1
|
Abstract
Calcitonin gene-related peptide (CGRP) is a promiscuous peptide, similar to many other members of the calcitonin family of peptides. The potential of CGRP to act on many different receptors with differing affinities and efficacies makes deciphering the signalling from the CGRP receptor a challenging task for researchers.Although it is not a typical G protein-coupled receptor (GPCR), in that it is composed not just of a GPCR, the CGRP receptor activates many of the same signalling pathways common for other GPCRs. This includes the family of G proteins and a variety of protein kinases and transcription factors. It is now also clear that in addition to the initiation of cell-surface signalling, GPCRs, including the CGRP receptor, also activate distinct signalling pathways as the receptor is trafficking along the endocytic conduit.Given CGRP's characteristic of activating multiple GPCRs, we will first consider the complex of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) as the CGRP receptor. We will discuss the discovery of the CGRP receptor components, the molecular mechanisms controlling its internalization and post-endocytic trafficking (recycling and degradation) and the diverse signalling cascades that are elicited by this receptor in model cell lines. We will then discuss CGRP-mediated signalling pathways in primary cells pertinent to migraine including neurons, glial cells and vascular smooth muscle cells.Investigation of all the CGRP- and CGRP receptor-mediated signalling cascades is vital if we are to fully understand CGRP's role in migraine and will no doubt unearth new targets for the treatment of migraine and other CGRP-driven diseases.
Collapse
|
2
|
Oz M, Yang KH, Dinc M, Shippenberg TS. The endogenous cannabinoid anandamide inhibits cromakalim-activated K+ currents in follicle-enclosed Xenopus oocytes. J Pharmacol Exp Ther 2007; 323:547-54. [PMID: 17682128 DOI: 10.1124/jpet.107.125336] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The effect of the endogenous cannabinoid anandamide on K(+) currents activated by the ATP-sensitive potassium (K(ATP)) channel opener cromakalim was investigated in follicle-enclosed Xenopus oocytes using the two-electrode voltage-clamp technique. Anandamide (1-90 microM) reversibly inhibited cromakalim-induced K(+) currents, with an IC(50) value of 8.1 +/- 2 microM. Inhibition was noncompetitive and independent of membrane potential. Coapplication of anandamide with the cannabinoid type 1 (CB(1)) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR 141716A) (1 microM), the CB(2) receptor antagonist N-[(1S)endo-1,3,3-trimethyl bicyclo heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) (1 microM), or pertussis toxin (5 microg/ml) did not alter the inhibitory effect of anandamide, suggesting that known cannabinoid receptors are not involved in anandamide inhibition of K(+) currents. Similarly, neither the amidohydrolase inhibitor phenylmethylsulfonyl fluoride (0.2 mM) nor the cyclooxygenase inhibitor indomethacin (5 microM) affected anandamide inhibition of K(+) currents, suggesting that the effects of anandamide are not mediated by its metabolic products. In radioligand binding studies, anandamide inhibited the specific binding of the K(ATP) ligand [(3)H]glibenclamide in the oocyte microsomal fractions, with an IC(50) value of 6.3 +/- 0.4 microM. Gonadotropin-induced oocyte maturation and the cromakalim-acceleration of progesterone-induced oocyte maturation were significantly inhibited in the presence of 10 microM anandamide. Collectively, these results indicate that cromakalim-activated K(+) currents in follicular cells of Xenopus oocytes are modulated by anandamide via a cannabinoid receptor-independent mechanism and that the inhibition of these channels by anandamide alters the responsiveness of oocytes to gonadotropin and progesterone.
