1
|
McCrory C, Verma J, Tucey TM, Turner R, Weerasinghe H, Beilharz TH, Traven A. The short-chain fatty acid crotonate reduces invasive growth and immune escape of Candida albicans by regulating hyphal gene expression. mBio 2023; 14:e0260523. [PMID: 37929941 PMCID: PMC10746253 DOI: 10.1128/mbio.02605-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Macrophages curtail the proliferation of the pathogen Candida albicans within human body niches. Within macrophages, C. albicans adapts its metabolism and switches to invasive hyphal morphology. These adaptations enable fungal growth and immune escape by triggering macrophage lysis. Transcriptional programs regulate these metabolic and morphogenetic adaptations. Here we studied the roles of chromatin in these processes and implicate lysine crotonylation, a histone mark regulated by metabolism, in hyphal morphogenesis and macrophage interactions by C. albicans. We show that the short-chain fatty acid crotonate increases histone crotonylation, reduces hyphal formation within macrophages, and slows macrophage lysis and immune escape of C. albicans. Crotonate represses hyphal gene expression, and we propose that C. albicans uses diverse acylation marks to regulate its cell morphology in host environments. Hyphal formation is a virulence property of C. albicans. Therefore, a further importance of our study stems from identifying crotonate as a hyphal inhibitor.
Collapse
Affiliation(s)
- Christopher McCrory
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Jiyoti Verma
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Timothy M. Tucey
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rachael Turner
- Department of Biochemistry and Molecular Biology and Stem Cells and Development Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Harshini Weerasinghe
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Traude H. Beilharz
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Biochemistry and Molecular Biology and Stem Cells and Development Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Elucidation of an anaerobic pathway for metabolism of l-carnitine-derived γ-butyrobetaine to trimethylamine in human gut bacteria. Proc Natl Acad Sci U S A 2021; 118:2101498118. [PMID: 34362844 PMCID: PMC8364193 DOI: 10.1073/pnas.2101498118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Trimethylamine (TMA) is an important gut microbial metabolite strongly associated with human disease. There are prominent gaps in our understanding of how TMA is produced from the essential dietary nutrient l-carnitine, particularly in the anoxic environment of the human gut where oxygen-dependent l-carnitine-metabolizing enzymes are likely inactive. Here, we elucidate the chemical and genetic basis for anaerobic TMA generation from the l-carnitine-derived metabolite γ-butyrobetaine (γbb) by the human gut bacterium Emergencia timonensis We identify a set of genes up-regulated by γbb and demonstrate that the enzymes encoded by the induced γbb utilization (bbu) gene cluster convert γbb to TMA. The key TMA-generating step is catalyzed by a previously unknown type of TMA-lyase enzyme that utilizes a putative flavin cofactor to catalyze a redox-neutral transformation. We identify additional cultured and uncultured host-associated bacteria that possess the bbu gene cluster, providing insights into the distribution of anaerobic γbb metabolism. Lastly, we present genetic, transcriptional, and metabolomic evidence that confirms the relevance of this metabolic pathway in the human gut microbiota. These analyses indicate that the anaerobic pathway is a more substantial contributor to TMA generation from l-carnitine in the human gut than the previously proposed aerobic pathway. The discovery and characterization of the bbu pathway provides the critical missing link in anaerobic metabolism of l-carnitine to TMA, enabling investigation into the connection between this microbial function and human disease.
