1
|
Yang F, Zhang Z, Hu B, Yu Y, Tan A. A CCCH zinc finger gene regulates doublesex alternative splicing and male development in Bombyx mori. INSECT SCIENCE 2021; 28:1253-1261. [PMID: 33029871 DOI: 10.1111/1744-7917.12876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/26/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Recent identification of a Piwi-interacting RNA (piRNA)-initiated sex determination cascade in the silkworm, Bombyx mori, provides novel insights into high diversity of insect sex determination pathways. In this system, the W-chromosome-derived Fem piRNA is the primary sex determination signal. A CCCH-type zinc finger gene Masculinizer (Masc), which is targeted by Fem piRNA-PIWI complex in female animals, is indispensable for male-specific splicing of B. mori doublesex (Bmdsx). Although many genes involved in this cascade have been identified, the regulatory mechanisms of silkworm sex determination remain to be elucidated. Here we show that another CCCH-type zinc finger gene, Bmznf-2, is a masculinization factor in B. mori. Bmznf-2 shows testis-abundant expression and loss of Bmznf-2 function via clustered regularly interspaced short palindromic repeats / single-guide RNA-mediated mutagenesis results in feminized differentiation and appearance of the female-specific splicing variants of Bmdsx transcripts in males. In contrast, there is no phenotypic consequence in mutant females. In mutant males, relative messenger RNA expression levels of female-dominant genes such as vitellogenin and sex-specific storage protein 1 are significantly elevated while several male-dominant genes are significantly down-regulated. Furthermore, male mutants show delayed developmental timing, smaller body sizes of larvae and malformation of moth wings. Our data thus reveal that Bmznf-2 plays an indispensable role in silkworm male sexual differentiation.
Collapse
Affiliation(s)
- Fangying Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongjie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Hu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Yu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Pimsler ML, Hjelmen CE, Jonika MM, Sharma A, Fu S, Bala M, Sze SH, Tomberlin JK, Tarone AM. Sexual Dimorphism in Growth Rate and Gene Expression Throughout Immature Development in Wild Type Chrysomya rufifacies (Diptera: Calliphoridae) Macquart. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.696638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reliability of forensic entomology analyses to produce relevant information to a given case requires an understanding of the underlying arthropod population(s) of interest and the factors contributing to variability. Common traits for analyses are affected by a variety of genetic and environmental factors. One trait of interest in forensic investigations has been species-specific temperature-dependent growth rates. Recent work indicates sexual dimorphism may be important in the analysis of such traits and related genetic markers of age. However, studying sexual dimorphic patterns of gene expression throughout immature development in wild-type insects can be difficult due to a lack of genetic tools, and the limits of most sex-determination mechanisms. Chrysomya rufifacies, however, is a particularly tractable system to address these issues as it has a monogenic sex determination system, meaning females have only a single-sex of offspring throughout their life. Using modified breeding procedures (to ensure single-female egg clutches) and transcriptomics, we investigated sexual dimorphism in development rate and gene expression. Females develop slower than males (9 h difference from egg to eclosion respectively) even at 30°C, with an average egg-to-eclosion time of 225 h for males and 234 h for females. Given that many key genes rely on sex-specific splicing for the development and maintenance of sexually dimorphic traits, we used a transcriptomic approach to identify different expression of gene splice variants. We find that 98.4% of assembled nodes exhibited sex-specific, stage-specific, to sex-by-stage specific patterns of expression. However, the greatest signal in the expression data is differentiation by developmental stage, indicating that sexual dimorphism in gene expression during development may not be investigatively important and that markers of age may be relatively independent of sex. Subtle differences in these gene expression patterns can be detected as early as 4 h post-oviposition, and 12 of these nodes demonstrate homology with key Drosophila sex determination genes, providing clues regarding the distinct sex determination mechanism of C. rufifacies. Finally, we validated the transcriptome analyses through qPCR and have identified five genes that are developmentally informative within and between sexes.
Collapse
|
3
|
Andere AA, Pimsler ML, Tarone AM, Picard CJ. The genomes of a monogenic fly: views of primitive sex chromosomes. Sci Rep 2020; 10:15728. [PMID: 32978490 PMCID: PMC7519133 DOI: 10.1038/s41598-020-72880-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/07/2020] [Indexed: 11/10/2022] Open
Abstract
The production of male and female offspring is often determined by the presence of specific sex chromosomes which control sex-specific expression, and sex chromosomes evolve through reduced recombination and specialized gene content. Here we present the genomes of Chrysomya rufifacies, a monogenic blow fly (females produce female or male offspring, exclusively) by separately sequencing and assembling each type of female and the male. The genomes (> 25X coverage) do not appear to have any sex-linked Muller F elements (typical for many Diptera) and exhibit little differentiation between groups supporting the morphological assessments of C. rufifacies homomorphic chromosomes. Males in this species are associated with a unimodal coverage distribution while females exhibit bimodal coverage distributions, suggesting a potential difference in genomic architecture. The presence of the individual-sex draft genomes herein provides new clues regarding the origination and evolution of the diverse sex-determining mechanisms observed within Diptera. Additional genomic analysis of sex chromosomes and sex-determining genes of other blow flies will allow a refined evolutionary understanding of how flies with a typical X/Y heterogametic amphogeny (male and female offspring in similar ratios) sex determination systems evolved into one with a dominant factor that results in single sex progeny in a chromosomally monomorphic system.