Collapse
Affiliation(s)
- Murat Oz
- National Institute on Drug Abuse/Intramural Research Program Integrative Neuroscience Section, 333 Cassell Dr., Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
3
|
Fujita R, Kimura S, Kawasaki S, Watanabe S, Watanabe N, Hirano H, Matsumoto M, Sasaki K. Electrophysiological and pharmacological characterization of the K(ATP) channel involved in the K+-current responses to FSH and adenosine in the follicular cells of Xenopus oocyte. J Physiol Sci 2007; 57:51-61. [PMID: 17239259 DOI: 10.2170/physiolsci.rp010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 01/21/2007] [Indexed: 11/05/2022]
Abstract
The follicular cells surrounding Xenopus oocyte under voltage clamp produce K(+)-current responses to follicle-stimulating hormone (FSH), adenosine (Ade), and intracellularly applied cAMP. We previously reported that these responses are suppressed by the stimulation of P2Y receptor through phosphorylation by PKC presumably of the ATP-sensitive K(+) (K(ATP)) channel. This channel comprises sulfonylurea receptors (SURs) and K(+) ionophores (Kirs) having differential sensitivities to K(+) channel openers (KCOs) depending on the SURs. To characterize the K(+) channels involved in the FSH- and Ade-induced responses, we investigated the effects of various KCOs and SUR blockers on the agonist-induced responses. The applications of PCO400, cromakalim (Cro), and pinacidil, but not diazoxide, produced K(+)-current responses similar to the FSH- and Ade-induced responses in the magnitude order of PCO400 > Cro >> pinacidil in favor of SUR2A. The application of glibenclamide, phentolamine, and tolbutamide suppressed all the K(+)-current responses to FSH, Ade, cAMP, and KCOs. Furthermore, both the FSH- and Ade-induced responses were markedly augmented during the KCO-induced responses, or vice versa. The I-V curves for the K(+)-current responses induced by Cro, Ade, and FSH showed outward rectification in normal [K(+)](o), but weak inward rectification in 122 mM [K(+)](o). Also, stimulations of P2Y receptor by UTP or PKC by PDBu markedly depressed the K(+)-current response to KCOs in favor of Kir6.1, as previously observed with the responses to FSH and Ade. These results suggest that the K(+)-current responses to FSH and Ade may be produced by the opening of a novel type of K(ATP) channel comprising SUR2A and Kir6.1.
Collapse
Affiliation(s)
- Reiko Fujita
- Department of Chemistry, School of Liberal Arts & Sciences, Iwate Medical University, Morioka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Saldaña C, Vázquez-Cuevas F, Garay E, Arellano RO. Epithelium and/or theca are required for ATP-elicited K+ current in follicle-enclosed Xenopus oocytes. J Cell Physiol 2005; 202:814-21. [PMID: 15389645 DOI: 10.1002/jcp.20184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Xenopus follicular cell membrane is endowed with ATP-sensitive K+ channels, which are operated by various transmitters. These generate the ionic response named IK,cAMP via a mechanism that involves intracellular cAMP synthesis. It is known that opening these K+ channels favors oocyte maturation. Follicle stimulation by adenosine (Ado) or ATP consistently generates a strong IK,cAMP via activation of P1 and P3 purinergic receptors; however, ATP can also inhibit IK,cAMP, apparently acting on a third receptor type. Here, we show that IK,cAMP might be elicited by ATP released within the follicle, and that current activation by ATP was entirely dependent on the presence of epithelial and/or theca layers. Morphological studies confirmed that removal of epithelium/theca in these follicles (e.t.r.) was complete, and activation of fast Cl- (Fin) currents by ATP in e.t.r. follicles confirmed that communication between oocyte and follicular cells remained unchanged. Thus, dependence on epithelium/theca was specific for ATP-elicited K+ current. Using UTP and betagamma-MeATP as specific purinergic agents for IK,cAMP inhibition and activation, respectively, it was found that inhibition of IK,cAMP elicited by ATP or UTP was robustly present in e.t.r. follicles but was absent or strongly decreased in whole follicles (w.f.). Accordingly, this indicated that in w.f., epithelium and/or theca downregulated the IK,cAMP inhibition evoked by ATP, and that this control mechanism was absent in e.t.r. follicles. We suggest that this notable action on follicular cells involves one or both of two mechanisms, a paracrine transmitter released from epithelial and/or theca layers and action of ecto-ATPases.
