1
|
Cox RH, Fromme SJ. A naturally occurring truncated Cav1.2 α1-subunit inhibits Ca2+ current in A7r5 cells. Am J Physiol Cell Physiol 2013; 305:C896-905. [PMID: 23926129 DOI: 10.1152/ajpcell.00217.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alternative splicing of the voltage-gated Ca(2+) (CaV) α1-subunit adds to the functional diversity of Ca(2+) channels. A variant with a 73-nt deletion in exon 15 of the Cav1.2 α1-subunit (Cav1.2Δ73) produced by alternative splicing that predicts a truncated protein has been described, but its function, if any, is unknown. We sought to determine if, by analogy to other truncated CaV α1-subunits, Cav1.2Δ73 acts as an inhibitor of wild-type Cav1.2 currents. HEK-293 cells were transfected with Cav1.2Δ73 in a pIRES vector with CD8 or in pcDNA3.1 with a V5/his COOH-terminal tag plus β2 and α2δ1 accessory subunits and pEGFP. Production of Cav1.2Δ73 protein was confirmed by Western blotting and immunofluorescence. Voltage-clamp studies revealed the absence of functional channels in transfected cells. In contrast, cells transfected with full-length Cav1.2 plus accessory subunits and pEGFP exhibited robust Ca(2+) currents. A7r5 cells exhibited endogenous Cav1.2-based currents that were greatly reduced (>80%) without a change in voltage-dependent activation when transfected with Cav1.2Δ73-IRES-CD8 compared with empty vector or pIRES-CD8 controls. Transfection of A7r5 cells with an analogous Cav2.3Δ73-IRES-CD8 had no effect on Ca(2+) currents. Immunofluorescence showed intracellular, but not plasma membrane, localization of Cav1.2Δ73-V5/his, as well as colocalization with an endoplasmic reticulum marker, ER Organelle Lights. Expression of Cav1.2Δ73 α1-subunits in A7r5 cells inhibits endogenous Cav1.2 currents. The fact that this variant arises naturally by alternative splicing raises the possibility that it may represent a physiological mechanism to modulate Cav1.2 functional activity.
Collapse
Affiliation(s)
- Robert H Cox
- Program in Cardiovascular Studies, Lankenau Institute for Medical Research, Main Line Health System, Wynnewood, Pennsylvania
| | | |
Collapse
|
2
|
Amobi N, Guillebaud J, Smith CH. Comparative effects of T-type and L-type Ca2+-antagonists against noradrenaline-induced contractions of human vas deferens. BJU Int 2009; 106:578-85. [DOI: 10.1111/j.1464-410x.2009.09092.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Richard S, Virsolvy A, Fort A. [Molecular effects of new calcium antagonists: is the principle of parcimony out of place?]. Ann Cardiol Angeiol (Paris) 2008; 57:166-73. [PMID: 18565491 DOI: 10.1016/j.ancard.2008.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 02/28/2008] [Indexed: 11/17/2022]
Abstract
The calcium (Ca2+) channel antagonists (CCA) are used successfully in the treatment of hypertension and angina pectoris. Their mode of action is to decrease Ca2+ entry in the vascular smooth muscle cells. Their molecular targets are voltage activated Ca2+ channels (VACC), especially the L-type (VACC-L). This review examines the role of the VACC-L and of the T-type (VACC-T) in vascular physiology and hypertension. The molecular mechanisms at the base of the vascular selectivity of CCA are presented with, in filigree, the concern of trying to understand the effect of recently developed molecules. In particular, we will examine the ideas having recently emerged concerning the mode of action of last generation dihydropyridines (DHPs) stripped of some of the undesirable effects of prototypes AC considered as highly specific of the VACC-L. These properties could result, in particular, from their effects on the VACC-T, which could occur in addition to those classically observed on the VACC-L.
