1
|
Park JK, Kim YC, Sim JH, Choi MY, Choi W, Hwang KK, Cho MC, Kim KW, Lim SW, Lee SJ. Regulation of membrane excitability by intracellular pH (pHi) changers through Ca2+-activated K+ current (BK channel) in single smooth muscle cells from rabbit basilar artery. Pflugers Arch 2007; 454:307-19. [PMID: 17285302 DOI: 10.1007/s00424-007-0204-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 12/31/2006] [Indexed: 01/12/2023]
Abstract
Employing microfluorometric system and patch clamp technique in rabbit basilar arterial myocytes, regulation mechanisms of vascular excitability were investigated by applying intracellular pH (pH(i)) changers such as sodium acetate (SA) and NH(4)Cl. Applications of caffeine produced transient phasic contractions in a reversible manner. These caffeine-induced contractions were significantly enhanced by SA and suppressed by NH(4)Cl. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was monitored in a single isolated myocyte and based the ratio of fluorescence using Fura-2 AM (R (340/380)). SA (20 mM) increased and NH(4)Cl (20 mM) decreased R (340/380) by 0.2 +/- 0.03 and 0.1 +/- 0.02, respectively, in a reversible manner. Caffeine (10 mM) transiently increased R (340/380) by 0.9 +/- 0.07, and the ratio increment was significantly enhanced by SA and suppressed by NH(4)Cl, implying that SA and NH(4)Cl may affect [Ca(2+)](i) (p < 0.05). Accordingly, we studied the effects of SA and NH(4)Cl on Ca(2+)-activated K(+) current (IK(Ca)) under patch clamp technique. Caffeine produced transient outward current at holding potential (V (h)) of 0 mV, caffeine induced transient outward K(+) current, and the spontaneous transient outward currents were significantly enhanced by SA and suppressed by NH(4)Cl. In addition, IK(Ca) was significantly increased by acidotic condition when pH(i) was lowered by altering the NH(4)Cl gradient across the cell membrane. Finally, the effects of SA and NH(4)Cl on the membrane excitability and basal tension were studied: Under current clamp mode, resting membrane potential (RMP) was -28 +/- 2.3 mV in a single cell level and was depolarized by 13 +/- 2.4 mV with 2 mM tetraethylammonium (TEA). SA hyperpolarized and NH(4)Cl depolarized RMP by 10 +/- 1.9 and 16 +/- 4.7 mV, respectively. SA-induced hyperpolarization and relaxation of basal tension was significantly inhibited by TEA. These results suggest that SA and NH(4)Cl might regulate vascular tone by altering membrane excitability through modulation of [Ca(2+)](i) and Ca(2+)-activated K channels in rabbit basilar artery.
Collapse
Affiliation(s)
- Jong Kook Park
- Department of Anesthesiology and Pain Medicine, College of Medicine, Cheju National University, 66 Jejudaehakno, Jeju, Jeju Special Self-Governing Province 690-756, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Rohra DK, Saito SY, Ohizumi Y. Low Extracellular Cl – Environment Attenuates Changes in Intracellular pH and Contraction following Extracellular Acidosis in Wistar Kyoto Rat Aorta. Pharmacology 2005; 75:30-6. [PMID: 15942273 DOI: 10.1159/000086152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 04/07/2005] [Indexed: 11/19/2022]
Abstract
This study was conducted to investigate the influence of extracellular Cl- ([Cl-]o) on the intracellular pH (pHi) regulation and the contractile state of the isolated aorta from Wistar Kyoto (WKY) rats. Isometric tension recording and fluorometry techniques were utilized to measure contractile response and pHi in isolated aortic strips. Decreasing extracellular pH (pHo) from 7.4 to 6.5 produced a marked contraction, which was 75.8 +/- 5.6% of the 64.8 mmol/l KCl-induced contraction. The acidosis-induced contraction was significantly attenuated in low [Cl-]o solution, the magnitude of which was 56.0 +/- 3.0% of the 64.8 mmol/l KCl-induced contraction. Decreasing pHo of the normal solution to 6.5 rapidly decreased pHi in aortic smooth muscle cells and produced a corresponding contraction. When the pHo was decreased in low [Cl-]o solution, a rapid fall in pHi followed by reversal of pHi changes, in a time-dependent manner was observed, despite low pHo. Omission of HCO3- from the low [Cl-]o solution restored the contractile response to acidosis, which was comparable to that in normal solution. Similarly, following decrease in pHo to 6.5, no recovery of intracellular acidosis was observed. We conclude that low [Cl-]o environment causes activation of extracellular HCO3- -dependent pHi-regulating mechanism, that results in the rapid recovery of pHi following acidosis, and the attenuation of acidosis-induced contraction of WKY aorta.
