1
|
Li Y, Wang J, Gu T, Yamahara J, Li Y. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats. Toxicol Appl Pharmacol 2014; 277:155-63. [DOI: 10.1016/j.taap.2014.03.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/27/2014] [Accepted: 03/25/2014] [Indexed: 12/13/2022]
|
2
|
Dhurandhar NV. Insulin sparing action of adenovirus 36 and its E4orf1 protein. J Diabetes Complications 2013; 27:191-9. [PMID: 23246247 DOI: 10.1016/j.jdiacomp.2012.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 02/06/2023]
Abstract
Additional drugs are required to effectively manage diabetes and its complications. Recent studies have revealed protective effects of Ad36, a human adenovirus, and its E4orf1 protein on glucose disposal, which may be creatively harnessed to develop novel anti-diabetic agents. Experimental Ad36 infection improves hyperglycemia in animal models and natural Ad36 infection in humans is associated with better glycemic control. Available data indicate distinctive advantages for a drug that may mimic the action of Ad36/E4orf1. The key features of such a potential drug include the ability to increase glucose uptake by adipose tissue and skeletal muscle, to reduce hepatic glucose output independent of proximal insulin signaling, and to up-regulate adiponectin and its hepatic action. The effect of Ad36/E4orf1 on hepatocyte metabolism suggests a role for treating hepatic steatosis. Despite these potential advantages, considerable research is required before such a drug is developed. The in vivo efficacy and safety of E4orf1 in improving hyperglycemia remain unknown, and an appropriate drug delivery system is required. Nonetheless, Ad36 E4orf1 offers a research opportunity to develop a new anti-diabetic agent with multiple potential advantages and conceptually advances the use of a rather unconventional source, microbial proteins, for anti-diabetic drug development.
Collapse
Affiliation(s)
- Nikhil V Dhurandhar
- Infections and Obesity laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|
3
|
Function-based discovery of significant transcriptional temporal patterns in insulin stimulated muscle cells. PLoS One 2012; 7:e32391. [PMID: 22396763 PMCID: PMC3291562 DOI: 10.1371/journal.pone.0032391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 01/30/2012] [Indexed: 11/23/2022] Open
Abstract
Background Insulin action on protein synthesis (translation of transcripts) and post-translational modifications, especially of those involving the reversible modifications such as phosphorylation of various signaling proteins, are extensively studied but insulin effect on transcription of genes, especially of transcriptional temporal patterns remains to be fully defined. Methodology/Principal Findings To identify significant transcriptional temporal patterns we utilized primary differentiated rat skeletal muscle myotubes which were treated with insulin and samples were collected every 20 min for 8 hours. Pooled samples at every hour were analyzed by gene array approach to measure transcript levels. The patterns of transcript levels were analyzed based on a novel method that integrates selection, clustering, and functional annotation to find the main temporal patterns associated to functional groups of differentially expressed genes. 326 genes were found to be differentially expressed in response to in vitro insulin administration in skeletal muscle myotubes. Approximately 20% of the genes that were differentially expressed were identified as belonging to the insulin signaling pathway. Characteristic transcriptional temporal patterns include: (a) a slow and gradual decrease in gene expression, (b) a gradual increase in gene expression reaching a peak at about 5 hours and then reaching a plateau or an initial decrease and other different variable pattern of increase in gene expression over time. Conclusion/Significance The new method allows identifying characteristic dynamic responses to insulin stimulus, common to a number of genes and associated to the same functional group. The results demonstrate that insulin treatment elicited different clusters of gene transcript profile supporting a temporal regulation of gene expression by insulin in skeletal muscle cells.