Collapse
MESH Headings
- Animal Experimentation
- Animals
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Calcium Channel Blockers/pharmacology
- Calcium Channel Blockers/therapeutic use
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/physiology
- Calcium Channels, T-Type/drug effects
- Calcium Channels, T-Type/genetics
- Calcium Channels, T-Type/metabolism
- Calcium Channels, T-Type/physiology
- Cells, Cultured
- Dihydropyridines/pharmacology
- Electrophysiology
- Humans
- Hypertension/drug therapy
- Hypertension/physiopathology
- Hypertension, Renal/drug therapy
- Kidney Glomerulus
- Mice
- Muscle Cells/drug effects
- Muscle Cells/metabolism
- Muscle Cells/physiology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Patch-Clamp Techniques
- Rats
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- S Richard
- Inserm U637, physiopathologie cardiovasculaire, CHU Arnaud-de-Villeneuve, 371, avenue du Doyen-Faston-Giraud, 34295 Montpellier cedex 5, France.
| | | | | |
Collapse
|
4
|
Abstract
Calcium channel antagonists have a well-established role in the management of cardiovascular diseases. L-type calcium channels in vascular cells are a key therapeutic target in hypertension and are the preferred molecular target of the initial calcium channel antagonists. However, third-generation dihydropyridine (DHP) calcium channel antagonists, including manidipine, nilvadipine, benidipine and efonidipine, appear to have effects in addition to blockade of the L-type calcium channel. Voltage-gated calcium channels are widely expressed throughout the cardiovascular system. They constitute the main route for calcium entry, essential for the maintenance of contraction. Cardiac and vascular cells predominantly express L-type calcium channels. More recently, T-type channels have been discovered, and there is emerging evidence of their significance in the regulation of arterial resistance. A lack of functional expression of L-type channels in renal efferent arterioles may be consistent with an important role of T-type channels in the regulation of efferent arteriolar tone. Although the exact role of T-type calcium channels in vascular beds remains to be determined, they could be associated with gene-activated cell replication and growth during pathology. The three major classes of calcium channel antagonists are chemically distinct, and exhibit different functional effects depending on their biophysical, conformation-dependent interactions with the L-type calcium channel. The DHPs are more potent vasodilators, and generally have less cardiodepressant activity than representatives of other classes of calcium channel antagonist such as diltiazem (a phenylalkylamine) and verapamil (a benzothiazepine). In contrast to older calcium channel antagonists, the newer DHPs, manidipine, nilvadipine, benidipine and efonidipine, dilate not only afferent but also efferent renal arterioles, a potentially beneficial effect that may improve glomerular hypertension and provide renoprotection. The underlying mechanisms for the heterogenous effects of calcium channel antagonists in the renal microvasculature are unclear. A credible hypothesis suggests a contribution of T-type calcium channels to efferent arteriolar tone, and that manidipine, nilvadipine and efonidipine inhibit both L and T-type channels. However, other mechanisms, including an effect on neuronal P/Q-type calcium channels (recently detected in arterioles), the microheterogeneity of vascular beds, and other types of calcium influx may also play a role. This article presents recent data about the expression and physiological role of calcium channels in arteries and the molecular targets of the calcium channel antagonists, particularly those exhibiting distinct renovascular effects.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Arteries/drug effects
- Arteries/metabolism
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channel Blockers/therapeutic use
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Calcium Channels, P-Type/drug effects
- Calcium Channels, P-Type/metabolism
- Calcium Channels, T-Type/drug effects
- Calcium Channels, T-Type/metabolism
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/metabolism
- Dihydropyridines/pharmacology
- Dihydropyridines/therapeutic use
- Humans
- Hypertension, Renal/drug therapy
- Hypertension, Renal/metabolism
- Ion Channel Gating/drug effects
- Kidney Glomerulus/blood supply
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitrobenzenes
- Piperazines
- Renal Circulation/drug effects
Collapse
Affiliation(s)
- Sylvain Richard
- INSERM U-637; Université Montpellier 1, Physiopathologie Cardiovasculaire, CHU Arnaud de Villeneuve, 34295 Montpellier Cedex 5, France.