Collapse
|
3
|
Taylor AJ, Kelly DJ. The function, biogenesis and regulation of the electron transport chains in Campylobacter jejuni: New insights into the bioenergetics of a major food-borne pathogen. Adv Microb Physiol 2019; 74:239-329. [PMID: 31126532 DOI: 10.1016/bs.ampbs.2019.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter jejuni is a zoonotic Epsilonproteobacterium that grows in the gastrointestinal tract of birds and mammals, and is the most frequent cause of food-borne bacterial gastroenteritis worldwide. As an oxygen-sensitive microaerophile, C. jejuni has to survive high environmental oxygen tensions, adapt to oxygen limitation in the host intestine and resist host oxidative attack. Despite its small genome size, C. jejuni is a versatile and metabolically active pathogen, with a complex and highly branched set of respiratory chains allowing the use of a wide range of electron donors and alternative electron acceptors in addition to oxygen, including fumarate, nitrate, nitrite, tetrathionate and N- or S-oxides. Several novel enzymes participate in these electron transport chains, including a tungsten containing formate dehydrogenase, a Complex I that uses flavodoxin and not NADH, a periplasmic facing fumarate reductase and a cytochrome c tetrathionate reductase. This review presents an updated description of the composition and bioenergetics of these various respiratory chains as they are currently understood, including recent work that gives new insights into energy conservation during electron transport to various alternative electron acceptors. The regulation of synthesis and assembly of the electron transport chains is also discussed. A deeper appreciation of the unique features of the respiratory systems of C. jejuni may be helpful in informing strategies to control this important pathogen.
Collapse
Affiliation(s)
- Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
4
|
Zhang X, Zeng X, Li X, Alain K, Jebbar M, Shao Z. Anaeromicrobium sediminis gen. nov., sp. nov., a fermentative bacterium isolated from deep-sea sediment. Int J Syst Evol Microbiol 2016; 67:1462-1467. [PMID: 27974087 DOI: 10.1099/ijsem.0.001739] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel anaerobic, mesophilic, heterotrophic bacterium, designated strain DY2726DT, was isolated from West Pacific Ocean sediments. Cells were long rods (0.5-0.8 µm wide, 4-15 µm long), Gram-positive and motile by means of flagella. The temperature and pH ranges for growth were 25-40 °C and pH 6.5-9.0, while optimal growth occurred at 37 °C and pH 7.5, with a generation time of 76 min. The strain required sea salts for growth at concentrations from 10 to 30 g l-1 (optimum at 20 g l-1). Substrates used as carbon sources were yeast extract, tryptone, glucose, cellobiose, starch, gelatin, dextrin, fructose, fucose, galactose, galacturonic acid, gentiobiose, glucosaminic acid, mannose, melibiose, palatinose and rhamnose. Products of fermentation were carbon dioxide, acetic acid and butyric acid. Strain DY2726DT was able to reduce amorphous iron hydroxide, goethite, amorphous iron oxides, anthraquinone-2,6-disulfonate and crotonate, but did not reduce sulfur, sulfate, thiosulfate, sulfite or nitrate. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain DY2726DT was affiliated to the family Clostridiaceae and was most closely related to the type strains of Alkaliphilus transvaalensis (90.0 % similarity) and Alkaliphilus oremlandii (89.6 %). The genomic DNA G+C content was 33.4 mol%. The major cellular fatty acids of strain DY2726DT were C16 : 1, C14 : 0 and C16 : 0. On the basis of its phenotypic and genotypic properties, strain DY2726DT is suggested to represent a novel species of a new genus in the family Clostridiaceae, for which the name Anaeromicrobium sediminis gen. nov., sp. nov. is proposed. The type strain of Anaeromicrobium sediminis is DY2726DT (=JCM 30224T=MCCC 1A00776T).