Collapse
|
4
|
Krishnapuram R, Kirk-Ballard H, Dhurandhar EJ, Dubuisson O, Messier V, Rabasa-Lhoret R, Hegde V, Aggarwal S, Dhurandhar NV. Insulin receptor-independent upregulation of cellular glucose uptake. Int J Obes (Lond) 2012; 37:146-53. [PMID: 22310476 PMCID: PMC4841456 DOI: 10.1038/ijo.2012.6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cellular glucose uptake can be enhanced by up-regulating Ras signaling in either insulin dependent or independent manner. In presence of insulin and intact insulin signaling, Ras plays a negligible role in glucose uptake. Conversely, when insulin signaling is impaired in obesity or diabetes, the insulin-independent Ras pathway may be valuable for enhancing glucose disposal. We previously reported that Ad36, a human adenovirus, enhances cellular glucose uptake by up-regulating the Ras/Glut4 pathway. Here, we investigated if Ad36-up-regulated Ras via the insulin-independent pathway, to enhance glucose uptake. Furthermore, uncontrolled up-regulation of Ras is linked with oncogenic cell transformation, if the tumor suppressor gene p53 is also down regulated. Hence, we determined if up-regulation of Ras by Ad36 would induce oncogenic cell transformation. Finally, we determined the relevance of Ad36 to insulin resistance in humans. METHODS Insulin receptor (IR) was knocked down with siRNA in 3T3-L1 adipocytes, to determine if Ad36 increases the Ras/Glut4 pathway and glucose uptake without IR-signaling. Next, the effects of Ad36 on cell transformation and p53 abundance were determined. Finally, overweight or obese women were screened for seropositivty to Ad36, as an indicator of natural Ad36 infection. Associations of Ad36 infection with adiposity and C-Reactive proteins (CRP) –two key markers of insulin resistance, and with glucose disposal, were determined. RESULTS Unaffected by IR knock-down, Ad36 significantly increased the Ras pathway, Glut4 translocation, and glucose uptake in 3T3-L1 adipocytes. Despite Ras up-regulation, Ad36 did not transform 3T3-L1 cells. This may be because Ad36 significantly increased p53 protein in 3T3-L1 cells or mice adipose tissue. Ad36 seropositivity was associated with greater adiposity and CRP levels, yet a significantly higher systemic glucose disposal rate. CONCLUSIONS Overall, the study offers Ras/Glut4 pathway as an alternate to enhance glucose disposal when insulin signaling is impaired, and, importantly, provides Ad36 as a tool to understand the modulation of that pathway.
Collapse
Affiliation(s)
- R Krishnapuram
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dhurandhar EJ, Dubuisson O, Mashtalir N, Krishnapuram R, Hegde V, Dhurandhar NV. E4orf1: a novel ligand that improves glucose disposal in cell culture. PLoS One 2011; 6:e23394. [PMID: 21886789 PMCID: PMC3160302 DOI: 10.1371/journal.pone.0023394] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/14/2011] [Indexed: 12/31/2022] Open
Abstract
Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance (IR), are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K), and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 'requires' E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as 'sufficient' to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras--the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large (Dlg1) protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif (PBM) of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes, adipocytes, or myoblasts, and reduced glucose output by hepatocytes. Thus, the highly attractive anti-hyperglycemic effect of Ad36 is mirrored by E4orf1 protein, which may offer a novel ligand to develop anti-hyperglycemic drugs.