| |
Collapse
|
5
|
Quignard JF, Rakotoarisoa L, Mironneau J, Mironneau C. Stimulation of L-type Ca2+ channels by inositol pentakis- and hexakisphosphates in rat vascular smooth muscle cells. J Physiol 2003; 549:729-37. [PMID: 12717004 PMCID: PMC2342985 DOI: 10.1113/jphysiol.2002.037473] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The electrophysiological effects of D-myo-inositol 1,3,4,5,6-pentakisphosphate (InsP5) and D-myo-inositol hexakisphosphate (InsP6), which represent the main cellular inositol polyphosphates, were studied on L-type Ca2+ channels in single myocytes of rat portal vein. Intracellular infusion of InsP5 (up to 50 micro M) or 10 micro M InsP6 had no action on Ba2+ current, whereas 50 micro M InsP6 or 10 micro M InsP5 plus 10 micro M InsP6 (InsP5,6) stimulated the inward current. The stimulatory effect of InsP5,6 was also obtained in external Ca2+-containing solution. The stimulated Ba2+ current retained the properties of L-type Ba2+ current and was oxodipine sensitive. PKC inhibitors Ro 32-0432 (up to 500 nM), GF109203X (5 micro M) or calphostin C (100 nM) abolished the InsP5,6-induced stimulation. Neither the PKA inhibitor H89 (1 micro M) nor the protein phosphatase inhibitors okadaic acid (500 nM) or cypermethrin (1 micro M) prevented or mimicked the InsP5,6-induced stimulation of Ba2+ current. However, InsP5 or InsP6 could mimic some effects of protein phosphatase inhibitor so as to extend after washing-out forskolin the stimulatory effects of the adenylyl cyclase activator on Ba2+ current. These results indicate that InsP5 and InsP6 may act as intracellular messengers in modulating L-type Ca2+ channel activity and so could be implicated in mediator-induced contractions of vascular smooth muscle cells.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/drug effects
- Cell Separation
- Colforsin/pharmacology
- Dose-Response Relationship, Drug
- Electrophysiology
- Enzyme Activators/pharmacology
- Enzyme Inhibitors/pharmacology
- In Vitro Techniques
- Inositol Phosphates/pharmacology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Muscle Cells/drug effects
- Muscle Cells/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Okadaic Acid/pharmacology
- Patch-Clamp Techniques
- Phosphoric Monoester Hydrolases/antagonists & inhibitors
- Phytic Acid/pharmacology
- Protein Kinase Inhibitors
- Protein Kinases/metabolism
- Rats
- Rats, Wistar
- Stimulation, Chemical
Collapse
Affiliation(s)
- J F Quignard
- Laboratoire de Signalisation et Interactions Cellulaires, CNRS UMR 5017, UFR Sciences Pharmaceutiques, Université Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France.
| | | | | | | |
Collapse
|
6
|
Chemin J, Monteil A, Briquaire C, Richard S, Perez-Reyes E, Nargeot J, Lory P. Overexpression of T-type calcium channels in HEK-293 cells increases intracellular calcium without affecting cellular proliferation. FEBS Lett 2000; 478:166-72. [PMID: 10922490 DOI: 10.1016/s0014-5793(00)01832-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increased expression of low voltage-activated, T-type Ca(2+) channels has been correlated with a variety of cellular events including cell proliferation and cell cycle kinetics. The recent cloning of three genes encoding T-type alpha(1) subunits, alpha(1G), alpha(1H) and alpha(1I), now allows direct assessment of their involvement in mediating cellular proliferation. By overexpressing the human alpha(1G) and alpha(1H) subunits in human embryonic kidney (HEK-293) cells, we describe here that, although T-type channels mediate increases in intracellular Ca(2+) concentrations, there is no significant change in bromodeoxyuridine incorporation and flow cytometric analysis. These results demonstrate that expressions of T-type Ca(2+) channels are not sufficient to modulate cellular proliferation of HEK-293 cells.