Collapse
Affiliation(s)
- Anne A. Andere
- Department of Biology, Indiana University- Purdue University Indianapolis, Indianapolis, IN USA
| | - Meaghan L. Pimsler
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL USA
| | - Aaron M. Tarone
- Department of Entomology, Texas A&M University, College Station, TX USA
| | - Christine J. Picard
- Department of Biology, Indiana University- Purdue University Indianapolis, Indianapolis, IN USA
| |
Collapse
|
4
|
Cook DF, Voss SC, Finch JTD, Rader RC, Cook JM, Spurr CJ. The Role of Flies as Pollinators of Horticultural Crops: An Australian Case Study with Worldwide Relevance. INSECTS 2020; 11:E341. [PMID: 32498457 PMCID: PMC7349676 DOI: 10.3390/insects11060341] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
Abstract
Australian horticulture relies heavily on the introduced managed honey bee, Apis mellifera Linnaeus 1758 (Hymenoptera: Apidae), to pollinate crops. Given the risks associated with reliance upon a single species, it would be prudent to identify other taxa that could be managed to provide crop pollination services. We reviewed the literature relating to the distribution, efficiency and management potential of a number of flies (Diptera) known to visit pollinator-dependent crops in Australia and worldwide. Applying this information, we identified the taxa most suitable to play a greater role as managed pollinators in Australian crops. Of the taxa reviewed, flower visitation by representatives from the dipteran families Calliphoridae, Rhiniidae and Syrphidae was frequently reported in the literature. While data available are limited, there was clear evidence of pollination by these flies in a range of crops. A review of fly morphology, foraging behaviour and physiology revealed considerable potential for their development as managed pollinators, either alone or to augment honey bee services. Considering existing pollination evidence, along with the distribution, morphology, behaviour and life history traits of introduced and endemic species, 11 calliphorid, two rhiniid and seven syrphid species were identified as candidates with high potential for use in Australian managed pollination services. Research directions for the comprehensive assessment of the pollination abilities of the identified taxa to facilitate their development as a pollination service are described. This triage approach to identifying species with high potential to become significant managed pollinators at local or regional levels is clearly widely applicable to other countries and taxa.
Collapse
Affiliation(s)
- David F Cook
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| | - Sasha C Voss
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;
| | - Jonathan T D Finch
- Plants Animals and Interactions, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (J.T.D.F.); (J.M.C.)
| | - Romina C Rader
- School of Environmental and Rural Science, University of New England, Madgewick Drive, Armidale, NSW 2351, Australia;
| | - James M Cook
- Plants Animals and Interactions, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (J.T.D.F.); (J.M.C.)
| | - Cameron J Spurr
- SeedPurity Pty Ltd., 2 Derwent Avenue, Margate, Tasmania 7054, Australia;
| |
Collapse
|
5
|
Kuijper B, Pen I. Conflict over condition-dependent sex allocation can lead to mixed sex-determination systems. Evolution 2014; 68:3229-47. [PMID: 25180669 PMCID: PMC4241047 DOI: 10.1111/evo.12513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/23/2014] [Indexed: 11/27/2022]
Abstract
Theory suggests that genetic conflicts drive turnovers between sex-determining mechanisms, yet these studies only apply to cases where sex allocation is independent of environment or condition. Here, we model parent-offspring conflict in the presence of condition-dependent sex allocation, where the environment has sex-specific fitness consequences. Additionally, one sex is assumed to be more costly to produce than the other, which leads offspring to favor a sex ratio less biased toward the cheaper sex in comparison to the sex ratio favored by mothers. The scope for parent-offspring conflict depends on the relative frequency of both environments: when one environment is less common than the other, parent-offspring conflict can be reduced or even entirely absent, despite a biased population sex ratio. The model shows that conflict-driven invasions of condition-independent sex factors (e.g., sex chromosomes) result either in the loss of condition-dependent sex allocation, or, interestingly, lead to stable mixtures of condition-dependent and condition-independent sex factors. The latter outcome corresponds to empirical observations in which sex chromosomes are present in organisms with environment-dependent sex determination. Finally, conflict can also favor errors in environmental perception, potentially resulting in the loss of condition-dependent sex allocation without genetic changes to sex-determining loci.