Collapse
Affiliation(s)
- Emily J. Dhurandhar
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Olga Dubuisson
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Nazar Mashtalir
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Rashmi Krishnapuram
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Vijay Hegde
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Nikhil V. Dhurandhar
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
6
|
Dong F, Fang CX, Yang X, Zhang X, Lopez FL, Ren J. Cardiac overexpression of catalase rescues cardiac contractile dysfunction induced by insulin resistance: Role of oxidative stress, protein carbonyl formation and insulin sensitivity. Diabetologia 2006; 49:1421-33. [PMID: 16586065 DOI: 10.1007/s00125-006-0230-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 02/10/2006] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS Insulin resistance leads to oxidative stress and cardiac dysfunction. This study examined the impact of catalase on insulin-resistance-induced cardiac dysfunction, oxidative damage and insulin sensitivity. METHODS Insulin resistance was initiated in FVB and catalase-transgenic mice by 12 weeks of sucrose feeding. Contractile and intracellular Ca2+ properties were evaluated in cardiomyocytes including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR90), half-width duration (HWD), maximal velocity of shortening/relengthening (+/-dL/dt), fura-fluorescence intensity change (DeltaFFI) and intracellular Ca2+ clearance rate (tau). Reactive oxygen species (ROS) and protein damage were evaluated with dichlorodihydrofluorescein and protein carbonyl formation. RESULTS Sucrose-fed mice displayed hyperinsulinaemia, impaired glucose tolerance and normal body weight. Myocytes from FVB sucrose-fed mice exhibited depressed PS and +/-dL/dt, prolonged TR90 and tau, and reduced DeltaFFI associated with normal TPS and HWD compared with those from starch-fed control mice. ROS and protein carbonyl formation were elevated in FVB sucrose-fed mice. Insulin sensitivity was reduced, evidenced by impaired insulin-stimulated 2-deoxy-D: -[3H]glucose uptake. Western blot analysis indicated that sucrose feeding: (1) inhibited insulin-stimulated phosphorylation of insulin receptor and Akt; (2) enhanced protein-tyrosine phosphatase 1B (PTP1B) expression; and (3) suppressed endothelial nitric oxide synthase (eNOS) and Na+-Ca2+ exchanger expression without affecting peroxisome proliferator-activated receptor gamma (PPARgamma), sarco(endo)plasmic reticulum Ca2+-ATPase isozyme 2a and phospholamban. Catalase ablated insulin-resistance-induced mechanical dysfunction, ROS production and protein damage, and reduced eNOS, but not insulin insensitivity. Catalase itself decreased resting FFI and enhanced expression of PTP1B and PPARgamma. CONCLUSIONS/INTERPRETATION These data indicate that catalase rescues insulin-resistance-induced cardiac dysfunction related to ROS production and protein oxidation but probably does not improve insulin sensitivity.
Collapse
Affiliation(s)
- F Dong
- Division of Pharmaceutical Sciences and Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, 1000 E. University Avenue, Department 3375, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
7
|
Pereira RI, Draznin B. Inhibition of the phosphatidylinositol 3'-kinase signaling pathway leads to decreased insulin-stimulated adiponectin secretion from 3T3-L1 adipocytes. Metabolism 2005; 54:1636-43. [PMID: 16311098 DOI: 10.1016/j.metabol.2005.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adiponectin is a protein secreted by adipocytes, which modulates insulin resistance and is thought to confer protection from atherosclerosis. Decreased circulating adiponectin is seen in states of insulin resistance, yet the cause of this decrease remains unclear. We investigated the role of insulin in adiponectin secretion and the effect of selective insulin resistance on insulin-stimulated adiponectin secretion by 3T3-L1 adipocytes. Inhibition of the phosphatidylinositol 3'-kinase (PI3K) insulin-signaling pathway was induced with wortmannin (WT) or with a kinase-inactive Akt adenoviral construct (Akt-KD), and inhibition of the mitogen-activated protein kinase pathway was induced with PD98059 or with a dominant-negative ras adenoviral construct (DNras). The PI3K pathway was activated with a constitutively active Akt adenoviral construct (Akt-myr). Adiponectin was measured by Western blot, and adiponectin messenger RNA (mRNA) levels were determined by real-time reverse transcription-polymerase chain reaction. Insulin treatment increased adiponectin secretion and decreased intracellular adiponectin. Treatment with 100 nmol/L insulin for 24 hours resulted in a 78% increase in secreted adiponectin (P < .05). Insulin had no effect on adiponectin mRNA. WT or Akt-KD, but not PD98059 or DNras, inhibited insulin-stimulated adiponectin secretion (P < .05). Activation of the PI3K pathway resulted in increased insulin-independent adiponectin secretion. Inhibition of the PI3K- or mitogen-activated protein kinase-dependent pathway decreased adiponectin mRNA by 50% (P < .01). We demonstrate a decrease in insulin-stimulated adiponectin secretion with selective inhibition of the PI3K pathway. These results suggest a mechanism for the observed decreased adiponectin levels associated with insulin resistance, when defects in the PI3K-dependent insulin-signaling pathway lead to decreased adiponectin production, inadequate adiponectin secretion, and therefore low circulating adiponectin levels.
