1
|
Song N, Wang MM, Huang WC, Wu ZY, Shao R, Yin XM. Phylogeny and evolution of hemipteran insects based on expanded genomic and transcriptomic data. BMC Biol 2024; 22:190. [PMID: 39218865 PMCID: PMC11367992 DOI: 10.1186/s12915-024-01991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Hemiptera is the fifth species-rich order of insects and the most species-rich order of hemimetabolous insects, including numerous insect species that are of agricultural or medical significance. Despite much effort and recent advance in inferring the Hemiptera phylogeny, some high-level relationships among superfamilies remain controversial. RESULTS We sequenced the genomes of 64 hemipteran species from 15 superfamilies and the transcriptomes of two additional scale insect species, integrating them with existing genomic and transcriptomic data to conduct a comprehensive phylogenetic analysis of Hemiptera. Our datasets comprise an average of 1625 nuclear loci of 315 species across 27 superfamilies of Hemiptera. Our analyses supported Cicadoidea and Cercopoidea as sister groups, with Membracoidea typically positioned as the sister to Cicadoidea + Cercopoidea. In most analyses, Aleyrodoidea was recovered as the sister group of all other Sternorrhyncha. A sister-group relationship was supported between Coccoidea and Aphidoidea + Phylloxeroidea. These relationships were further supported by four-cluster likelihood mapping analyses across diverse datasets. Our ancestral state reconstruction indicates phytophagy as the primary feeding strategy for Hemiptera as a whole. However, predation likely represents an ancestral state for Heteroptera, with several phytophagous lineages having evolved from predatory ancestors. Certain lineages, like Lygaeoidea, have undergone a reversal transition from phytophagy to predation. Our divergence time estimation placed the diversification of hemipterans to be between 60 and 150 million years ago. CONCLUSIONS By expanding phylogenomic taxon sampling, we clarified the superfamily relationships within the infraorder Cicadomorpha. Our phylogenetic analyses supported the sister-group relationship between the superfamilies Cicadoidea and Cercopoidea, and the superfamily Membracoidea as the sister to Cicadoidea + Cercopoidea. Our divergence time estimation supported the close association of hemipteran diversification with the evolutionary success and adaptive radiation of angiosperms during the Cretaceous period.
Collapse
Affiliation(s)
- Nan Song
- College of Plant Protection, Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, Henan Agricultural University, Zhengzhou, Henan, China
- Centre for Bioinnovation and School of Science, Technology and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, QLD, Australia
| | - Miao-Miao Wang
- College of Plant Protection, Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wei-Chao Huang
- Hangzhou Xiaoshan Airport Customs, Hangzhou, Zhejiang, China
| | - Zhi-Yi Wu
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, Zhejiang, China
| | - Renfu Shao
- Centre for Bioinnovation and School of Science, Technology and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, QLD, Australia.
| | - Xin-Ming Yin
- College of Plant Protection, Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Using micro-computed tomography to reveal the anatomy of adult Diaphorina citri Kuwayama (Insecta: Hemiptera, Liviidae) and how it pierces and feeds within a citrus leaf. Sci Rep 2021; 11:1358. [PMID: 33446699 PMCID: PMC7809155 DOI: 10.1038/s41598-020-80404-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/18/2020] [Indexed: 11/08/2022] Open
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri, is a harmful pest of citrus trees that transmits Candidatus Liberibacter spp. which causes Huanglongbing (HLB) (citrus greening disease); this is considered to be the most serious bacterial disease of citrus plants. Here we detail an anatomical study of the external and internal anatomy (excluding the reproductive system) using micro-computed tomography (micro-CT). This is the first complete 3D micro-CT reconstruction of the anatomy of a psylloid insect and includes a 3D reconstruction of an adult feeding on a citrus leaf that can be used on mobile devices. Detailed rendered images and videos support first descriptions of coxal and scapus antennal glands and sexual differences in the internal anatomy (hindgut rectum, mesothoracic ganglion and brain). This represents a significant advance in our knowledge of ACP anatomy, and of psyllids in general. Together the images, videos and 3D model constitute a unique anatomical atlas and are useful tools for future research and as teaching aids.