Collapse
Affiliation(s)
- J Chemin
- IGH-CNRS UPR 1142-141, rue de la Cardonille, F-34396 Montpellier, Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Orallo F. Study of the in vivo and in vitro cardiovascular effects of a hydralazine-like vasodilator agent (HPS-10) in normotensive rats. Br J Pharmacol 1997; 121:1627-36. [PMID: 9283696 PMCID: PMC1564871 DOI: 10.1038/sj.bjp.0701314] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. In this work, the cardiovascular effects of HPS-10, a new vasodilator agent, were studied in rats. 2. In conscious normotensive rats, oral administration of HPS-10 (4-9 mg kg-1) produced a dose-related and long-lasting fall in systolic arterial blood pressure (ED30 of 5.32 mg kg-1), accompanied by an increase in heart rate (ED30 of 8.43 mg kg-1). This tachycardia was totally inhibited by pretreatment with (+/-)-propranolol (10 mg kg-1, p.o.). 3. In anaesthetized normotensive rats, HPS-10 (0.3-0.6 mg kg-1, i.v.) produced a gradual, dose-dependent and sustained decrease in systolic, diastolic and mean arterial pressure (MAP) (ED30 for MAP of 0.41 mg kg-1, i.v.), accompanied by a significant bradycardia at high doses (> 0.4 mg kg-1; ED20 of 0.61 mg kg-1, i.v.). HPS-10 (0.5 mg kg-1, i.v.) did not modify the positive chronotropic effects induced by intravenous administration of noradrenaline (NA; 5 micrograms kg-1), angiotensin II (AII; 0.2 microgram kg-1) and nicotine (200 micrograms kg-1) but markedly inhibited the hypertensive response produced by these agents. 4. In rat isolated rubbed aorta, HPS-10 (0.1-1 mM) non-competitively and with almost equal effectiveness antagonized the contractions induced by NA, AII (in normal Krebs solution) and Ca2+ (in depolarizing Ca(2+)-free high-K+ 50 mM solution). In the experiments in Ca(2+)-free medium, HPS-10 (1 mM) considerably inhibited the contractions induced by NA, AII and caffeine in rat aorta. 5. Furthermore, in the studies with radioactive Ca2+, HPS-10 (1 mM) did not modify the basal uptake of 45Ca2+ but strongly decreased the influx of 45Ca2+ induced by NA, AII and K+ in rat aortic rings. 6. In rat isolated atria, HPS-10 (1 mM) produced a positive inotropic/negative chronotropic effect. 7. HPS-10 (0.3 mM) significantly inhibited the sustained and transient Ba2+ inward current (IBa) recorded in whole-cell clamped rat aortic myocytes. 8. These results indicate that the non-selective vasorelaxant effects of HPS-10 in rat aortic rings can be attributed to transmembrane Ca(2+)-antagonist activity and an intracellular action on smooth muscle cells. The direct vasodilator action of HPS-10 observed in rat isolated aorta may be responsible for the HPS-10 hypotensive activity in anaesthetized normotensive rats.
Collapse
Affiliation(s)
- F Orallo
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, España
| |
Collapse
|
8
|
Morel JL, Drobecq H, Sautiere P, Tartar A, Mironneau J, Qar J, Lavie JL, Hugues M. Purification of a new dimeric protein from Cliona vastifica sponge, which specifically blocks a non-L-type calcium channel in mouse duodenal myocytes. Mol Pharmacol 1997; 51:1042-52. [PMID: 9187271 DOI: 10.1124/mol.51.6.1042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Marine sponges are synthesizing a wide variety of peptidic and organic molecules with biological activities. Multiple-step purification of Cliona vastifica extract led to a new dimeric peptide (mapacalcine; M(r) = 19,064) that is composed of two homologous chains, each containing nine cysteins. This protein has been found to selectively block a new calcium conductance characterized in mouse duodenal myocytes with an IC50 value of approximately 0.2 microM. The mapacalcine-sensitive current was a non-L-type calcium current activated from a holding potential of -80 mV that persisted during stimulation of the cell at high frequencies (0.1-0.2 Hz) within 5-10 min. Time constants of inactivation were similar for both L-type and non-L-type calcium currents. The non-L-type calcium current of duodenal myocytes was not blocked by the pharmacological agents specific for N-, L-, P-, or Q-type calcium channels. Mapacalcine was unable to block T-type calcium current in portal vein myocytes as well as voltage-dependent potassium currents and calcium-activated chloride currents in duodenal and portal vein cells. Mapacalcine did not affect caffeine-induced calcium responses, indicating that it did not interfere with intracellular calcium stores. Competition experiments on mouse intestinal membranes showed that mapacalcine did not interact with dihydropyridines receptors. These data suggest that mapacalcine may be a specific inhibitor of a new type of calcium current, first identified in duodenal myocytes.