Collapse
Affiliation(s)
- Rocio I Pereira
- Research Service, Denver Veterans Affairs Medical Center, Denver, CO 80220, USA
| | | |
Collapse
|
8
|
Fang CX, Dong F, Ren BH, Epstein PN, Ren J. Metallothionein alleviates cardiac contractile dysfunction induced by insulin resistance: role of Akt phosphorylation, PTB1B, PPARgamma and c-Jun. Diabetologia 2005; 48:2412-21. [PMID: 16172869 DOI: 10.1007/s00125-005-1940-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 06/17/2005] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Insulin resistance is concomitant with metabolic syndrome, oxidative stress and cardiac contractile dysfunction. However, the causal relationship between oxidative stress and cardiac dysfunction is unknown. This study was designed to determine the impact of overexpression of the cardiac antioxidant metallothionein on cardiac dysfunction induced by insulin resistance in mice. METHODS Whole-body insulin resistance was generated in wild-type FVB and metallothionein transgenic mice by feeding them with sucrose for 12 weeks. Contractile and intracellular Ca(2+) properties were evaluated in ventricular myocytes using an IonOptix system. The contractile indices analysed included: peak shortening (PS), time to 90% PS (TPS(90)), time to 90% relengthening (TR(90)), half-width duration, maximal velocity of shortening (+dL/dt) and relengthening (-dL/dt), fura-fluorescence intensity change (DeltaFFI) and decay rate (tau). RESULTS The sucrose-fed mice displayed glucose intolerance, enhanced oxidative stress, hyperinsulinaemia, hypertriglyceridaemia and normal body weight. Compared with myocytes in starch-fed mice, those from sucrose-fed mice exhibited depressed PS, +dL/dt, -dL/dt, prolonged TR(90) and decay rate, and reduced DeltaFFI associated with normal TPS(90) and half-width duration. Western blot analysis revealed enhanced basal, but blunted insulin (15 mU/g)-stimulated Akt phosphorylation. It also showed elevated expression of insulin receptor beta, insulin receptor tyrosine phosphorylation, peroxisome proliferator-activated receptor gamma, protein tyrosine phosphatase 1B and phosphorylation of the transcription factor c-Jun, associated with a reduced fold increase of insulin-stimulated insulin receptor tyrosine phosphorylation in sucrose-fed mice. All western blot findings may be attenuated or ablated by metallothionein. CONCLUSIONS/INTERPRETATION These data indicate that oxidative stress may play an important role in cardiac contractile dysfunction associated with glucose intolerance and possibly related to alteration in insulin signalling at the receptor and post-receptor levels.
Collapse
Affiliation(s)
- C X Fang
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071-3375, USA
| | | | | | | | | |
Collapse
|
9
|
Harmon AW, Paul DS, Patel YM. MEK inhibitors impair insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2004; 287:E758-66. [PMID: 15172888 DOI: 10.1152/ajpendo.00581.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In 3T3-L1 adipocytes, insulin activates three major signaling cascades, the phosphoinositide 3-kinase (PI3K) pathway, the Cbl pathway, and the mitogen-activated protein kinase (MAPK) pathway. Although PI3K and Cbl mediate insulin-stimulated glucose uptake by promoting the translocation of the insulin-responsive glucose transporter (GLUT4) to the plasma membrane, the MAPK pathway does not have an established role in insulin-stimulated glucose uptake. We demonstrate in this report that PI3K inhibitors also inhibit the MAPK pathway. To investigate the role of the MAPK pathway separately from that of the PI3K pathway in insulin-stimulated glucose uptake, we used two specific inhibitors of MAPK kinase (MEK) activity, PD-98059 and U-0126, which reduced insulin-stimulated glucose uptake by approximately 33 and 50%, respectively. Neither MEK inhibitor affected the activation of Akt or PKCzeta/lambda, downstream signaling molecules in the PI3K pathway. Inhibition of MEK with U-0126 did not prevent GLUT4 from translocating to the plasma membrane, nor did it inhibit the subsequent docking and fusion of GLUT4-myc with the plasma membrane. MEK inhibitors affected glucose transport mediated by GLUT4 but not GLUT1. Importantly, the presence of MEK inhibitors only at the time of the transport assay markedly impaired both insulin-stimulated glucose uptake and MAPK signaling. Conversely, removal of MEK inhibitors before the transport assay restored glucose uptake and MAPK signaling. Collectively, our studies suggest a possible role for MEK in the activation of GLUT4.