Collapse
Affiliation(s)
- Bram Kuijper
- Theoretical Biology Group, Centre for Evolutionary and Ecological Studies, University of Groningen, the Netherlands; ComPLEX, Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom; Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.
| | | |
Collapse
|
6
|
Scott M, Pimsler M, Tarone A. Sex Determination Mechanisms in the Calliphoridae (Blow Flies). Sex Dev 2014; 8:29-37. [DOI: 10.1159/000357132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Bopp D, Saccone G, Beye M. Sex determination in insects: variations on a common theme. Sex Dev 2013; 8:20-8. [PMID: 24335049 DOI: 10.1159/000356458] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent studies in a representative selection of holometabolous insects suggest that, despite diversity at the instructive level, the signal-relaying part of the sex-determining pathway is remarkably well conserved. In principle, it is composed of the transformer gene (tra), which acts as a common binary switch that transduces the selected sexual fate, female when ON, male when OFF, to the downstream effector doublesex(dsx) that controls overt sexual differentiation. An interesting recurrent feature is that tra is switched ON in the early zygote by maternally provisioned tra activity. Different male-determining signals evolved, which prevent maternal activation of zygotic tra to allow for male development. In some species, where lack of maternal activation leaves tra in the OFF state, novel female-determining signals were deployed to activate zygotic tra. It appears that both the instructive end of the pathway upstream of tra as well as the executive end downstream of dsx are primary targets of evolutionary divergence, while the transduction part seems less prone to changes. We propose that this is a feature shared with many other signaling cascades that regulate developmental fates.
Collapse
Affiliation(s)
- D Bopp
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
8
|
Higashiura Y, Yamaguchi H, Ishihara M, Ono N, Tsukagoshi H, Yokobori S, Tokishita S, Yamagata H, Fukatsu T. Male death resulting from hybridization between subspecies of the gypsy moth, Lymantria dispar. Heredity (Edinb) 2011; 106:603-13. [PMID: 20628417 PMCID: PMC3183894 DOI: 10.1038/hdy.2010.92] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 05/27/2010] [Accepted: 06/08/2010] [Indexed: 11/08/2022] Open
Abstract
We explored the origin of all-female broods resulting from male death in a Hokkaido population of Lymantria dispar through genetic crosses based on the earlier experiments done by Goldschmidt and by testing for the presence of endosymbionts that are known to cause male killing in some insect species. The mitochondrial DNA haplotypes of the all-female broods in Hokkaido were different from those of normal Hokkaido females and were the same as those widely distributed in Asia, including Tokyo (TK). Goldschmidt obtained all-female broods through backcrossing, that is, F1 females obtained by a cross between TK females (L. dispar japonica) and Hokkaido males (L. dispar praeterea) mated with Hokkaido males. He also obtained all-male broods by mating Hokkaido females with TK males. Goldschmidt inferred that female- and male-determining factors were weakest in the Hokkaido subspecies and stronger in the Honshu (TK) subspecies. According to his theory, the females of all-female broods mated with Honshu males should produce normal sex-ratio broods, whereas weaker Hokkaido sexes would be expected to disappear in F1 or F2 generations after crossing with the Honshu subspecies. We confirmed both of Goldschmidt's results: in the case of all-female broods mated with Honshu males, normal sex-ratio broods were produced, but we obtained only all-female broods in the Goldschmidt backcross and obtained an all-male brood in the F1 generation of a Hokkaido female crossed with a TK male. We found no endosymbionts in all-female broods by 4,'6-diamidino-2-phenylindole (DAPI) staining. Therefore, the all-female broods observed in L. dispar are caused by some incompatibilities between Honshu and Hokkaido subspecies.
Collapse
Affiliation(s)
- Y Higashiura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Through the decades of relentless and dedicated studies in Drosophila melanogaster, the pathway that governs sexual development has been elucidated in great detail and has become a paradigm in understanding fundamental cell-fate decisions. However, recent phylogenetic studies show that the molecular strategy used in Drosophila deviates in some important aspects from those found in other dipteran flies and suggest that the Drosophila pathway is likely to be a derivative of a simpler and more common principle. In this essay, I will discuss the evolutionary plasticity of the sex-determining pathway based on studies in the common housefly, Musca domestica. Diversification appears to primarily arise from subtle differences in the regulation of the key switch gene transformer at the top of the pathway. On the basis of these findings I propose a new idea on how the Drosophila pathway may have evolved from a more archetypal system such as in M. domestica. In essence, the arrival of an X counting mechanism mediated by Sex-lethal to compensate for X linked gene dose differences set the stage for an intimate coupling of the two pathways. Its precedent recruitment to the dosage compensation pathway allowed for an intervention in the regulation of transformer where it gradually and eventually' completely substituted for a need of transformer autoregulation.