Collapse
Affiliation(s)
- Dileep Kumar Rohra
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Sendai, Japan.
| | | | | |
Collapse
|
3
|
Rohra DK, Sharif HM, Zubairi HS, Sarfraz K, Ghayur MN, Gilani AH. Acidosis-induced relaxation of human internal mammary artery is due to activation of ATP-sensitive potassium channels. Eur J Pharmacol 2005; 514:175-81. [PMID: 15910804 DOI: 10.1016/j.ejphar.2005.02.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 02/14/2005] [Accepted: 02/24/2005] [Indexed: 11/17/2022]
Abstract
Metabolic acidosis is associated with various clinical situations including diabetes mellitus and renal diseases. The aim of this study was to investigate the effects of acidosis on the resting as well as precontracted human left internal mammary artery. The vessels were obtained from the patients undergoing coronary artery bypass grafting surgery at The Aga Khan University Hospital, Karachi. Left internal mammary artery was cut into rings and isometric tension recording experiments were performed. Decrease in pH of the bathing solution from 7.4 to 6.8 had no effect on the resting tension of left internal mammary artery, whereas, acidic pH markedly relaxed the contractions to 24.8 mM KCl and 300 nM phenylephrine. Interestingly, when the KCl- or phenylephrine-contracted rings were treated with 3 microM glibenclamide; an inhibitor of ATP-sensitive potassium (K(ATP)) channels, the relaxant effect of acidosis was abolished. Similarly, acidosis failed to cause relaxation of 100 nM endothelin-1-induced contraction in Ca2+-free bathing solution or in the presence of a voltage-dependent Ca2+ channel inhibitor, verapamil (10 microM), whereas, endothelin-1-induced contraction was attenuated by acidosis in Ca2+-containing normal solution. From all these data, it is concluded that under the acidic pH conditions, opening of K(ATP) channels occurs; resulting in the hyperpolarization, decrease in Ca2+ influx via voltage-dependent Ca2+ channels and subsequent relaxation of human left internal mammary artery.
Collapse
Affiliation(s)
- Dileep Kumar Rohra
- Department of Biological and Biomedical Sciences, Faculty of Health Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan.
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
The clinical applicability of the experimental data discussed previously remains questionable, and results of clinical studies on chemoprevention in Barrett's esophagus are needed. The utility of selectively targeting acid exposure, ODC, and COX-2 is not clear, and elucidation of that role will be facilitated by a better understanding of the contribution of these factors in the development of Barrett's cancers. The insights already gained into the basic mechanisms of acid exposure, ODC, and COX-2 in the pathogenesis of Barrett's esophagus and esophageal adenocarcinoma hold promise for the development of future therapies aimed at these molecular targets and their signaling pathways. In preclinical studies, the ability of COX-2 selective NSAIDs and DFMO to inhibit carcinogenesis is encouraging. Results of well-designed, prospective clinical studies, however, are still needed to establish the efficacy of potent acid suppression, COX-2 inhibitors, and DFMO in the prevention of this malignancy.