Collapse
Affiliation(s)
- Carlos Saldaña
- Laboratorio de Neurofisiología Celular, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología UNAM, México
| | | | | | | |
Collapse
|
5
|
Oz M, Zakharova I, Dinc M, Shippenberg T. Cocaine inhibits cromakalim-activated K+ currents in follicle-enclosed Xenopus oocytes. Naunyn Schmiedebergs Arch Pharmacol 2003; 369:252-9. [PMID: 14652711 DOI: 10.1007/s00210-003-0838-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 09/24/2003] [Indexed: 11/24/2022]
Abstract
The effect of cocaine on K+ currents activated by the KATP channel opener cromakalim was investigated in follicular cells of Xenopus oocytes. The results indicate that cocaine in the concentration range of 3-500 microM reversibly inhibits cromakalim-induced K+ currents. The IC50 value for cocaine was 96 microM. Inhibition of the cromakalim-activated K+ current by cocaine was noncompetitive and voltage independent. Pretreatment with the Ca2+ chelator BAPTA did not modify the cocaine-induced inhibition of cromakalim-induced K+ currents, suggesting that Ca2+-activated second messenger pathways are not involved in the actions of cocaine. Outward K+ currents activated by the application of 8-Br-cAMP or forskolin were also inhibited by cocaine. The EC50 and slope values for the activation of K+ currents by cromakalim were 184+/-19 microM and 1.14 in the absence of cocaine as compared to 191+/-23 microM and 1.03 in the presence of cocaine (300 microM). Cocaine also blocked K+ currents mediated through C-terminally deleted form of Kir6.2 (KirDeltaC26) in the absence of sulfonylurea receptor with an IC50 value of 87 microM, suggesting that cocaine interacts directly with the channel forming Kir6.2 subunit. Radioligand binding studies indicated that cocaine (100 microM) did not affect the binding characteristics of the KATP ligand, [3H]glibenclamide. These results demonstrate that cromakalim-activated K+ currents in follicular cells of Xenopus oocytes are modulated by cocaine.
Collapse
Affiliation(s)
- Murat Oz
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, DHHS, Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
6
|
Fujita R, Kimura S, Kawasaki S, Takashima K, Matsumoto M, Hirano H, Sasaki K. ATP suppresses the K(+) current responses to FSH and adenosine in the follicular cells of Xenopus oocyte. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:491-500. [PMID: 11564286 DOI: 10.2170/jjphysiol.51.491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The application of either follicle-stimulating hormone (FSH) or adenosine (Ade) induces a K(+)-current response in the follicular cells surrounding a Xenopus oocyte under a voltage clamp. These K(+)-current responses are reported to be produced by an increase in intracellular cAMP. A previous application of ATP to the same cells markedly depressed the K(+)-current responses to FSH and Ade. Furthermore, a 2 min application of phorbol 12,13-dibutyrate (PDBu), an activator of protein kinase C (PKC), significantly depressed the K(+)-current responses to FSH and Ade, but it had no significant effect on the Cl(-)-current response to ATP. An application of either ATP or PDBu also depressed the K(+)-current response induced by intracellularly applied cAMP. In contrast to the effect of PDBu, the application of 1-octanol, an inhibitor of gap junction channel, significantly depressed both the Ade- and ATP-induced responses, indicating that the acting site of 1-octanol is different from that of PKC. The results suggest that the depressing effect of ATP on the FSH- and Ade-induced K(+)-current responses might be mediated by PKC activation and that the site of PKC action might be downstream of the cAMP production involved in the K(+) channel opening.
Collapse
Affiliation(s)
- R Fujita
- Department of Chemistry, School of Liberal Arts and Sciences, Iwate Medical University, Morioka, 020-0015, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Zhang L, Karpinski E, Benishin CG. Prostaglandin E2 modulates a non-inactivating potassium current in rat neurohypophyseal nerve terminals. Neurochem Int 1999; 35:345-55. [PMID: 10517695 DOI: 10.1016/s0197-0186(99)00073-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A non-inactivating voltage dependent K+ channel current was observed in neuro-hypophyseal nerve terminals. This current was sensitive to inhibition by 4-aminopyridine and tetraethyl ammonium chloride, but was not sensitive to inhibition by alpha- or beta-dendrotoxin. Prostaglandin E2 (PGE2) modulated the voltage-dependent K+ channel, through a receptor-mediated process, as indicated by meclofenamate sensitivity, and this involved the activation of G protein(s), as indicated by sensitivity to guanosine-5'-O-(2-thiodiphosphate) (GDPfS). After short periods of incubation (e.g. 5 min), PGE2 increased the non-inactivating current. Following longer incubation periods with PGE2 (e.g. 20 min), the non-inactivating current declined. Forskolin and the cyclic adenosine monophosphate (AMP) analogs 8-bromo- and dibutyryl cyclic AMP, and Sp-cyclic AMPs inhibited the current, but did not mimic the increase in current caused by PGE2. Also, the cyclic AMP antagonist Rp-cyclic AMPs did not block the increase in current induced by PGE2. These results indicate that activation of cyclic AMP-dependent protein kinase (PKA) is not involved in mediating the stimulatory actions of PGE2. These observations provide evidence that PGE2 may contribute to the regulation of hormone release from the posterior pituitary by modulating K+ channels. However, the post-receptor mechanisms of subcellular signal transduction underlying this effect remain unknown.
