both contraction and Io, and that Io could be activated during caffeine-induced contractures without applying depolarizations. Io could be carried by K+ or Cs+ ions, but not by Na+. The pharmacology of Io was different from that of Ca(2+)-dependent BK and SK channels, since it was resistant to tetraethylammonium (135 mM), charybdotoxin (25 nM) and apamin (50 nM). Io was also insensitive to 4-aminopyridine (1 mM) but blocked by 5 mM Ba2+ without change to contraction. It was concluded that rat cultured myoballs exhibit a Cs+ permeation through an atypical K+ channel type, which is activated by the calcium released during contraction.
Collapse
Affiliation(s)
- B Constantin
- Laboratoire de Physiologie Générale, URA CNRS no. 290, Université de Poitiers, France
| | | | | | | |
Collapse
|
18
|
Cognard C, Constantin B, Rivet-Bastide M, Raymond G. Intracellular calcium transients induced by different kinds of stimulus during myogenesis of rat skeletal muscle cells studied by laser cytofluorimetry with Indo-1. Cell Calcium 1993; 14:333-48. [PMID: 8370069 DOI: 10.1016/0143-4160(93)90054-a] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Resting intracellular calcium levels and intracellular calcium transients induced by three types of stimulus (acetylcholine, high potassium and caffeine) were recorded, during in vitro myogenesis, by means of a ratiometric fluorescence method using the calcium probe Indo-1 under laser illumination. Resting levels seemed to decrease with the age of cultured cells and the depolarization-induced transients, through 100 mM K+ or Ach application, were progressively faster and larger as the muscle cells developed. An additive mechanism, likely due to calcium entry into the cell through nicotinic acetylcholine receptors, could explain the differences observed in Ach-induced responses as compared with the 100 mM K(+)-induced ones. In myoballs (the older cells) the calcium transients exhibited progressively a biphasic shape. From data obtained in different conditions (tetrodotoxin, nifedipine, strontium and free Ca EGTA) and those indicating the appearance of caffeine-releasable intracellular calcium stores only at 2-3 days stage, and from the previously reported developmental appearance of calcium currents and contraction, it was proposed that, in young myotubes, the calcium transients were more dependent on extracellular calcium than in older cells. These developmental data are discussed in the light of a known model of the in situ biogenesis of the structures involved in excitation-contraction coupling (ECC) like transverse tubules and triads.
Collapse
Affiliation(s)
- C Cognard
- Laboratoire de Physiologie Générale URA CNRS 290, Université de Poitiers, France
| | | | | | | |
Collapse
|
19
|
Cognard C, Constantin B, Rivet-Bastide M, Imbert N, Besse C, Raymond G. Appearance and evolution of calcium currents and contraction during the early post-fusional stages of rat skeletal muscle cells developing in primary culture. Development 1993; 117:1153-61. [PMID: 8391977 DOI: 10.1242/dev.117.3.1153] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary cultures from enzymatically dissociated satellite cells of newborn rat skeletal muscles enabled developmental in vitro studies of mechanical and electrical properties during the first steps of myogenesis. The present work focused on the appearance, evolution and roles of two types of calcium currents (ICa,T and ICa,L) and of depolarization-induced contractile activity during the early stages of muscle cell development in primary culture. Prefusional mononucleated cells (myoblasts), young myotubes of 1 day (with less than 10 nuclei) or 2–3 days (more than 9 nuclei) and myoballs from 4–6, 7–9, 10–12 and 13–16 days cultures were patch-clamped (whole-cell configuration), and calcium currents and contraction simultaneously recorded. Sodium but not calcium currents could be recorded at the myoblast stage. In young myotubes (1 day), ICa,L was present with high incidence as compared to ICa,T, which was poorly expressed. Contractile responses appeared at the next stage (2-3 days) while the occurrence of ICa,T progressively increased. This developmental evolution of the calcium currents and contraction expression was accompanied by some changes in their characteristics: the ICa,T/ICa,L amplitudes ratio progressively increased and the time-to-peak of contraction progressively decreased with the age of myoballs. Physiological functions for calcium currents in developing muscle are suggested and discussed: ICa,T, which is transiently expressed, could be involved in the pacemaker-like activity while ICa,L could serve as an early contraction triggering mechanism and/or initially to fill and then to maintain the intracellular calcium stores.