Collapse
Affiliation(s)
- Rhonda F Souza
- Division of Gastroenterology, Dallas VA Medical Center, Dallas, TX 75216, USA.
| | | |
Collapse
|
5
|
Joseph D, Tirmizi O, Zhang XL, Crandall ED, Lubman RL. Polarity of alveolar epithelial cell acid-base permeability. Am J Physiol Lung Cell Mol Physiol 2002; 282:L675-83. [PMID: 11880292 DOI: 10.1152/ajplung.00330.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated acid-base permeability properties of electrically resistive monolayers of alveolar epithelial cells (AEC) grown in primary culture. AEC monolayers were grown on tissue culture-treated polycarbonate filters. Filters were mounted in a partitioned cuvette containing two fluid compartments (apical and basolateral) separated by the adherent monolayer, cells were loaded with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and intracellular pH was determined. Monolayers in HCO-free Na(+) buffer (140 mM Na(+), 6 mM HEPES, pH 7.4) maintained a transepithelial pH gradient between the two fluid compartments over 30 min. Replacement of apical fluid by acidic (6.4) or basic (8.0) buffer resulted in minimal changes in intracellular pH. Replacement of basolateral fluid by acidic or basic buffer resulted in transmembrane proton fluxes and intracellular acidification or alkalinization. Intracellular alkalinization was blocked > or =80% by 100 microM dimethylamiloride, an inhibitor of Na(+)/H(+) exchange, whereas acidification was not affected by a series of acid/base transport inhibitors. Additional experiments in which AEC monolayers were grown in the presence of acidic (6.4) or basic (8.0) medium revealed differential effects on bioelectric properties depending on whether extracellular pH was altered in apical or basolateral fluid compartments bathing the cells. Acid exposure reduced (and base exposure increased) short-circuit current from the basolateral side; apical exposure did not affect short-circuit current in either case. We conclude that AEC monolayers are relatively impermeable to transepithelial acid/base fluxes, primarily because of impermeability of intercellular junctions and of the apical, rather than basolateral, cell membrane. The principal basolateral acid exit pathway observed under these experimental conditions is Na(+)/H(+) exchange, whereas proton uptake into cells occurs across the basolateral cell membrane by a different, undetermined mechanism. These results are consistent with the ability of the alveolar epithelium to maintain an apical-to-basolateral (air space-to-blood) pH gradient in situ.
Collapse
Affiliation(s)
- Dilip Joseph
- Division of Pulmonary and Critical Care Medicine, Will Rogers Institute Pulmonary Research Center, University of Southern California, Keck School of Medicine, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
6
|
Pei JM, Yu XC, Bian JS, Wong TM. Acidosis antagonizes intracellular calcium response to kappa-opioid receptor stimulation in the rat heart. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C492-500. [PMID: 10484336 DOI: 10.1152/ajpcell.1999.277.3.c492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study the effects of kappa-opioid receptor stimulation on intracellular Ca2+ concentration ([Ca2+]i) homeostasis during extracellular acidosis, we determined the effects of kappa-opioid receptor stimulation on [Ca2+]i responses during extracellular acidosis in isolated single rat ventricular myocytes, by a spectrofluorometric method. U-50488H (10-30 microM), a selective kappa-opioid receptor agonist, dose dependently decreased the electrically induced [Ca2+]i transient, which results from the influx of Ca2+ and the subsequent mobilization of Ca2+ from the sarcoplasmic reticulum (SR). U-50488H (30 microM) also increased the resting [Ca2+]i and inhibited the [Ca2+]i transient induced by caffeine, which mobilizes Ca2+ from the SR, indicating that the effects of the kappa-opioid receptor agonist involved mobilization of Ca2+ from its intracellular pool into the cytoplasm. The Ca2+ responses to 30 microM U-50488H were