Collapse
Affiliation(s)
- Xiaobo Zhang
- Key Laboratory of Marine Biogenetic Resources, the Third Institute of Oceanography SOA, Xiamen, Fujian 361005, PR China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, Fujian 361005, PR China.,Collaborative Innovation Center of Deep Sea Biology, Xiamen, Fujian 361005, PR China
| | - Xiang Zeng
- Collaborative Innovation Center of Deep Sea Biology, Xiamen, Fujian 361005, PR China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, Fujian 361005, PR China.,Key Laboratory of Marine Biogenetic Resources, the Third Institute of Oceanography SOA, Xiamen, Fujian 361005, PR China
| | - Xi Li
- Key Laboratory of Marine Biogenetic Resources, the Third Institute of Oceanography SOA, Xiamen, Fujian 361005, PR China.,Collaborative Innovation Center of Deep Sea Biology, Xiamen, Fujian 361005, PR China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, Fujian 361005, PR China
| | - Karine Alain
- CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Place Nicolas Copernic, F-29280 Plouzané, France.,Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Place Nicolas Copernic, F-29280 Plouzané, France.,Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du diable, F-29280 Plouzané, France
| | - Mohamed Jebbar
- CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Place Nicolas Copernic, F-29280 Plouzané, France.,Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Place Nicolas Copernic, F-29280 Plouzané, France.,Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du diable, F-29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, the Third Institute of Oceanography SOA, Xiamen, Fujian 361005, PR China.,Collaborative Innovation Center of Deep Sea Biology, Xiamen, Fujian 361005, PR China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, Fujian 361005, PR China
| |
Collapse
|
5
|
Isolation, characterization, and quantification of Clostridium kluyveri from the bovine rumen. Appl Microbiol Biotechnol 2011; 94:461-6. [DOI: 10.1007/s00253-011-3751-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/04/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
|
6
|
Guccione E, Hitchcock A, Hall SJ, Mulholland F, Shearer N, van Vliet AHM, Kelly DJ. Reduction of fumarate, mesaconate and crotonate by Mfr, a novel oxygen-regulated periplasmic reductase inCampylobacter jejuni. Environ Microbiol 2010; 12:576-91. [DOI: 10.1111/j.1462-2920.2009.02096.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Mouttaki H, Nanny MA, McInerney MJ. Cyclohexane carboxylate and benzoate formation from crotonate in Syntrophus aciditrophicus. Appl Environ Microbiol 2007; 73:930-8. [PMID: 17158621 PMCID: PMC1800762 DOI: 10.1128/aem.02227-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 11/29/2006] [Indexed: 11/20/2022] Open
Abstract
The anaerobic, syntrophic bacterium Syntrophus aciditrophicus grown in pure culture produced 1.4 +/- 0.24 mol of acetate and 0.16 +/- 0.02 mol of cyclohexane carboxylate per mole of crotonate metabolized. [U-13C]crotonate was metabolized to [1,2-(13)C]acetate and [1,2,3,4,5,7-(13)C]cyclohexane carboxylate. Cultures grown with unlabeled crotonate and [13C]sodium bicarbonate formed [6-(13)C]cyclohexane carboxylate. Trimethylsilyl (TMS) derivatives of cyclohexane carboxylate, cyclohex-1-ene carboxylate, benzoate, pimelate, glutarate, 3-hydroxybutyrate, and acetoacetate were detected as intermediates by comparison of retention times and mass spectral profiles to authentic standards. With [U-(13)C]crotonate, the m/z-15 ion of TMS-derivatized glutarate, 3-hydroxybutyrate, and acetoacetate each increased by +4 mass units, and the m/z-15 ion of TMS-derivatized pimelate, cyclohex-1-ene carboxylate, benzoate, and cyclohexane carboxylate each increased by +6 mass units. With [13C]sodium bicarbonate and unlabeled crotonate, the m/z-15 ion of TMS derivatives of glutarate, pimelate, cyclohex-1-ene carboxylate, benzoate, and cyclohexane carboxylate each increased by +1 mass unit, suggesting that carboxylation occurred after the synthesis of a four-carbon intermediate. With [1,2-(13)C]acetate and unlabeled crotonate, the m/z-15 ion of TMS-derivatized 3-hydroxybutyrate, acetoacetate, and glutarate each increased by +0, +2, and +4 mass units, respectively, and the m/z-15 ion of TMS-derivatized pimelate, cyclohex-1-ene carboxylate, benzoate, cyclohexane carboxylate, and 2-hydroxycyclohexane carboxylate each increased by +0, +2, +4, and +6 mass units. The data are consistent with a pathway for cyclohexane carboxylate formation involving the condensation of two-carbon units derived from crotonate degradation with CO2 addition, rather than the use of the intact four-carbon skeleton of crotonate.