Collapse
Affiliation(s)
- L Zhang
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
8
|
Wellman GC, Barrett-Jolley R, Köppel H, Everitt D, Quayle JM. Inhibition of vascular K(ATP) channels by U-37883A: a comparison with cardiac and skeletal muscle. Br J Pharmacol 1999; 128:909-16. [PMID: 10556925 PMCID: PMC1571709 DOI: 10.1038/sj.bjp.0702868] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 The aim of this study was to investigate the selectivity of the ATP-sensitive potassium (K(ATP)) channel inhibitor U-37883A (4-morpholinecarboximidine-N-1-adamantyl-N'-1-cyclohexyl). Membrane currents through K(ATP) channels were recorded in single muscle cells enzymatically isolated from rat mesenteric artery, cardiac ventricle and skeletal muscle (flexor digitorum brevis). K(ATP) currents were induced either by cell dialysis with 0.1 mM ATP and 0.1 mM ADP, or by application of synthetic potassium channel openers (levcromakalim or pinacidil). 2 U-37883A inhibited K(ATP) currents in smooth muscle cells from rat mesenteric artery. Half inhibition of 10 microM levcromakalim-induced currents occurred at a concentration of 3.5 microM. 3 Relaxations of rat mesenteric vessels caused by levcromakalim were reversed by U-37883A. 1 microM levcromakalim-induced relaxations were inhibited at a similar concentration of U-37883A (half inhibition, 1.1 microM) to levcromakalim-induced KATP currents. 4 K(ATP) currents activated by 100 microM pinacidil were also studied in single myocytes from rat mesenteric artery, skeletal muscle and cardiac ventricle. 10 microM U-37883A substantially inhibited K(ATP) currents in vascular cells, but had little effect in skeletal or cardiac myocytes. Higher concentrations of U-37883A (100 microM) caused a modest decrease in K(ATP) currents in skeletal and cardiac muscle. The sulphonylurea K(ATP) channel antagonist glibenclamide (10 microM) abolished currents in all muscle types. 5 The effect of U-37883A on vascular inward rectifier (KIR) and voltage-dependent potassium (KV) currents was also examined. While 10 microM U-37883A had little effect on these currents, some inhibition was apparent at higher concentrations (100 microM) of the compound. 6 We conclude that U-37883A inhibits K(ATP) channels in arterial smooth muscle more effectively than in cardiac and skeletal muscle. Furthermore, this compound is selective for K(ATP) channels over KV and KIR channels in smooth muscle cells.