abolished by 5 microM nor-binaltorphimine, a selective kappa-opioid receptor antagonist, indicating that the event was mediated by the kappa-opioid receptor. The effects of the agonist on [Ca2+]i and the electrically induced [Ca2+]i transient were significantly attenuated when the extracellular pH (pHe) was lowered to 6.8, which itself reduced intracellular pH (pHi) and increased [Ca2+]i. The inhibitory effects of U-50488H were restored during extracellular acidosis in the presence of 10 microM ethylisopropyl amiloride, a potent Na+/H+ exchange blocker, or 0.2 mM Ni2+, a putative Na+/Ca2+ exchange blocker. The observations indicate that acidosis may antagonize the effects of kappa-opioid receptor stimulation via Na+/H+ and Na+/Ca2+ exchanges. When glucose at 50 mM, known to activate the Na+/H+ exchange, was added, both the resting [Ca2+]i and pHi increased. Interestingly, the effects of U-50488H on [Ca2+]i and the electrically induced [Ca2+]i transient during superfusion with glucose were significantly attenuated; this mimicked the responses during extracellular acidosis. When a high-Ca2+ (3 mM) solution was superfused, the resting [Ca2+]i increased; the increase was abolished by 0.2 mM Ni2+, but the pHi remained unchanged. Like the responses to superfusion with high-concentration glucose and extracellular acidosis, the responses of the [Ca2+]i and electrically induced [Ca2+]i transients to 30 microM U-50488H were also significantly attenuated. Results from the present study demonstrated for the first time that extracellular acidosis antagonizes the effects of kappa-opioid receptor stimulation on the mobilization of Ca2+ from SR. Activation of both Na+/H+ and Na+/Ca2+ exchanges, leading to an elevation of [Ca2+]i, may be responsible for the antagonistic action of extracellular acidosis against kappa-opioid receptor stimulation.
Collapse
Affiliation(s)
- J M Pei
- Department of Physiology, and Institute of Cardiovascular Sciences and Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
7
|
Muller-Borer BJ, Yang H, Marzouk SA, Lemasters JJ, Cascio WE. pHi and pHo at different depths in perfused myocardium measured by confocal fluorescence microscopy. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H1937-47. [PMID: 9843791 DOI: 10.1152/ajpheart.1998.275.6.h1937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Confocal microscopy and the H+-sensitive fluorophore carboxyseminaphthorhodafluor-1 (SNARF-1) were used to measure either intracellular pH (pHi) or extracellular pH (pHo) in isolated, arterially perfused rabbit papillary muscles. Single-excitation, dual-emission fluorescent images of the endocardial surface and underlying myocardium to a depth of 300 micron were simultaneously recorded from perfused cylindrical muscles suspended in a controlled atmosphere oriented oblique to the focal plane. Contraction was inhibited by the addition of butanedione monoxime. In separate muscles, pHo was measured during continuous perfusion of SNARF-1 free acid. pHi measurements were made after the muscle was loaded with SNARF-1/AM and the extracellular space was cleared of residual fluorophore. Initial experiments demonstrated the uniformity of ratiometric measurements as a function of pH, image depth, and fluorophore concentration, thereby establishing the potential feasibility of this method for quantitative intramural pH measurements. In subsequent experiments, the method was validated in isolated, arterially perfused rabbit papillary muscle during normal arterial perfusion and as pHi and pHo were altered by applying CO2 externally, exchanging HEPES and bicarbonate buffers, and changing pHi with NH4Cl washout. We conclude that in situ confocal fluorescent microscopy can measure pHi and pHo changes at the endocardial surface and deeper endocardial layers in arterially perfused ventricular myocardium. This method has the potential to study pHi regulation in perfused myocardium at boundaries where diffusion of gases, metabolites, and peptides are expected to modify processes that regulate pHi.