Collapse
Affiliation(s)
- Housna Mouttaki
- Department of Botany and Microbiology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA
| | | | | |
Collapse
|
8
|
Abou-Zeid DM, Müller RJ, Deckwer WD. Biodegradation of Aliphatic Homopolyesters and Aliphatic−Aromatic Copolyesters by Anaerobic Microorganisms. Biomacromolecules 2004; 5:1687-97. [PMID: 15360276 DOI: 10.1021/bm0499334] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anaerobic degradability of natural and synthetic polyesters is investigated applying microbial consortia (3 sludges, 1 sediment) as well as individual strains isolated for this purpose. In contrast to aerobic conditions, the natural homopolyester polyhydroxybutyrate (PHB) degrades faster than the copolyester poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV). For the synthetic polyester poly(epsilon-caroplacton) (PCL), microbial degradation in the absence of oxygen could be clearly demonstrated; however, the degradation rate is significantly lower than for PHB and PHBV. Other synthetic polyesters such as poly(trimethylene adipate) (SP3/6), poly(tetramethylene adipate) (SP4/6), and aliphatic-aromatic copolyesters from 1,4-butanediol, terephthalic acid, and adipic acid (BTA-copolymers) exhibit only very low anaerobic microbial susceptibility. A copolyester with high amount of terephthalic acid (BTA 40:60) resisted the anaerobic breakdown even under thermophilic conditions and/or when blended with starch. For the synthetic polymers, a number of individual anaerobic strain could be isolated which are able to depolymerize the polymers and selected strains where identified as new species of the genus Clostridium or Propionispora. Their distinguished degradation patterns point to the involvement of different degrading enzymes which are specialized to depolymerize either the natural polyhydroxyalkanoates (e.g., PHB), the synthetic polyester PCL, or other synthetic aliphatic polyesters such as SP3/6. It can be supposed that these enzymes exhibit comparable characteristics as those described to be responsible for aerobic polyester degradation (lipases, cutinases, and PHB-depolymerases).
Collapse
Affiliation(s)
- Dunja-Manal Abou-Zeid
- Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg, D 38124 Braunschweig, Germany
| | | | | |
Collapse
|
9
|
Chiral synthons by selective redox reactions catalysed by hitherto unknown enzymes present in resting microbial cells. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1572-5995(97)80043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Söhling B, Gottschalk G. Molecular analysis of the anaerobic succinate degradation pathway in Clostridium kluyveri. J Bacteriol 1996; 178:871-80. [PMID: 8550525 PMCID: PMC177737 DOI: 10.1128/jb.178.3.871-880.1996] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A region of genomic DNA from Clostridium kluyveri was cloned in Escherichia coli by a screening strategy which was based on heterologous expression of the clostridial 4-hydroxybutyrate dehydrogenase gene. The gene region (6,575 bp) contained several open reading frames which encoded the coenzyme A (CoA)- and NADP+-dependent succinate-semialdehyde dehydrogenase (sucD), the 4-hydroxybutyrate dehydrogenase (4hbD), and a succinyl-CoA;CoA transferase (cat1), as analyzed by heterologous expression in E. coli. An open reading frame encoding a putative membrane protein (orfY) and the 5' region of a gene encoding a sigma 54-homologous sigma factor (sigL) were identified as well. Transcription was investigated by Northern (RNA) blot analysis. Protein sequence comparisons of SucD and 4HbD revealed similarities to the adhE (aad) gene products from E. coli and Clostridium acetobutylicum and to enzymes of the novel class (III) of alcohol dehydrogenases. A comparison of CoA-dependent aldehyde dehydrogenases is presented.