Collapse
|
3
|
Drohojowska J, Szwedo J, Żyła D, Huang DY, Müller P. Fossils reshape the Sternorrhyncha evolutionary tree (Insecta, Hemiptera). Sci Rep 2020; 10:11390. [PMID: 32647332 PMCID: PMC7347605 DOI: 10.1038/s41598-020-68220-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/13/2020] [Indexed: 11/17/2022] Open
Abstract
The Sternorrhyncha, which comprise about 18,700 described recent species, is a suborder of the Hemiptera, one of big five most diverse insect orders. In the modern fauna, these tiny phytophages comprise insects of great ecological and economic importance, like aphids (Aphidomorpha), scale insects (Coccidomorpha), whiteflies (Aleyrodomorpha) and psyllids (Psylloidea). Their evolutionary history can be traced back to the Late Carboniferous, but the early stages of their evolution and diversification is poorly understood, with two known extinct groups-Pincombeomorpha and Naibiomorpha variously placed in classifications and relationships hypotheses. Most of the recent Sternorrhyncha groups radiated rapidly during the Cretaceous. Here we report the new finding of very specialised sternorrhynchans found as inclusions in mid-Cretaceous amber from Kachin state (northern Myanmar), which represent another extinct lineage within this hemipteran suborder. These fossils, proposed to be placed in a new infraorder, are revealed to be related to whiteflies and psyllids. We present, also for the first time, the results of phylogenetic analyses covering extinct and extant lineages of the Sternorrhyncha.
Collapse
Affiliation(s)
- Jowita Drohojowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 9, Bankowa St., 40-007 Katowice, Poland
| | - Jacek Szwedo
- Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Department of Invertebrate Zoology and Parasitology, University of Gdańsk, 59, Wita Stwosza St., 80-308 Gdańsk, Poland
| | - Dagmara Żyła
- Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Department of Invertebrate Zoology and Parasitology, University of Gdańsk, 59, Wita Stwosza St., 80-308 Gdańsk, Poland
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA USA
| | - Di-Ying Huang
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Patrick Müller
- Kaeshofen, Germany
- Amber Study Group, c/o Geological-Palaeontological Museum of the University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
| |
Collapse
|
4
|
Cicero JM, Hunter WB, Cano LM, Saha S, Mueller LA, Brown SJ. Reinterpretation of 'sperm pump' or 'sperm syringe' function with notes on other male internal reproductive organs in the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 54:100915. [PMID: 32062333 DOI: 10.1016/j.asd.2020.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Reproduction is a critical feature in the search for means to manage the Asian citrus psyllid, vector of a devastating bacterial pathogen of citrus. The importance of accuracy in functional, anatomical descriptions and interpretations for use by other disciplines, particularly molecular genetics, cannot be overstressed. The term 'sperm pump' was coined by classical authors on observational appearance of the endoskeleton of the male reproductive apparatus. They described a thimble-shaped cuticle with smooth, cylindrical columns, interpreted as muscles, that ran longitudinally around a central cylinder. They detected transverse lines on the cylinder giving the false impression of a coiled spring. These features fostered the teleological interpretation that the device is a contractile pump. Now obsolete, the term is replaced by 'drum/spout complex'. It is a hypodermis with a sclerotized cuticle that houses the phallus which transports seminal fluid through its lumen to the female for insemination. Between the spout and the external genitalia is a spout extension, conferring flexibility to the apparatus about the abdominal apex. Approximately 21 longitudinal columns extend circumferentially around the cylinder's hemolymph-side, from the thimble's basal plate to its apical plate. These columns are correctly muscle cells, and reinterpreted to exude a lipaceous, lubricating substance for mating.
Collapse
Affiliation(s)
- Joseph M Cicero
- University of Florida, UF/IFAS, Entomology and Nematology Dept., 1881 Natural Area Dr., Steinmetz Hall, Gainesville, 32611, USA.
| | - Wayne B Hunter
- USDA-ARS, Horticultural Research Lab, 2001 S. Rock Rd., Fort Pierce, FL 34945, USA
| | - Liliana M Cano
- University of Florida, UF/IFAS, Indian River Research and Education Center, Department of Plant Pathology, 2199 S. Rock Rd., Ft. Pierce, FL 34945, USA
| | - Surya Saha
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA
| | - Lukas A Mueller
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA
| | - Susan J Brown
- Dept. Biology, Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
5
|
Song N, Zhang H, Zhao T. Insights into the phylogeny of Hemiptera from increased mitogenomic taxon sampling. Mol Phylogenet Evol 2019; 137:236-249. [PMID: 31121308 DOI: 10.1016/j.ympev.2019.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Although reconstruction of the phylogeny of Hemiptera has progressed tremendously over the past two decades, some higher-level relationships remain poorly resolved. Here, we investigated the Hemiptera higher-level relationships using full mitochondrial genome data from 357 ingroup species, representing the most comprehensive sampling yet undertaken for reconstructing the phylogeny of this group. In this study, 92 mitochondrial genomes were newly determined. Various data treatment methods and substitution models were applied to tree reconstructions. Effects of compositional heterogeneity, rate heterogeneity, model adequacy and taxon sampling on support values and topological stability were explored. Phylogenetic analyses (1) confirmed the monophyly of Hemiptera under site-heterogeneous model, (2) placed Sternorrhyncha as sister to all other Hemiptera, (3) recovered Coccoidea as the sister taxon of Aphidoidea, followed successively by Aleyrodoidea and Psylloidea, and (4) indicated that the grouping of Coleorrhyncha and Fulgoromorpha was the result of long-branch attraction effect.