Collapse
Affiliation(s)
- B J Muller-Borer
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7075, USA
| | | | | | | | | |
Collapse
|
8
|
Berger MG, Vandier C, Bonnet P, Jackson WF, Rusch NJ. Intracellular acidosis differentially regulates KV channels in coronary and pulmonary vascular muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H1351-9. [PMID: 9746485 DOI: 10.1152/ajpheart.1998.275.4.h1351] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Decreases in intracellular pH (pHi) potently dilate coronary resistance arteries but constrict small pulmonary arteries. To define the ionic mechanisms of these responses, this study investigated whether acute decreases in pHi differentially regulate K+ currents in single vascular smooth muscle (VSM) cells isolated from rat coronary and pulmonary resistance arteries. In patch-clamp studies, whole cell K+ currents were elicited by 10-mV depolarizing steps between -60 and 0 mV in VSM cells obtained from 50- to 150-micrometers-OD arterial branches, and pHi was lowered by altering the NH4Cl gradient across the cell membrane. Progressively lowering pHi from calculated values of 7.0 to 6.7 and 6.4 increased the peak amplitude of K+ current in coronary VSM cells by 15 +/- 5 and 23 +/- 3% but reduced K+ current in pulmonary VSM cells by 18 +/- 3 and 21 +/- 3%, respectively. These changes were reversed by returning cells to the control pHi of 7.0 and were eliminated by dialyzing cells with pipette solution containing 50 mmol/l HEPES to buffer NH4Cl-induced changes in pHi. Pharmacological block of ATP-sensitive K+ channels and Ca2+-activated K+ channels by 1 micromol/l glibenclamide and 100 nmol/l iberiotoxin, respectively, did not prevent changes in K+ current levels induced by acidotic pHi. However, block of voltage-gated K+ channels by 3 mmol/l 4-aminopyridine abolished acidosis-induced changes in K+ current amplitudes in both VSM cell types. Interestingly, alpha-dendrotoxin (100 nmol/l), which blocks only select subtypes of voltage-gated K+ channels, abolished the acidosis-induced decrease in K+ current in pulmonary VSM cells but did not affect the acidosis-induced increase in K+ current observed in coronary VSM cells. These findings suggest that opposing, tissue-specific effects of pHi on distinct subtypes of voltage-gated K+ channels in coronary and pulmonary VSM membranes may differentially regulate vascular reactivity in these two circulations under conditions of acidotic stress.
Collapse
Affiliation(s)
- M G Berger
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
9
|
Wu C, Fry CH. The effects of extracellular and intracellular pH on intracellular Ca2+ regulation in guinea-pig detrusor smooth muscle. J Physiol 1998; 508 ( Pt 1):131-43. [PMID: 9490828 PMCID: PMC2230873 DOI: 10.1111/j.1469-7793.1998.131br.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/1997] [Accepted: 12/05/1997] [Indexed: 02/06/2023] Open
Abstract
1. Intracellular pH (pHi) and intracellular [Ca2+] ([Ca2+]i) were measured during changes to superfusate PCO2 and/or [NaHCO3]. Changes to superfusate PCO2 produced sustained changes to pHi and [Ca2+]i, while changes to [NaHCO3] altered only extracellular pH (pHo). 2. Carbachol or caffeine induced a transient rise of [Ca2+]i due to Ca2+ release from an intracellular store. This Ca2+ transient was reduced by extracellular acidosis, but increased by intracellular acidosis. Alkalosis in either compartment produced opposite effects to acidosis. Changes to the Ca2+ transient mirrored those to phasic tension previously reported in this preparation. 3. A raised superfusate [K+] also induced a Ca2+ transient, due to transmembrane influx of Ca2+. This transient was depressed by extracellular acidosis, but unaffected by changes to pHi. The L-type Ca2+ current was similarly affected by changes to pHo, but not by alteration of pHi. 4. The results suggest that extracellular acidosis depresses the Ca2+ transient by reducing transmembrane influx through the L-type Ca2+ channel. The increase in the carbachol- and caffeine-induced Ca2+ transients by intracellular acidosis is due to enhancement of Ca2+ uptake into intracellular stores as a result of a raised resting [Ca2+]i.
Collapse
Affiliation(s)
- C Wu
- Institute of Urology & Nephrology, University College London, 67 Riding House Street, London W1P 7PN, UK
| | | |
Collapse
|