Collapse
Affiliation(s)
- Daniel Bopp
- Institute of Molecular Life Sciences, University of Zurich, Wintherthurerstrasse, Zurich, Switzerland.
| |
Collapse
|
10
|
Mahowald AP, Wei G. Sex determination of germ cells in Drosophila. CIBA FOUNDATION SYMPOSIUM 2007; 182:193-202; discussion 202-9. [PMID: 7835150 DOI: 10.1002/9780470514573.ch11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many lines of evidence indicate that in Drosophila the mechanism for establishing the sex of the female germline is different from that acting in somatic cells. In the soma Sxl has an embryonic determinative role and is required throughout the life of female flies; in germ cells its expression begins only in the larval ovary. Both the mechanism for activating Sxl and the genes controlled by Sxl are different in the germline. A number of genes have been identified that are essential either for survival (e.g. ovo, otu) or differentiation (snf, Sxl, fl(2)d, bgcn) of female germ cells. ovo is required during embryogenesis for survival of pole cells. Genetic interactions with dominant alleles of ovo and/or Sxl indicate that otu, Sxl, snf and fl(2)d act in the same pathway as does ovo. bgcn differs in that neither ovo nor SxlD mutations affect the bgcn phenotype even though XX bgcn germ cells enter the male pathway. bgcn causes sterility in both sexes. Although the germline defect is cell autonomous in mosaic gonads, bgcn is also required in the somatic tissue for maintaining oogenesis of wild-type germ cells. Several dominant suppressors of bgcn have been identified and some have properties similar to Suppressors of variegation, suggesting that chromatin structure is critical for proper germ cell sex determination.
Collapse
Affiliation(s)
- A P Mahowald
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637
| | | |
Collapse
|
11
|
Beukeboom LW, Kamping A, van de Zande L. Sex determination in the haplodiploid wasp Nasonia vitripennis (Hymenoptera: Chalcidoidea): a critical consideration of models and evidence. Semin Cell Dev Biol 2007; 18:371-8. [PMID: 17292644 DOI: 10.1016/j.semcdb.2006.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 12/01/2006] [Indexed: 12/01/2022]
Abstract
Sex determining mechanisms are highly diverse. Like all Hymenoptera, the parasitic wasp Nasonia vitripennis reproduces by haplodiploidy: males are haploid and females are diploid. Sex in Nasonia is not determined by complementary alleles at sex loci. Evidence for several alternative models is considered. Recent studies on a polyploid and a gynandromorphic mutant strain point to a maternal product that is balanced against the number of chromosomal complements in the zygote and a parent-specific (imprinting) effect. Research is now focused on the molecular details of sex determination in Nasonia.
Collapse
Affiliation(s)
- Leo W Beukeboom
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, Biological Centre, University of Groningen, P.O. Box 14, NL-9750 AA Haren, The Netherlands.
| | | | | |
Collapse
|
12
|
Nigro RG, Campos MCC, Perondini ALP. Temperature and the progeny sex-ratio in Sciara ocellaris (Diptera, Sciaridae). Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000100026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Ullerich FH, Schöttke M. Karyotypes, constitutive heterochromatin, and genomic DNA values in the blowfly genera Chrysomya, Lucilia, and Protophormia (Diptera: Calliphoridae). Genome 2006; 49:584-97. [PMID: 16936838 DOI: 10.1139/g06-013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The karyotypes and C-banding patterns of Chrysomya species C. marginalis, C. phaonis, C. pinguis, C. saffranea, C. megacephala (New Guinean strain), Lucilia sericata, and Protophormia terraenovae are described. All species are amphogenic and have similar chromosome complements (2n = 12), including an XY-XX sex-chromosome pair varying in size and morphology between species. Additionally, the C-banding pattern of the monogenic species Chrysomya albiceps is presented. The DNA contents of these and of further species Chrysomya rufifacies, Chrysomya varipes, and Chrysomya putoria were assessed on mitotic metaphases by Feulgen cytophotometry. The average 2C DNA value of the male genomes ranged from 1.04 pg in C. varipes to 2.31 pg in C. pinguis. The DNA content of metaphase X chromosomes varied from 0.013 pg (= 1.23% of the total genome) in C. varipes to 0.277 pg (12.20%) in L. sericata; that of Y chromosomes ranged from 0.003 pg (0.27%) in C. varipes to 0.104 pg (5.59%) in L. sericata. In most species, the corresponding 5 large chromosome pairs showed similar relative DNA contents. The data suggest that the interspecific DNA differences in most species are mainly due to quantitative variation of (repetitive) sequences lying outside the centromeric heterochromatin blocks of the large chromosomes. The results are also discussed with regard to phylogenetic relationships of some species.