Collapse
Affiliation(s)
- Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Hao Zhang
- Henan Vocational and Technological College of Communication, Zhengzhou 450015, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
6
|
Cicero JM, Stansly PA. New Anatomical Evidence from the Male Asian Citrus Psyllid (Hemiptera: Liviidae) Invokes Controversy Over the Accepted Function of Some Male Reproductive Organs in Psylloidea. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5521720. [PMID: 31225878 PMCID: PMC6587681 DOI: 10.1093/jisesa/iez048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Males of many Psylloidea are known to possess a characteristic structure at the functional hub of their reproductive apparatus, between afferent and efferent passage of seminal fluid. The structure is a squat, cylindrical endoskeleton consisting of two sections. Classical authors named them as 'sperm pump' and 'ejaculatory duct', based on superficial resemblance to a spring-loaded, thimble-shaped cylinder, encircled by smooth, vertical columns interpreted to be muscles which, when contracted, compress the cylinder and affect seminal fluid discharge. The discovery of numerous spherules of unknown composition and function in and around the columns of the Asian citrus psyllid male genitalia invoked rigorous scrutiny of the classical literature for evidence to support its claims, and determined that the grounds for vetting the structure as a sperm pump were fully teleological. This paper raises several objections to modern acceptance of this classical interpretation, presenting them as problematic, thought-provoking, and sometimes controversial anatomical features. The two sections are herein called 'drum' and 'spout'. As an endoskeleton, the sections are an invagination of the exoskeleton and therefore cannot receive seminal fluid into their hollow. A phallus is identified inside an aedeagal tube, indicating that it is the ejaculatory duct-the tube, drum, and spout are considered its housing. A sheath envelopes the drum and is directly continuous with the spout hypodermis, another problematical feature raising the question of whether it is detached from adherence to the drum cuticles. Also, there are four afferent tubes but only two openings in the drum to receive their seminal fluids.
Collapse
Affiliation(s)
- Joseph M Cicero
- Entomology and Nematology Department, University of Florida, Steinmetz Hall, 1881 Natural Area Dr., Gainesville, FL 32611
| | - Philip A Stansly
- (posthumous) Entomology and Nematology Department, Southwest Research and Education Center, University of Florida, Immokalee, FL
| |
Collapse
|
7
|
Franielczyk-Pietyra B, Wegierek P. The forewing of Cacopsylla mali (Schmidberger 1836) (Hemiptera, Sternorrhyncha) – a morphological and histological study. ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2018.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Alba-Alejandre I, Hunter WB, Alba-Tercedor J. Micro-CT study of male genitalia and reproductive system of the Asian citrus psyllid, Diaphorina citri Kuwayama, 1908 (Insecta: Hemiptera, Liviidae). PLoS One 2018; 13:e0202234. [PMID: 30114289 PMCID: PMC6095541 DOI: 10.1371/journal.pone.0202234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/30/2018] [Indexed: 11/18/2022] Open
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri, is a major vector of the bacteria Candidatus Liberibacter asiaticus and C.L. americanus, which cause Huanglongbing disease (HLB) (aka Citrus greening disease), considered the most serious bacterial disease of citrus trees. As part of a multidisciplinary project on psyllid biology (www.citrusgreening.org), the results presented here concern a detailed anatomical study of the male reproductive system (testes, seminal vesicles, accessory glands, sperm pump, connecting ducts, and aedeagus) using micro-computed tomography (micro-CT). The study summarizes current knowledge on psyllids male reproductive system and represents significant advances in the knowledge of ACP anatomy.