Collapse
Affiliation(s)
- Anne W Harmon
- Department of Nutrition, University of North Carolina School of Public Health, Chapel Hill 27599, USA
| | | | | |
Collapse
|
10
|
Mandarino LJ, Bonadonna RC, Mcguinness OP, Halseth AE, Wasserman DH. Regulation of Muscle Glucose Uptake In Vivo. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
|
12
|
Kanzaki M, Pessin JE. Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J Biol Chem 2001; 276:42436-44. [PMID: 11546823 DOI: 10.1074/jbc.m108297200] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rhodamine-labeled phalloidin staining of morphologically differentiated 3T3L1 adipocytes demonstrated that F-actin predominantly exists juxtaposed to and lining the inner face of the plasma membrane (cortical actin) with a smaller amount of stress fiber and/or ruffling actin confined to the cell bottom in contact with the substratum. The extent of cortical actin disruption with various doses of either latrunculin B or Clostridium difficile toxin B (a Rho family small GTP-binding protein toxin) directly correlated with the inhibition of insulin-stimulated glucose uptake and GLUT4 translocation. The dissolution of the cortical actin network had no significant effect on proximal insulin receptor signaling events including insulin receptor autophosphorylation, tyrosine phosphorylation of insulin receptor substrate and Cbl, or serine/threonine phosphorylation of Akt. Surprisingly, however, stabilization of F-actin with jasplakinolide also resulted in a dose-dependent inhibition of insulin-stimulated glucose uptake and GLUT4 translocation. In vivo time-lapse confocal fluorescent microscopy of actin-yellow fluorescent protein demonstrated that insulin stimulation initially results in cortical actin remodeling followed by an increase in polymerized actin in the peri-nuclear region. Importantly, the insulin stimulation of cortical actin rearrangements was completely blocked by treatment of the cells with latrunculin B, C. difficile toxin B, and jasplakinolide. Furthermore, expression of the dominant-interfering TC10/T31N mutant completely disrupted cortical actin and prevents any insulin-stimulated actin remodeling. Together, these data demonstrate that cortical actin, but not stress fibers, lamellipodia, or filopodia, plays an important regulatory role in insulin-stimulated GLUT4 translocation. In addition, cortical F-actin does not function in a static manner (e.g. barrier or scaffold), but insulin-stimulated dynamic cortical actin remodeling is necessary for the GLUT4 translocation process.
Collapse
Affiliation(s)
- M Kanzaki
- Department of Physiology and Biophysics, the University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
13
|
Ouwens DM, van der Zon GC, Maassen JA. Modulation of insulin-stimulated glycogen synthesis by Src Homology Phosphatase 2. Mol Cell Endocrinol 2001; 175:131-40. [PMID: 11325523 DOI: 10.1016/s0303-7207(01)00389-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have examined the requirement of the protein tyrosine phosphatase Src Homology Phosphatase 2 (SHP2) for insulin-stimulated glycogen synthesis. To this end, 3T3L1 fibroblasts were stably transfected with either wild type or a catalytically inactive C463A-mutant of SHP2, and analysed for insulin-induced glycogen synthesis, tyrosine phosphorylation of the insulin receptor and IRS-1, and activation of phosphatidylinositol 3'-kinase (PI 3'-kinase). Glycogen synthesis was stimulated 9.1+/-0.9-fold by insulin in untransfected cells. In cells expressing the dominant-negative C463A-SHP2 mutant, the stimulation of glycogen synthesis by insulin was strongly enhanced (18.7+/-2.7-fold stimulation), while this response was impaired in cells overexpressing wild-type SHP2 (6.6+/-1.1-fold stimulation). When exploring the early post-receptor signalling pathways that contribute to glycogen synthesis, we found that insulin stimulated the tyrosine phosphorylation of IRS-1, and the activation of IRS-1-associated PI 3'-kinase more strongly in C463A-SHP2 expressing 3T3L1-cells (18.1+/-4.7-fold) than in parental 3T3L1 cells (6.8+/-0.5-fold). In 3T3L1 cells overexpressing wild-type SHP2, the insulin stimulation of IRS-1 tyrosine phosphorylation and the activation of PI 3'-kinase (4.5+/-1.0-fold) were impaired. An enhanced activity of SHP2 leads to negative modulation of insulin signalling by reducing the tyrosine phosphorylation of IRS-1 and the concomitant activation of PI 3'-kinase. This results in an impaired ability of insulin to stimulate glycogen synthesis.