Collapse
Affiliation(s)
- Fritz-Helmut Ullerich
- Zoologisches Instiut de Universität Kiel, Biologie-Zentrum, Olshausentstrasse 40, D-24098 Kiel, Germany.
| | | |
Collapse
|
14
|
Pane A, Salvemini M, Delli Bovi P, Polito C, Saccone G. Thetransformergene inCeratitis capitataprovides a genetic basis for selecting and remembering the sexual fate. Development 2002; 129:3715-25. [PMID: 12117820 DOI: 10.1242/dev.129.15.3715] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The medfly Ceratitis capitata contains a gene (Cctra) with structural and functional homology to the Drosophila melanogaster sex-determining gene transformer (tra). Similar to tra in Drosophila, Cctra is regulated by alternative splicing such that only females can encode a full-length protein. In contrast to Drosophila, however, where tra is a subordinate target of Sex-lethal (Sxl), Cctra seems to initiate an autoregulatory mechanism in XX embryos that provides continuous tra female-specific function and act as a cellular memory maintaining the female pathway. Indeed, a transient interference with Cctra expression in XX embryos by RNAi treatment can cause complete sexual transformation of both germline and soma in adult flies, resulting in a fertile male XX phenotype. The male pathway seems to result when Cctra autoregulation is prevented and instead splice variants with truncated open reading frames are produced. We propose that this repression is achieved by the Y-linked male-determining factor (M).
Collapse
Affiliation(s)
- Attilio Pane
- Dipartimento di Genetica, Biologia Generale e Molecolare, Università degli Studi di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli, Italy
| | | | | | | | | |
Collapse
|
15
|
Werren JH, Hatcher MJ, Godfray HCJ. Maternal-offspring conflict leads to the evolution of dominant zygotic sex determination. Heredity (Edinb) 2002; 88:102-11. [PMID: 11932768 DOI: 10.1038/sj.hdy.6800015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sex determination in many species involves interactions among maternally expressed genes (eg, mRNA's and proteins placed into the egg) and zygotically expressed genes. Recent studies have proposed that conflicting selective pressures can occur between maternally and zygotically expressed sex determining loci and that these may play a role in shaping the evolution of sex determining systems. Here we show that such genetic conflict occurs under very general circumstances. Whenever sex ratio among progeny in a family affects the fitness of either progeny in that family or maternal fitness, then maternal-zygotic genetic conflict occurs. Furthermore, we show that this conflict typically results in a "positive feedback loop" that leads to the evolution of a dominant zygotic sex determining locus. When males more negatively effect fitness within the family, a male heterogametic (XY male) sex determining system evolves, whereas when females more negatively effect fitness in the family, a female heterogametic (ZW female) system evolves. Individuals with the dominant sex allele are one sex, and the opposite sex is determined by maternally-expressed genes in individuals without the dominant sex allele. Results therefore suggest that maternal-zygotic conflict could play a role in the early evolution of chromosomal sex determining systems. Predictions are made concerning the patterns of expression of maternal and zygotic sex determining genes expected to result from conflict over sex determination.
Collapse
Affiliation(s)
- J H Werren
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
16
|
Kuhn S, Sievert V, Traut W. The sex-determining gene doublesex in the fly Megaselia scalaris: conserved structure and sex-specific splicing. Genome 2000; 43:1011-20. [PMID: 11195332 DOI: 10.1139/g00-078] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The well-known sex-determining cascade of Drosophila melanogaster serves as a paradigm for the pathway to sexual development in insects. But the primary sex-determining signal and the subsequent step, Sex-lethal (Sxl), have been shown not to be functionally conserved in non-Drosophila flies. We isolated doublesex (dsx), which is a downstream step in the cascade, from the phorid fly Megaselia scalaris, which is a distant relative of D. melanogaster. Conserved properties, e.g., sex-specific splicing, structure of the female-specific 3' splice site, a splicing enhancer region with binding motifs for the TRA2/RBP1/TRA complex that activates female-specific splicing in Drosophila, and conserved domains for DNA-binding and oligomerization in the putative DSX protein, indicate functional conservation of dsx in M. scalaris. Hence, the dsx step of the sex-determining pathway appears to be conserved among flies and probably in an even wider group of insects, as the analysis of a published cDNA from the silkmoth indicates.
Collapse
Affiliation(s)
- S Kuhn
- Institut für Biologie, Medizinische Universität Lübeck, Germany
| | | | | |
Collapse
|
17
|
Waterbury JA, Horabin JI, Bopp D, Schedl P. Sex determination in the Drosophila germline is dictated by the sexual identity of the surrounding soma. Genetics 2000; 155:1741-56. [PMID: 10924471 PMCID: PMC1461178 DOI: 10.1093/genetics/155.4.1741] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been suggested that sexual identity in the germline depends upon the combination of a nonautonomous somatic signaling pathway and an autonomous X chromosome counting system. In the studies reported here, we have examined the role of the sexual differentiation genes transformer (tra) and doublesex (dsx) in regulating the activity of the somatic signaling pathway. We asked whether ectopic somatic expression of the female products of the tra and dsx genes could feminize the germline of XY animals. We find that Tra(F) is sufficient to feminize XY germ cells, shutting off the expression of male-specific markers and activating the expression of female-specific markers. Feminization of the germline depends upon the constitutively expressed transformer-2 (tra-2) gene, but does not seem to require a functional dsx gene. However, feminization of XY germ cells by Tra(F) can be blocked by the male form of the Dsx protein (Dsx(M)). Expression of the female form of dsx, Dsx(F), in XY animals also induced germline expression of female markers. Taken together with a previous analysis of the effects of mutations in tra, tra-2, and dsx on the feminization of XX germ cells in XX animals, our findings indicate that the somatic signaling pathway is redundant at the level tra and dsx. Finally, our studies call into question the idea that a cell-autonomous X chromosome counting system plays a central role in germline sex determination.