Collapse
Affiliation(s)
- J L Morel
- Centre National de la Recherche Scientifique Enseignement Supérieur Associé 5017, Physiopathologie et Pharmacologie Vasculaire, Faculté de Pharmacie, Université de Bordeaux II, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fass DM, Levitan ES. Bay K 8644 reveals two components of L-type Ca2+ channel current in clonal rat pituitary cells. J Gen Physiol 1996; 108:1-11. [PMID: 8817380 PMCID: PMC2229298 DOI: 10.1085/jgp.108.1.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Whole-cell L-type Ca2+ channel current was recorded in GH3 clonal rat pituitary cells using Ba2+ as a charge carrier. In the presence of the dihydropyridine agonist Bay K 8644, deactivation was best described by two exponential components with time constants of approximately 2 and approximately 8 ms when recorded at -40 mV. The slow component activated at more negative potentials than the fast component: Half-maximal activation for the slow and fast components occurred at approximately -15 and approximately 1 mV, respectively. The fast component was more sensitive to enhancement by racemic Bay K 8644 than the slow component: ED50fast = approximately 21 nM, ED50slow = approximately 74 nM. Thyrotropin-releasing hormone (TRH; 1 microM) inhibited the slow component by approximately 46%, whereas the fast component was inhibited by approximately 22%. TRH inhibition of total L-current showed some voltage dependence, but each Bay K 8644-revealed component of L-current was inhibited in a voltage-independent manner. Therefore, the apparent voltage dependence of TRH action is derived from complexities in channel gating rather than from relief of inhibition at high voltages. In summary, Bay K 8644-enhanced L-currents in GH3 cells consist of two components with different sensitivities to voltage, racemic Bay K 8644, and the neuropeptide TRH.
Collapse
Affiliation(s)
- D M Fass
- Department of Neuroscience, University of Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
10
|
Abstract
Ca2+ plays an important role in the contraction of skeletal, cardiac, and smooth muscle, as well as in a number of important processes, such as secretion and neuronal activity. In this review, I focus on the various mechanisms by which cytosolic Ca2+ concentration is regulated in vascular smooth muscle, in the resting state and during activation. Particular attention is paid to the calcium pumps of the plasmalemma and the sarcoplasmic reticulum, to the inositol 1,4,5-trisphosphate- and ryanodine-sensitive calcium channels of the sarcoplasmic reticulum, and to voltage-dependent and voltage-independent calcium channels of the plasmalemma.
Collapse
Affiliation(s)
- F Orallo
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, La Corunai, Spain
| |
Collapse
|
11
|
Diochot S, Richard S, Valmier J. Diversity of voltage-gated calcium currents in large diameter embryonic mouse sensory neurons. Neuroscience 1995; 69:627-41. [PMID: 8552255 DOI: 10.1016/0306-4522(95)00267-m] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Voltage-gated Ca2+ currents were investigated in a subpopulation of dorsal root ganglion neurons (large diameter, neurofilament-positive) acutely isolated from 13-day-old mouse embryos and recorded using the whole-cell patch-clamp technique. Low- and high-voltage-activated calcium currents were recorded. These currents could be identified and separated by their distinct (i) threshold of activation, (ii) ability to run-up during the early phase of recording and (iii) decay kinetics using Ba2+ instead of Ca2+ as the charge carrier. Among high-voltage-activated currents, L-, N- and P-type Ca2+ currents were identified by their sensitivity to, respectively, the dihydropyridine agonist Bay K 8644 (5 microM) and antagonist nitrendipine (3 microM), omega-conotoxin GVIA (3 microM) and omega-agatoxin IVA (30 nM). In the combined presence of nitrendipine (3 microM), omega-conotoxin GVIA (3 microM) and omega-agatoxin IVA (30 nM), two additional high-voltage-activated components were detected. One, blocked by 500 nM omega-conotoxin MVIIC and 1 microM omega-agatoxin IVA, had properties similar to those of the Q-type Ca2+ current first reported in cerebellar granule cells. The other, defined by its resistance to saturating concentrations of all the blockers mentioned above applied in combination, resembles the R-type Ca2+ current also described in cerebellar granule cells. In conclusion, embryonic sensory neurons appear to express a large repertoire of voltage-activated Ca2+ currents with distinct pharmacological properties. This diversity suggests a great variety of pathways for Ca2+ signaling which may support different functions during development.