Collapse
Affiliation(s)
- C Cognard
- Laboratoire de Physiologie Générale, URA CNRS 290, Poitiers, France
| | | | | | | | | | | |
Collapse
|
20
|
Constantin B, Cognard C, Rivet-Bastide M, Raymond G. Calcium current-dependent staircase in rat myotubes and myoballs developing in culture. Cell Calcium 1993; 14:135-44. [PMID: 8384531 DOI: 10.1016/0143-4160(93)90083-i] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Calcium current and contraction were simultaneously recorded in whole-cell patch-clamped rat skeletal muscle cells grown in primary culture. Repetitive depolarizations at low frequency, which elicited calcium currents, led to a staircase response, characterized by the progressive increase of both twitch amplitude and activation rate. It was sometimes possible to elicit a staircase response in 2 or 3 day old postfusion myotubes which did not or weakly contract initially. The staircase response was dependent on calcium entry through calcium channels, since it was reversed when calcium current was depressed by means of inorganic calcium blockers or depolarization to large positive potential. The entry of calcium was also necessary to allow the development of a staircase response following caffeine-induced contractures which partly emptied the intracellular stores of calcium. These features are consistent with the idea that calcium currents allow the initial loading of intracellular calcium stores and, in later stages, serve to replenish and maintain them constant.
Collapse
Affiliation(s)
- B Constantin
- Laboratoire de Physiologie Générale, URA CNRS No 290, Université de Poitiers, France
| | | | | | | |
Collapse
|
21
|
Oba T, Yamaguchi M, Wang S, Johnson JD. Modulation of the Ca2+ channel voltage sensor and excitation-contraction coupling by silver. Biophys J 1992; 63:1416-20. [PMID: 1335784 PMCID: PMC1261447 DOI: 10.1016/s0006-3495(92)81704-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ag+ (0.5-10 microM) is known to produce a transient contraction of intact frog skeletal muscle fibers followed by complete inhibition of excitation-contraction (E-C) coupling. We have carried out physiological and biochemical experiments to investigate the basis of this effect. Dihydropyridine (DHP) Ca2+ channel blockers, which inhibit the voltage sensor of the Ca2+ channel, completely inhibit Ag+ contractions. Removal of extracellular Ca2+, or blockade of Ca2+ entry with cadmium, does not inhibit Ag+ contractions. Activation of the Ca2+ channel's voltage sensor with the Ca2+ channel agonists Bay K 8644 or with perchlorate, potentiates the Ag(+)-induced contraction. Ag+ binds to the partially purified rabbit skeletal muscle Ca2+ channel and inhibits DHP binding (IC50 = 1.1 microM) and sulfhydryl (SH) reactivity (IC50 = 0.11 microM) over the concentration range where it inhibits E-C coupling. Oxidation of free SH groups by H2O2 or their reaction with DTNB prevents Ag+ contractions, while DTT reduction of oxidized SH groups restores Ag+ contractions. These results suggest that Ag+ binds to critical SH groups on the DHP receptor Ca2+ channel, resulting in modification of the channel's voltage sensor and the failure of E-C coupling.
Collapse
Affiliation(s)
- T Oba
- Department of Veterinary Anatomy and Cellular Biology, College of Veterinary Medicine, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
22
|
Mouzou A, Poindessault JP, Raymond G. Involvement of a pertussis toxin-sensitive G-protein in excitation-contraction coupling of intact and cut-end voltage-clamped skeletal muscle fibres. Pflugers Arch 1992; 421:510-2. [PMID: 1461719 DOI: 10.1007/bf00370264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In voltage-clamped frog muscle fibres 10 ng/ml PTX induced a decrease (approximately 35%) of tension when applied externally. Internal application in cut-end fibres significantly depressed tension after 20 min. This effect increased with time to reach 65% after 60 min. PTX shifted the voltage-dependent inactivation curve of tension by 30 mV towards hyperpolarizations and this was counteracted by raising external calcium concentration. The toxin induced a parallel decrease in tension and voltage-sensitive charge movement (49 +/- 9% and 52 +/- 6% respectively; n = 6). This was not counteracted by prior impregnation with forskolin. Internally applied GTP gamma S (500 microM) induced a simultaneous increase in tension (57 +/- 5%) and charge amount displaced (40 +/- 7%). By contrast, GDP beta S decreased tension and charge movement by 35 +/- 5% and 36 +/- 6% respectively.