Collapse
Affiliation(s)
- J A Waterbury
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
18
|
Abstract
There is growing evidence that sex determination in a wide range of organisms is determined by interactions between maternal-effect genes and zygotically expressing genes. Maternal-effect genes typically produce products (e.g., mRNA or proteins) that are placed into the egg during oogenesis and therefore depend upon maternal genotype. Here it is shown that maternal-effect and zygotic genes are subject to conflicting selective pressures over sex determination in species with partial inbreeding or subdivided populations. The optimal sex ratios for maternal-effect genes and zygotically expressing genes are derived for two models: partial inbreeding (sibmating) and subdivided populations with local mating in temporary demes (local mate competition). In both cases, maternal-effect genes are selected to bias sex determination more toward females than are zygotically expressed genes. By investigating the invasion criteria for zygotic genes in a population producing the maternal optimum (and vice versa), it is shown that genetic conflict occurs between these genes. Even relatively low levels of inbreeding or subdivision can result in maternal-zygotic gene conflict over sex determination. The generality of maternal-zygotic gene conflict to sex determination evolution is discussed; such conflict should be considered in genetic studies of sex-determining mechanisms.
Collapse
Affiliation(s)
- J H Werren
- Biology Department, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
19
|
Davis T, Kurihara J, Yamamoto D. Genomic organisation and characterisation of the neural sex-determination gene fruitless (fru) in the Hawaiian species Drosophila heteroneura. Gene 2000; 246:143-9. [PMID: 10767535 DOI: 10.1016/s0378-1119(00)00064-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There are several mechanisms for the determination of sex. Sexual behaviour is part of the sex-determination cascade, and in Drosophila melanogaster male courtship is controlled in part by the fruitless gene. As part of a study of sexual behaviour in Hawaiian Drosophila, we have cloned the neural sex-determination gene fru from the Hawaiian picture-wing species Drosophila heteroneura. The fru gene has at least seven exons covering a region of 18kb and encodes three transcripts, fruA, fruB and fruC. Each transcript encodes a single ORF of 841, 678 and 691aa, respectively. The FRUA and FRUB proteins have a BTB protein-protein-binding domain and two zinc finger-like domains and are well conserved with the D. melanogaster proteins. The FRUC protein has a BTB domain but no zinc finger-like domains. The fru gene is expressed in 1-7 day old adult males as a 5.1kb transcript. This transcript is not seen in adult females, so the fru gene has a different pattern of sex-differential expression in the Hawaiian Drosophila compared with D. melanogaster.
Collapse
Affiliation(s)
- T Davis
- Yamamoto Behavior Genes Project, ERATO, Center for Conservation Research and Training, University of Hawaii at Manoa, 3050 Maile Way, Gilmore 408, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
20
|
Schütt C, Nöthiger R. Structure, function and evolution of sex-determining systems in Dipteran insects. Development 2000; 127:667-77. [PMID: 10648226 DOI: 10.1242/dev.127.4.667] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nature has evolved an astonishing variety of genetic and epigenetic sex-determining systems which all achieve the same result, the generation of two sexes. Genetic and molecular analyses, mainly performed during the last 20 years, have gradually revealed the mechanisms that govern sexual differentiation in a few model organisms. In this review, we will introduce the sex-determining system of Drosophila and compare the fruitfly to the housefly Musca domestica and other Dipteran insects. Despite the ostensible variety, all these insects use the same basic strategy: a primary genetic signal that is different in males and females, a key gene that responds to the primary signal, and a double-switch gene that eventually selects between two alternative sexual programmes. These parallels, however, do not extend to the molecular level. Except for the double-switch gene doublesex at the end of the cascade, no functional homologies were found between more distantly related insects. In particular, Sex-lethal, the key gene that controls sexual differentiation in Drosophila, does not have a sex-determining function in any other genus studied so far. These results show that sex-determining cascades, in comparison to other regulatory pathways, evolve much more rapidly.