Collapse
Affiliation(s)
- B Söhling
- Institut für Mikrobiologie, Georg-August-Universität Göttigen, Germany
| | | |
Collapse
|
11
|
Auburger G, Winter J. Activation and degradation of benzoate, 3-phenylpropionate and crotonate by Syntrophus buswellii strain GA. Evidence for electron-transport phosphorylation during crotonate respiration. Appl Microbiol Biotechnol 1996; 44:807-15. [PMID: 8867639 DOI: 10.1007/bf00178623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A strictly anaerobic, benzoate-degrading bacterium, Syntrophus buswellii strain GA, was able to degrade benzoate or 3-phenylpropionate to acetate, CO2 and H2, if the hydrogen partial pressure was sufficiently low. The hydrogen was removed in syntrophic coculture by Methanospirillum hungatei or by Desulfovibrio sp. through interspecies hydrogen transfer or in pure culture by the use of crotonate as reducible cosubstrate. Alternatively, S. buswellii strain GA could grow in pure culture with crotonate. Activities of seven catabolic enzymes were measured in crude cell extracts of S. buswellii strain GA grown with various substrates and of crotonate-grown S. buswellii strain DSM 2612A. Benzoate, 3-phenylpropionate and crotonate were activated by CoA ligases. Glutaryl-CoA dehydrogenase was found to be involved in the degradation of aromatic compounds and enzymes catalysing beta-oxidation were involved in the reaction sequence from crotonyl-CoA to acetate. A c-type cytochrome was present in the cytoplasm, whereas b-type cytochromes were associated with the membranes of both S. buswellii strains grown on crotonate. These indicated the presence of an electron-transport system. A high growth yield of crotonate-grown S. buswellii strain GA might be explained by electron-transport phosphorylation in addition to substrate-level phosphorylation.
Collapse
Affiliation(s)
- G Auburger
- Institut für Ingenieurbiologie und Biotechnologie des Abwassers, Universität Karlsruhe, Germany
| | | |
Collapse
|
12
|
Clostridium viride sp. nov., a strictly anaerobic bacterium using 5-aminovalerate as growth substrate, previously assigned to Clostridium aminovalericum. Arch Microbiol 1994. [DOI: 10.1007/bf00282102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Scherf U, Söhling B, Gottschalk G, Linder D, Buckel W. Succinate-ethanol fermentation in Clostridium kluyveri: purification and characterisation of 4-hydroxybutyryl-CoA dehydratase/vinylacetyl-CoA delta 3-delta 2-isomerase. Arch Microbiol 1994; 161:239-45. [PMID: 8161284 DOI: 10.1007/bf00248699] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Anaerobically prepared cell extracts of Clostridium kluyveri grown on succinate plus ethanol contained high amounts of 4-hydroxybutyryl-CoA dehydratase, which catalyzes the reversible dehydration of 4-hydroxybutyryl-CoA to crotonyl-CoA. The enzyme was purified 12-fold under strictly anaerobic conditions to over 95% homogeneity and had a specific activity of 123 nkat mg-1. The finding of this dehydratase means that all of the enzymes necessary for fermentation of succinate plus ethanol by C. kluyveri have now been demonstrated to exist in this organism and confirms the proposed pathway involving a reduction of succinate via 4-hydroxybutyrate to butyrate. Interestingly, the enzyme is almost identical to the previously isolated 4-hydroxybutyryl-CoA dehydratase from Clostridium aminobutyricum. The dehydratase was revealed as being a homotetramer (m = 59 kDa/subunit), containing 2 +/- 0.2 mol FAD, 13.6 +/- 0.8 mol Fe and 10.8 +/- 1.2 mol inorganic sulfur. The enzyme was irreversibly inactivated after exposure to air. Reduction by sodium dithionite also yielded an inactive enzyme which could be reactivated, however, up to 84% by oxidation with potassium hexacyanoferrate(III). The enzyme possesses an intrinsic vinylacetyl-CoA isomerase activity which was also found in 4-hydroxybutyryl-CoA dehydratase from C. aminobutyricum. Moreover, the N-terminal sequences of the dehydratases from both organisms were found to be 63% identical.