Collapse
Affiliation(s)
- Ignacio Alba-Alejandre
- Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, Granada, Spain
| | - Wayne B. Hunter
- U.S. Dept. Agriculture, Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Javier Alba-Tercedor
- Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, Granada, Spain
| |
Collapse
|
9
|
Kot M, Büning J, Jankowska W, Drohojowska J, Szklarzewicz T. Development of ovary structures in the last larval and adult stages of psyllids (Insecta, Hemiptera, Sternorrhyncha: Psylloidea). ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:389-398. [PMID: 27140505 DOI: 10.1016/j.asd.2016.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 06/05/2023]
Abstract
The development and organization of the ovaries of ten species from four Psylloidea families (Psyllidae, Triozidae, Aphalaridae and Liviidae) have been investigated. The ovaries of the last larval stage (i.e. fifth instar) of all examined species are filled with numerous clusters of cystocytes which undergo synchronous incomplete mitotic division. Cystocytes of the given cluster are arranged into a rosette with polyfusome in the centre. These clusters are associated with single somatic cells. At the end of the fifth instar, the clusters begin to separate from each other, forming spherical ovarioles which are surrounded by a single layer of somatic cells. In the ovarioles of very young females all cystocytes enter the prophase of meiosis and differentiate shortly thereafter into oocytes and trophocytes (nurse cells). Meanwhile, somatic cells differentiate into cells of the inner epithelial sheath surrounding the trophocytes and into the prefollicular cells that encompass the oocytes. During this final differentiation, the trophocytes lose their cell membranes and become syncytial. Oocytes remain cellular and most of them (termed arrested oocytes) do not grow. In the ovarioles of older females, one oocyte encompassed by its follicle cells starts growing, still connected to the syncytial tropharium by a nutritive cord. After the short phase of previtellogenesis alone, the oocyte enters its vitellogenic the growth phase in the vitellarium. At that time, the second oocyte may enter the vitellarium and start its previtellogenic growth. In the light of the obtained results, the phylogeny of psyllids, as well as phylogenetic relationships between taxa of Hemiptera: Sternorrhyncha are discussed.
Collapse
Affiliation(s)
- Marta Kot
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Jürgen Büning
- Friedrich-Alexander University of Erlangen-Nuremberg, Department of Biology, Division of Developmental Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Władysława Jankowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Jowita Drohojowska
- Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
10
|
Friedemann K, Spangenberg R, Yoshizawa K, Beutel RG. Evolution of attachment structures in the highly diverse Acercaria (Hexapoda). Cladistics 2013; 30:170-201. [DOI: 10.1111/cla.12030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 11/26/2022] Open
Affiliation(s)
- Katrin Friedemann
- Entomology Group; Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum; FSU Jena 07743 Germany
- Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Rico Spangenberg
- Entomology Group; Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum; FSU Jena 07743 Germany
- Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Kazunori Yoshizawa
- Laboratory of Systematic Entomology; Graduate School of Agriculture; Hokkaido University; Sapporo 060-8589 Japan
| | - Rolf G. Beutel
- Entomology Group; Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum; FSU Jena 07743 Germany
- Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| |
Collapse
|
11
|
|
12
|
Campbell BC, Steffen-Campbell JD, Gill RJ. Evolutionary origin of whiteflies (Hemiptera: Sternorrhyncha: Aleyrodidae) inferred from 18S rDNA sequences. INSECT MOLECULAR BIOLOGY 1994; 3:73-88. [PMID: 7987524 DOI: 10.1111/j.1365-2583.1994.tb00154.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Phylogenetic analysis of 18S rDNA nucleotide sequences of hemipteran exemplars shows Sternorrhyncha (psyllids, whiteflies, aphids and scales) is monophyletic and forms a sister group to all other hemipterans (Euhemiptera). Whiteflies form a sister group to all other Sternorrhyncha. Primary structures of 18S rDNAs of all sternorrhynchans are exceptionally long (approximately 2200 to approximately 2500 bp) due to internal expansions. These expansions are a synapomorphy of Sternorrhyncha; other hemipterans possess shorter 18S rDNAs (approximately 1900 to approximately 1925 bp). The 18S rDNA of whiteflies is the longest recorded to date and has a base substitution rate of approximately 3 times greater than Euhemiptera taxa examined. The relevance of these findings to the fossil record, feeding strategies, reproductive biologies, and geoclimatic distribution is discussed.
Collapse
|
13
|
Schlee D. Structures and Functions, Their General Significance for Phylogenetic Reconstruction in Recent and Fossil Taxa. ZOOL SCR 1976. [DOI: 10.1111/j.1463-6409.1976.tb00697.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
|
15
|
|
16
|
Schlee D. Bau und funktion des aedeagus bei psyllina und deren bedeutung f�r systematische und phylogenetische untersuchungen (Insecta, Hemiptera). ZOOMORPHOLOGY 1969. [DOI: 10.1007/bf00391784] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|