Collapse
Affiliation(s)
- C Schütt
- Zoological Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
21
|
Affiliation(s)
- John H. Werren
- Biology Department, University of Rochester, Rochester, New York 14627; e-mail:
| | - Leo W. Beukeboom
- Institute of Evolutionary and Ecological Sciences, University of Leiden, RA Leiden, NL-2300 The Netherlands; e-mail:
| |
Collapse
|
22
|
Dübendorfer A, Hediger M. The female-determining gene F of the housefly, Musca domestica, acts maternally to regulate its own zygotic activity. Genetics 1998; 150:221-6. [PMID: 9725841 PMCID: PMC1460308 DOI: 10.1093/genetics/150.1.221] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Musca domestica, the common housefly, female development requires the continuous activity of the sex-determining gene F from early embryogenesis until metamorphosis. To activate F in embryogenesis, two conditions must be met: There must be no male-determining M factor in the zygotic genome, and the egg must be preconditioned by F activity in the maternal germ line. This maternal activity can be suppressed by introducing an M factor into the maternal germ line, which causes all offspring, including those that do not carry M, to develop as males. By transplantation of pole cells (germline progenitor cells) we have constructed such females with a genetically male germ line and, simultaneously, males with a genetically female germ line carrying a constitutive allele of F [F(Dominant) (F(D))]. Crosses between these animals yielded offspring that, despite the presence of M in the maternal germ line, were of female sex, solely due to zygotic F(D) brought in via the sperm. This shows that zygotic F function alone is sufficient to promote female development and that in the wild-type situation, maternal F product serves no other function but to activate the zygotic F gene.
Collapse
Affiliation(s)
- A Dübendorfer
- Institute of Zoology, University of Zürich, CH-8057 Zürich, Switzerland.
| | | |
Collapse
|
23
|
Sievert V, Kuhn S, Traut W. Expression of the sex determining cascade genesSex-lethalanddoublesexin the phorid flyMegaselia scalaris. Genome 1997; 40:211-4. [DOI: 10.1139/g97-030] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex-lethal (Sxl) and doublesex (dsx) are known to represent parts of the sex-determining cascade in Drosophila melanogaster. We generated cDNA probes of the homologous genes from Megaselia scalaris, a fly species with an epistatic maleness factor as the primary sex determining signal. In Northern blot hybridization of poly(A)+RNA, the M. scalaris dsx probe detected two bands, one of which had a sex-specific size difference, while the Sxl probe bound to RNAs of equal size in females and males. RT-PCR showed Sxl to be transcribed in gonads of adult females and males but not in somatic tissues. Thus, while dsx appears to have a similar function in M. scalaris and D. melanogaster, Sxl does not. The results suggest that the sex-determining pathway of M. scalaris joins that of D. melanogaster between the Sxl and dsx steps.Key words: RNA-binding domain, zinc finger, differential splicing, Drosophila.
Collapse
|
24
|
Abstract
Sex-determining mechanisms appear to be very diverse in invertebrates. Haplodiploidy is a widespread mode of reproduction in insects: males are haploid and females are diploid. Several models have been proposed for the genetic mechanisms of sex determination in haplodiploid Hymenoptera. Although a one-locus multi-allele model is valid for several species, sex determination in other species cannot be explained by any of the existing models. Evidence for and predictions of two recently proposed models are discussed. Some genetic and molecular approaches are proposed to study sex determination in Hymenoptera.
Collapse
Affiliation(s)
- L W Beukeboom
- Arbeitsgruppe Michiels, Max-Planck-Institut für Verhaltensphysiologie, Seewiesen, Germany
| |
Collapse
|
25
|
Abstract
Sex determination in the germ line may either rely on cell-autonomous genetic information, or it may be imposed during development by inductive somatic signals. In Drosophila, both mechanisms contribute to ensure that germ cells are oogenic when differentiating in females and spermatogenic when differentiating in males. Some of the genes that are involved in germ line sex determination have been identified. In other species, including vertebrates, inductive signals are commonly used to determine the sex of germ cells.
Collapse
|
26
|
Hilfiker-Kleiner D, Dübendorfer A, Hilfiker A, Nöthiger R. Genetic control of sex determination in the germ line and soma of the housefly, Musca domestica. Development 1994; 120:2531-8. [PMID: 7956829 DOI: 10.1242/dev.120.9.2531] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Musca domestica, sex in the soma is cell autonomously determined by the male-determiner M, or by the female-determiner FD. Transplanted pole cells (precursors of the germ line) show that sex determination of germ cells is non-autonomous genotypically male pole cells form functional eggs in female hosts, and genotypically female pole cells form functional sperm in male hosts. When M/+ cells undergo oogenesis, a male-determining maternal effect predetermines offspring without M, i.e. of female genotype, to develop as fertile males. FD is epistatic to M in the female germ line, as it is in the soma, overruling the masculinizing effect of M. The results suggest that maternal F product is needed for activation of the zygotic F gene.