Collapse
Affiliation(s)
- U Scherf
- Laboratorium für Mikrobiologie des Fachbereiches Biologie der Philipps-Universität, Marburg, Germany
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Ilyobacter delafieldii sp. nov., a metabolically restricted anaerobic bacterium fermenting PHB. Arch Microbiol 1990. [DOI: 10.1007/bf00248964] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
|
17
|
Studies on the substrate range of Clostridium kluyveri; the use of propanol and succinate. Arch Microbiol 1985. [DOI: 10.1007/bf00408056] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Bader J, Simon H. ATP formation is coupled to the hydrogenation of 2-enoates in Clostridium sporogenes. FEMS Microbiol Lett 1983. [DOI: 10.1111/j.1574-6968.1983.tb00111.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Giesel H, Simon H. On the occurrence of enoate reductase and 2-oxo-carboxylate reductase in clostridia and some observations on the amino acid fermentation by Peptostreptococcus anaerobius. Arch Microbiol 1983; 135:51-7. [PMID: 6354130 DOI: 10.1007/bf00419482] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Enoate reductase present in Clostridium kluyveri and Clostridium spec. La 1 could be detected in three strains of C. tyrobutyricum and ten clostridia belonging to the groups of proteolytic and saccharolytic or proteolytic species, respectively. In C. pasteurianum, C. butyricum and C. propionicum enoate reductase could not be found even after growth on (E)-2-butenoate. A 2-oxo-carboxylate reductase was present in rather low activities in the non-proteolytic clostridia which produce enoate reductase. High activities (up to 10 U/mg protein) of 2-oxo-carboxylate reductase were found in six of ten proteolytic clostridia. The substrate specificities of the enoate reductase and the 2-oxo-carboxylate reductases from the proteolytic clostridia were determined with different alpha, beta-unsaturated carboxylates (enoates) and 2-oxo-carboxylates, respectively. Enoates as well as 2-oxo-carboxylates are intermediates of the pathway by which amino acids are degraded. An explanation is offered for the long known but not understood fact that in the Stickland reaction isoleucine always acts as an electron donor and leucine and phenylalanine can be electron acceptors as well as donors. Peptostreptococcus anaerobius converting some amino acids to the same products as C. sporogenes did this also with the intermediates which were found for the reductive deamination of amino acids in C. sporogenes, however, in crude extracts reduction of enoates occurred only in an activated form.
Collapse
|
20
|
Giesel H, Simon H. Immunological relationship of enoate reductases from different clostridia and the classification ofClostridiumspecies La 1. FEMS Microbiol Lett 1983. [DOI: 10.1111/j.1574-6968.1983.tb00507.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Desrut M, Kergomard A, Renard MF, Veschambre H. Microbial reduction of alpha, beta-unsaturated carbonyl compounds: a general property? Biochem Biophys Res Commun 1983; 110:908-12. [PMID: 6404264 DOI: 10.1016/0006-291x(83)91048-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Leinberger R, Hull WE, Simon H, Rétey J. Steric course of the NIH shift in the enzymic formation of homogentisic acid. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 117:311-8. [PMID: 7274212 DOI: 10.1111/j.1432-1033.1981.tb06338.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Investigations on the Reduction of Aliphatic and Aromatic Nitro Compounds by Clostridium Species and Enzyme Systems. ACTA ACUST UNITED AC 1981. [DOI: 10.1007/978-3-642-67919-3_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Bader J, Simon H. The activities of hydrogenase and enoate reductase in two Clostridium species, their interrelationship and dependence on growth conditions. Arch Microbiol 1980; 127:279-87. [PMID: 7004377 DOI: 10.1007/bf00427205] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|