Collapse
Affiliation(s)
- G C Wellman
- Department of Cell Physiology and Pharmacology, Leicester University, University Road, Leicester LE1 9HN
| | - R Barrett-Jolley
- Department of Cell Physiology and Pharmacology, Leicester University, University Road, Leicester LE1 9HN
| | - H Köppel
- Department of Cell Physiology and Pharmacology, Leicester University, University Road, Leicester LE1 9HN
| | - D Everitt
- Department of Cell Physiology and Pharmacology, Leicester University, University Road, Leicester LE1 9HN
| | - J M Quayle
- Department of Medicine, Cardiovascular Research Institute, Leicester University, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, P.O. Box 65, Leicester, LE2 7LX
- Author for correspondence:
| |
Collapse
|
9
|
Balkan W, Oates EL, Howard GA, Roos BA. Testes exhibit elevated expression of calcitonin gene-related peptide receptor component protein. Endocrinology 1999; 140:1459-69. [PMID: 10067875 DOI: 10.1210/endo.140.3.6541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calcitonin gene-related peptide (CGRP) receptor component protein (RCP) is a novel protein that modulates CGRP responsiveness in a variety of cell types. Using probes based on the isolation of CGRP-RCP complementary DNA (cDNA) from a guinea pig organ of Corti cDNA library, we cloned human (h) and mouse (m) CGRP-RCP cDNAs, both of which encode 148-residue proteins that at the amino acid levels are approximately 88% identical to each other and to the 146-residue guinea pig CGRP-RCP. Northern blot analysis confirmed the presence of CGRP-RCP messenger RNA in all of the human and mouse tissues tested. In these human tissues, hCGRP-RCP messenger RNA (major band at approximately 3.1 kb, minor band at approximately 7.5 kb) was most prevalent in the testis. In the mouse, the highest abundance of CGRP-RCP RNA was clearly in the testis (major band at approximately 1.6 kb, minor band at approximately 1.1 kb). Based on this tissue distribution of RNA, we sought to identify the cells in the murine testis that contained CGRP-RCP protein. Numerous antisera generated against hCGRP-RCP, including one to recombinant hCGRP-RCP, exhibited strong immunoreactivity localized to the head region of spermatozoa. No CGRP-RCP immunoreactivity was observed in other cells at less mature stages of sperm maturation, in Sertoli or interstitial (Leydig) cells, or in human spermatozoa. Murine epididymal (mature) spermatozoa exhibited CGRP-RCP immunoreactivity identical to that of testicular spermatozoa. Spermatozoa that underwent an experimentally induced acrosome reaction (acrosomal discharge) lost their CGRP-RCP immunoreactivity. Therefore, it appears that CGRP-RCP is associated with the acrosome, suggesting that it may play an important role in reproduction.
Collapse
Affiliation(s)
- W Balkan
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, and Department of Medicine, University of Miami School of Medicine, Florida 33101, USA.
| | | | | | | |
Collapse
|
10
|
Maudsley S, Gent JP, Findlay JB, Donnelly D. The relationship between the agonist-induced activation and desensitization of the human tachykinin NK2 receptor expressed in Xenopus oocytes. Br J Pharmacol 1998; 124:675-84. [PMID: 9690859 PMCID: PMC1565444 DOI: 10.1038/sj.bjp.0701889] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. Repeated applications of neurokinin A (NKA) to oocytes injected with 25 ng wild-type hNK2 receptor cRNA caused complete attenuation of second and subsequent NKA-induced responses while analogous experiments using repeated applications of GR64349 and [Nle10]NKA(4-10) resulted in no such desensitization. This behaviour has been previously attributed to the ability of the different ligands to stabilize different active conformations of the receptor that have differing susceptibilities to receptor kinases (Nemeth & Chollet. 1995). 2. However, for Xenopus oocytes injected (into the nucleus) with 10 ng wild-type hNK2 receptor cDNA, a single 100 nM concentration of any of the three ligands resulted in complete desensitization to further concentrations. 3. On the other hand, none of the ligands caused any desensitization in oocytes injected with 0.25 ng wild-type hNK2 receptor cRNA. even at concentrations up to 10 microM. 4. The two N-terminally truncated analogues of neurokinin A have a lower efficacy than NKA and it is likely that it is this property which causes the observed differences in desensitization, rather than the formation of alternative active states of the receptor. 5. The peak calcium-dependent chloride current is not a reliable measure of maximal receptor stimulation and efficacy is better measured in this system by studying agonist-induced desensitization. 6. The specific adenylyl cyclase inhibitor SQ22536 can enhance NKA and GR64349-mediated desensitization which suggests that agonist-induced desensitization involves the inhibition of adenylyl cyclase and the subsequent down-regulation of the cyclic AMP-dependent protein kinase, possibly by cross-talk to a second signalling pathway.
Collapse
Affiliation(s)
- S Maudsley
- Department of Pharmacology, The University of Leeds
| | | | | | | |
Collapse
|
11
|
McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998; 393:333-9. [PMID: 9620797 DOI: 10.1038/30666] [Citation(s) in RCA: 1592] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calcitonin-gene-related peptide (CGRP) and adrenomedullin are related peptides with distinct pharmacological profiles. Here we show that a receptor with seven transmembrane domains, the calcitonin-receptor-like receptor (CRLR), can function as either a CGRP receptor or an adrenomedullin receptor, depending on which members of a new family of single-transmembrane-domain proteins, which we have called receptor-activity-modifying proteins or RAMPs, are expressed. RAMPs are required to transport CRLR to the plasma membrane. RAMP1 presents the receptor at the cell surface as a mature glycoprotein and a CGRP receptor. RAMP2-transported receptors are core-glycosylated and are adrenomedullin receptors.