Collapse
Affiliation(s)
- A Mouzou
- Laboratory of General Physiology, URA C.N.R.S. 290, Faculty of Sciences, Poitiers, France
| | | | | |
Collapse
|
23
|
Cognard C, Constantin B, Rivet M, Imbert N, Besse C, Raymond G. Excitation-contraction coupling in rat skeletal muscle cells: evolution during in vitro myogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 311:73-89. [PMID: 1326876 DOI: 10.1007/978-1-4615-3362-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- C Cognard
- Laboratory of General Physiology, CNRS URA 290, Poitiers, France
| | | | | | | | | | | |
Collapse
|
24
|
Adams BA, Beam KG. Contractions of dysgenic skeletal muscle triggered by a potentiated, endogenous calcium current. J Gen Physiol 1991; 97:687-96. [PMID: 1711572 PMCID: PMC2216491 DOI: 10.1085/jgp.97.4.687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The dihydropyridine (DHP) receptor of normal skeletal muscle is hypothesized to function as the voltage sensor for excitation-contraction (E-C) coupling, and also as the calcium channel underlying a slowly activating, DHP-sensitive current (termed ICa-s). Skeletal muscle from mice with muscular dysgenesis lacks both E-C coupling and ICa-s. However, dysgenic skeletal muscle does express a small DHP-sensitive calcium current (termed ICa-dvs) which is kinetically and pharmacologically distinct from ICa-s. We have examined the ability of ICa-dys, or the DHP receptor underlying it, to couple depolarization and contraction. Under most conditions ICa-dys is small (approximately 1 pA/pF) and dysgenic myotubes do not contract in response to sarcolemmal depolarization. However, in the combined presence of the DHP agonist Bay K 8644 (1 microM) and elevated external calcium (10 mM), ICa-dys is strongly potentiated and some dysgenic myotubes contract in response to direct electrical stimulation. These contractions are blocked by removing external calcium, by adding 0.5 mM cadmium to the bath, or by replacing Bay K 8644 with the DHP antagonist (+)-PN 200-110. Only myotubes having a density of ICa-dys greater than approximately 4 pA/pF produce detectible contractions, and the strength of contraction is positively correlated with the density of ICa-dys. Thus, unlike the contractions of normal myotubes, the contractions of dysgenic myotubes require calcium entry. These results demonstrate that the DHP receptor underlying ICa-dys is unable to function as a "voltage sensor" that directly couples membrane depolarization to calcium release from the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- B A Adams
- Department of Physiology, Colorado State University, Fort Collins 80523
| | | |
Collapse
|
25
|
Rivet M, Bois P, Cognard C, Raymond G. Phenytoin preferentially inhibits L-type calcium currents in whole-cell patch-clamped cardiac and skeletal muscle cells. Cell Calcium 1990; 11:581-8. [PMID: 2285926 DOI: 10.1016/0143-4160(90)90012-j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of the anticonvulsant diphenylhydantoin (phenytoin) was tested on the inward calcium currents of whole-cell patch-clamped cells from rat and human muscles and from frog atrium. A concentration of 10 microM phenytoin was required to obtain a threshold inhibitory effect and, even with high concentrations (100 microM), the inhibition was not complete. In skeletal muscle (rat and human cells in culture), phenytoin (30 microM) exerted a more potent effect on the high-threshold calcium current (ICa,L inhibition: 53 +/- 6% mean +/- SDn-1) rather than on the low-threshold one (ICa,T inhibition: 16 +/- 10%). Similar results were obtained on dissociated frog atrial cells. These data are to be contrasted with those previously reported on neuronal cells, where specific inhibition of ICa,T was reported. Thus, the action of phenytoin appears to be different in muscle and nerve so that phenytoin does not appear to be a specific inhibitor of ICa,T.
Collapse
Affiliation(s)
- M Rivet
- Laboratoire de Physiologie Générale, CNRS U.R.A. 290, Université de Poitiers, France
| | | | | | | |
Collapse
|