Collapse
Affiliation(s)
- S Diochot
- INSERM U249, Institut de Biologie, Montpellier, France
| | | | | |
Collapse
|
12
|
Diochot S, Richard S, Baldy-Moulinier M, Nargeot J, Valmier J. Dihydropyridines, phenylalkylamines and benzothiazepines block N-, P/Q- and R-type calcium currents. Pflugers Arch 1995; 431:10-9. [PMID: 8584405 DOI: 10.1007/bf00374372] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We compared the effects of representative members of three major classes of cardiac L-type channel antagonists, i.e. dihydropyridines (DHPs), phenylalkylamines (PAAs) and benzothiazepines (BTZs) on high-voltage-activated (HVA) Ca2+ channel currents recorded from a holding potential of -100 mV in rat ventricular cells, mouse sensory neurons and rat motoneurons. Nimodipine (DHP), verapamil (PAA) and diltiazem (BTZ) block the cardiac L-type Ca2+ channel current (EC50: 1 microM, 4 microM and 40 microM, respectively). At these concentrations, the drugs could also inhibit HVA Ca2+ channel currents in both sensory and motor neurons. Large blocking effects (> 50%) could be observed at 2-10 times these concentrations. The omega -conotoxin-GVIA-sensitive (omega -CTx-GVIA, N-type), omega -agatoxin-IVA-sensitive (omega -Aga-IVA, P- and Q-types) and non-L-type omega -CTx-GVIA-, omega -Aga-IVA-insensitive (R-types) currents accounted for more than 90% of the global current. Furthermore, our data showed that omega -CTx-GVIA and omega -Aga-IVA spare L-type currents and have only additive blocking effects on neuronal HVA currents. We conclude that DHPs, PAAs and BTZs have substantial inhibitory effects on neuronal non-L-type Ca2+ channels. Inhibitions occur at concentrations that are not maximally active on cardiac L-type Ca2+ channels.
Collapse
Affiliation(s)
- S Diochot
- Institut de Biologie, Boulevard Henri IV, F-34060 Montpellier Cedex, France
| | | | | | | | | |
Collapse
|
13
|
Sadraei H, Beech DJ. Ionic currents and inhibitory effects of glibenclamide in seminal vesicle smooth muscle cells. Br J Pharmacol 1995; 115:1447-54. [PMID: 8564204 PMCID: PMC1908885 DOI: 10.1111/j.1476-5381.1995.tb16636.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. Whole-cell voltage-clamp recordings were made from smooth muscle cells isolated from guinea-pig seminal vesicle. 2. When the recording pipette solution contained 130 mM KCl and a low concentration of EGTA (0.2 mM), a dominant outward current was elicited by depolarization to positive of -30 mV from a holding potential of -50 mV. The current was non-inactivating, stimulated by intracellular Ca2+ and blocked by bath-applied 1 mM tetraethylammonium but not 1 mM 3,4 diaminopyridine. 3. If 10 mM EGTA was added to the KCl pipette solution and the holding potential was -50 mV, or more negative, the major current elicited by depolarization to positive of -30 mV was an A-type K(+)-current. This current inactivated rapidly (within 100 ms) and was blocked by bath-applied 1 mM 3,4-diaminopyridine but not 10 mM tetraethylammonium. 4. An inward voltage-gated Ca channel current was observed on depolarization to positive of -30 mV with 1.5 mM Ca2+ or 10 mM Ba2+ in the bath solution and when Ca+ replaced K+ in the pipette. The Ba(2+)-current was shown to be abolished by bath-applied 100 microM Cd2+ and inhibited by 90% by 1 microM nifedipine, and thus appeared to be carried by L-type Ca channels. 5. High concentrations of glibenclamide (10-500 microM) inhibited A-type K(+)-current, Ba(2+)-current and contraction of the whole tissue induced by noradrenaline or electrical field stimulation. 6. From these data we suggest that seminal vesicle smooth muscle cells express Ca2+ -dependent K channels, A-type K channels and L-type Ca channels which are inhibited by tetraethylammonium,3,4-diaminopyridine and nifedipine, respectively. In addition, an unexpected relaxant effect of high concentrations of glibenclamide may be explained by inhibition of the Ca channels.