Collapse
Affiliation(s)
- L M McLatchie
- Receptor Systems and Cell Biology Units, Glaxo Wellcome Medicines Research Centre, Stevenage, Hertfordshire, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kawasaki J, Kobayashi S, Miyagi Y, Nishimura J, Fujishima M, Kanaide H. The mechanisms of the relaxation induced by vasoactive intestinal peptide in the porcine coronary artery. Br J Pharmacol 1997; 121:977-85. [PMID: 9222556 PMCID: PMC1564766 DOI: 10.1038/sj.bjp.0701206] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. This study was designed to investigate the mechanism of the relaxation induced by vasoactive intestinal peptide (VIP) in medial strips of the porcine coronary artery, by determining the effect on the cytosolic Ca2+ concentration ([Ca2+]i), the [Ca2+]i-force relation and the involvement of G-protein. 2. Front-surface fluorometry of fura-2 revealed that U46619, a thromboxane A2 analogue, and the high K(+)-depolarization induced increases in both the [Ca2+]i and force of the medial strips. At a steady state of contraction, the extent of an increase in [Ca2+]i induced by 100 nM U46619 was similar to that induced by 30 mM K(+)-depolarization. VIP concentration-dependently (1 nM-1 microM) induced transient decreases in both the [Ca2+]i and force of the medial strips precontracted with 100 nM U46619. The decreases in the [Ca2+]i and force induced by VIP during the contraction with U46619 were much greater than those with 30 mM K(+)-depolarization. 3. The VIP-induced decreases in the [Ca2+]i and force were attenuated by K+ channel blockers such as tetrabutylammonium (TBA: non-selective K+ channel blocker), charybdotoxin (large conductance Ca(2+)-activated K+ channel blocker), and 4-aminopyridine (4-AP: voltage-dependent K+ channel blocker). However, neither glibenclamide (ATP-sensitive K+ channel blocker) nor apamin (small conductance Ca(2+)-activated K+ channel blocker) had any significant inhibitory effect. 4. In the 30 mM K(+)-depolarized strips, pretreatment with thapsigargin, a specific Ca(2+)-ATPase inhibitor of the Ca2+ store sites, completely abolished the VIP-induced decrease in [Ca2+]i, but partially attenuated the VIP-induced decrease in force. 5. VIP shifted the [Ca2+]i-force relation of the U46619-induced contractions to the right in a concentration-dependent manner. In the alpha-toxin-permeabilized strips, VIP decreased the force development at a constant [Ca2+]i level (pCa = 6.5) in a GTP-dependent manner, which was antagonized by guanosine-5'-O-(beta-thiodiphosphate) (GDP beta S). 6. We thus conclude that VIP relaxes the coronary artery via three mechanisms: (1) a decrease in [Ca2+]i by inhibiting the Ca2+ influx presumably through the membrane hyperpolarization mediated by the activation of the large conductance Ca(2+)-activated (charybdotoxin-sensitive) K+ channels and voltage-dependent (4-AP-sensitive) K+ channels; (2) a decrease in [Ca2+]i by sequestrating cytosolic Ca2+ into thapsigargin-sensitive Ca2+ store sites; and (3) a decrease in the Ca(2+)-sensitivity of the contractile apparatus through the activation of G-protein.
Collapse
Affiliation(s)
- J Kawasaki
- Division of Molecular Cardiology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Light P. Regulation of ATP-sensitive potassium channels by phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1286:65-73. [PMID: 8634324 DOI: 10.1016/0304-4157(96)00004-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Light
- Department of Medical Physiology, University of Calgary, Alberta, Canada
| |
Collapse
|
14
|
Arellano RO, Woodward RM, Miledi R. Ion channels and membrane receptors in follicle-enclosed Xenopus oocytes. ION CHANNELS 1996; 4:203-59. [PMID: 8744210 DOI: 10.1007/978-1-4899-1775-1_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R O Arellano
- Department of Psychobiology, University of California, Irvine 92717, USA
| | | | | |
Collapse
|