Collapse
|
27
|
Puchalla S. Polytene chromosomes of monogenic and amphogenic Chrysomya species (Calliphoridae, Diptera): analysis of banding patterns and in situ hybridization with Drosophila sex determining gene sequences. Chromosoma 1994; 103:16-30. [PMID: 8013251 DOI: 10.1007/bf00364722] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Standard maps for the five banded polytene chromosomes found in trichogen cell nuclei of the monogenic blowfly Chrysomya rufifacies and the amphogenic Chrysomya pinguis are presented. The chromosomes are highly homologous in the two species; differences in banding patterns are predominantly caused by one pericentric and ten paracentric inversions. In chromosome 5 of the amphogenic Chrysomya phaonis, also analysed in this paper, an additional paracentric inversion was observed. The distribution of species specific inversions indicates that the monogenic C. rufifacies is phylogenetically older than the amphogenic species. The maternal sex realizer locus F'/f on polytene chromosome 5 of C. rufifacies is not associated with a structural heterozygosity. Chromosome pair 6 of C. rufifacies and the sex chromosome pair of C. pinguis are under-replicated in polytene nuclei; they consist of irregular chromatin granules, frequently associated with nucleolus material. Evolution of heteromorphic sex chromosomes in Chrysomya is probably correlated with heterochromatin accumulation. A search for sex determining genes in Chrysomya was initiated using sex determining sequences from Drosophila melanogaster for in situ hybridization. The polytene band 41A1 on chromosome 5 of monogenic and amphogenic Chrysomya species contains sequences homologous to the maternal sex determining gene daughterless (da). Homology to the zygotic gene Sex-lethal (Sxl) of Drosophila is detected in band 39A1 on chromosome 5 of C. rufifacies. The findings reported here are the first evidence for a possible homology between the da gene of Drosophila and the maternal sex realizer F' of C. rufifacies. An hypothesis for the evolution of the maternal effect sex determination of C. rufifacies is proposed.
Collapse
Affiliation(s)
- S Puchalla
- Zoologisches Institut, Universität Kiel, Germany
| |
Collapse
|
28
|
Abstract
Different animal groups exhibit a surprisingly diversity of sex determination systems. Moreover, even systems that are superficially similar may utilize different underlying mechanisms. This diversity is illustrated by a comparison of sex determination in three well-studied model organisms: the fruitfly Drosophila melanogaster, the nematode Caenorhabditis elegans, and the mouse. All three animals exhibit male heterogamety, extensive sexual dimorphism and sex chromosome dosage compensation, yet the molecular and cellular processes involved are now known to be quite unrelated. The similarities must have arisen by convergent evolution. Studies of sex determination demonstrate that evolution can produce a variety of solutions to the same basic problems in development.
Collapse
Affiliation(s)
- J Hodgkin
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
29
|
Abstract
In Drosophila melanogaster, the mechanism of sex determination is substantially different in the germ line and in the soma. In the germ line, the process is not completely cell-autonomous, but requires some signals from the soma. Only some of the genes involved in somatic sex determination are also needed for germ cell development. Recent genetic studies have identified loci required for germ-line sex determination.
Collapse
Affiliation(s)
- D Pauli
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | | |
Collapse
|
30
|
Clausen S, Ullerich FH. Sequence homology between a polytene band in the genetic sex chromosomes of Chrysomya rufifacies and the daughterless gene of Drosophila melanogaster. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1990; 77:137-8. [PMID: 2111467 DOI: 10.1007/bf01134479] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- S Clausen
- Zoologisches Institut der Universität, Biologie-Zentrum, Kiel
| | | |
Collapse
|
31
|
GINSBURGER-VOGEL T. Determinisme des anomalies de sex ratio á hérédité paternelle chez le crustacé amphipodeOrchestia gammarellusPallas. INVERTEBR REPROD DEV 1989. [DOI: 10.1080/07924259.1989.9672076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Steinmann-Zwicky M, Schmid H, Nöthiger R. Cell-autonomous and inductive signals can determine the sex of the germ line of drosophila by regulating the gene Sxl. Cell 1989; 57:157-66. [PMID: 2702687 DOI: 10.1016/0092-8674(89)90181-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To investigate the mechanism of sex determination in the germ line, we analyzed the fate of XY germ cells in ovaries, and the fate of XX germ cells in testes. In ovaries, germ cells developed according to their X:A ratio, i.e., XX cells underwent oogenesis, XY cells formed spermatocytes. In testes, however, XY and XX germ cells entered the spermatogenic pathway. Thus, to determine their sex, the germ cells of Drosophila have cell-autonomous genetic information, and XX cells respond to inductive signals of the soma. Results obtained with amorphic and constitutive mutations of Sxl show that both the genetic and the somatic signals act through Sxl to achieve sex determination in germ cells.
Collapse
|
33
|
|
34
|
Difference in protein synthesis of ovaries indicates predetermined sex inChrysomya rufifacies (Diptera, Calliphoridae). ACTA ACUST UNITED AC 1986; 195:182-185. [DOI: 10.1007/bf02439436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/1985] [Accepted: 11/07/1985] [Indexed: 10/24/2022]
|
35
|
|