Collapse
Affiliation(s)
- H Sadraei
- Department of Pharmacology, University of Leeds
| | | |
Collapse
|
14
|
Neveu D, Quignard JF, Fernandez A, Richard S, Nargeot J. Differential beta-adrenergic regulation and phenotypic modulation of voltage-gated calcium currents in rat aortic myocytes. J Physiol 1994; 479 ( Pt 2):171-82. [PMID: 7799219 PMCID: PMC1155737 DOI: 10.1113/jphysiol.1994.sp020286] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. We studied the beta-adrenergic regulation of voltage-gated Ca2+ channel currents using the whole-cell patch-clamp technique (18-22 degrees C) in freshly isolated and in cultured (1-20 days) rat aortic vascular smooth muscle cells (VSMCs). These currents include a transient low-voltage-activated (LVA) current and two L-type-related high-voltage-activated currents (HVA1 and HVA2, respectively). 2. At 10 microM, the beta-adrenergic agonist, isoprenaline, increased the HVA2 current (65 +/- 30%, n = 10) but had no effect on LVA and HVA1 currents. This potentiation was dose dependent in the range 0.01-10 microM, developed with a slow time course and was mimicked by elevating intracellular cyclic AMP using the permeant analogue dibutyryl cyclic AMP (100 microM). 3. In the well-differentiated freshly isolated myocytes, only the HVA1 current was recorded. In cultured cells, a predominant frequency of occurrence of LVA and HVA1 currents was observed in modulated and differentiated myocytes, respectively. The occurrence of the HVA2 current was stable during culture but this current disappeared when the cells were confluent. It was retrieved when the confluent cells were dispersed and subcultured. 4. In conclusion, we present evidence for a differential beta-adrenergic regulation of three types of Ca2+ channel current in adult rat aortic VSMCs. The differential expression of these currents, associated with marked changes in cell phenotypes in vitro, suggests that they serve distinct physiological functions.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Bucladesine/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Cell Cycle
- Cells, Cultured
- DNA/biosynthesis
- Ion Channel Gating
- Isoproterenol/pharmacology
- Male
- Membrane Potentials
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Patch-Clamp Techniques
- Phenotype
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta/physiology
Collapse
Affiliation(s)
- D Neveu
- Centre de Recherches de Biochimie Macromoléculaire, CNRS, UPR 9008, INSERM U 249, Montpellier, France
| | | | | | | | | |
Collapse
|
15
|
Tomlinson WJ, Stea A, Bourinet E, Charnet P, Nargeot J, Snutch TP. Functional properties of a neuronal class C L-type calcium channel. Neuropharmacology 1993; 32:1117-26. [PMID: 8107966 DOI: 10.1016/0028-3908(93)90006-o] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The rat brain class C calcium channel alpha 1 subunit cDNA, rbC-II, was subcloned into a vertebrate expression vector and transient expression was assayed following nuclear injection into Xenopus oocytes. Whole cell recordings showed that rbC-II currents (recorded with 40 mM Ba2+ as the charge carrier) had variable activation rates and minimal inactivation over an approximately 700 msec depolarizing step pulse. The pharmacological properties of the rbC-II current were consistent with those of an L-type calcium channel, being sensitive to dihydropyridines (10 microM nifedipine blocked approximately 85% of the current, 10 microM Bay K 8644 enhanced the current between 2- and 10-fold) and not affected by the N- and P-type calcium channel antagonists, omega-conotoxin GVIA and omega-agatoxin IVA, respectively. Coexpression of rbC-II with cloned rat neuronal calcium channel alpha 2 and beta subunits resulted in several changes to the electrophysiological properties of the rbC-II current including, an increased whole cell peak current, an increased rate of activation and a hyperpolarizing shift in the voltage dependence of activation. Taken together with results showing that the neuronal class D alpha 1 subunit also encodes an L-type calcium channel [Williams M. E., Feldman D. H., McCue A. F., Brenner R., Velicelebi G., Ellis S. B. and Harpold M. M. (1992a) Neuron 8: 71-84], these results indicate that the mammalian nervous system expresses two distinct genes encoding L-type calcium channels.
Collapse
Affiliation(s)
- W J Tomlinson
- Biotechnology Laboratory, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|