Collapse
Affiliation(s)
- D M Ouwens
- Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL, Leiden, The Netherlands.
| | | | | |
Collapse
|
14
|
Osman AA, Hancock J, Hunt DG, Ivy JL, Mandarino LJ. Exercise training increases ERK2 activity in skeletal muscle of obese Zucker rats. J Appl Physiol (1985) 2001; 90:454-60. [PMID: 11160042 DOI: 10.1152/jappl.2001.90.2.454] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute exercise and training increase insulin action in skeletal muscle, but the mechanism responsible for this effect is unknown. Activation of the insulin receptor initiates signaling through both the phosphatidylinositol (PI) 3-kinase and the mitogen-activated protein kinase [MAPK, also referred to as extracellular signal-regulated kinases (ERK1/2)] pathways. Acute exercise has no effect on the PI3-kinase pathway signaling elements but does activate the MAPK pathway, which may play a role in the adaptation of muscle to exercise. It is unknown whether training produces a chronic effect on basal activity or insulin response of the MAPK pathway. The present study was undertaken to determine whether exercise training improves the activity of the MAPK pathway or its response to insulin in obese Zucker rats, a well-characterized model of insulin resistance. To accomplish this, obese Zucker rats were studied by using the hindlimb perfusion method with or without 7 wk of treadmill training. Activation of the MAPK pathway was determined in gastrocnemius muscles exposed in situ to insulin. Compared with lean Zucker rats, untrained obese Zucker rats had reduced basal and insulin-stimulated activities of ERK2 and its downstream target p90 ribosomal S6 kinase (RSK2). Seven weeks of training significantly increased basal and insulin-stimulated ERK2 and RSK2 activities, as well as insulin stimulation of MAPK kinase activity. This effect was maintained for at least 96 h in the case of ERK2. The training-induced increase in basal ERK2 activity was correlated with the increase in citrate synthase activity. Therefore, 7 wk of training increases basal and insulin-stimulated ERK2 activity. The increase in basal ERK2 activity may be related to the response of muscle to training.
Collapse
Affiliation(s)
- A A Osman
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7886, USA
| | | | | | | | | |
Collapse
|
15
|
Telting D, van der Zon GC, Dorrestijn J, Maassen JA. IRS-1 tyrosine phosphorylation reflects insulin-induced metabolic and mitogenic responses in 3T3-L1 pre-adipocytes. Arch Physiol Biochem 2001; 109:52-62. [PMID: 11471071 DOI: 10.1076/apab.109.1.52.4278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We determined the involvement of Tyr-1158 within the regulatory loop of the insulin receptor (IR) in the generation of insulin-specific responses in situ. For this purpose chimeric receptors with an epidermal growth factor (EGF) receptor extracellular domain and an IR cytoplasmic domain (EIR) were constructed, which allow activation of the cytoplasmic IR domain without activation of endogenous wt-IRs. Tyr-1158 of the chimera EIR was exchanged for Phe, creating a mutant chimeric receptor (EIR-Y1158F). Chimeric receptors were expressed in 3T3-L1 pre-adipocytes, which do not show insulin-specific responses upon EGF stimulation. We found that pre-adipocytes expressing EIR-Y1158F were impaired in their ability to stimulate glycogen synthesis and DNA synthesis upon maximal stimulation with EGF. EIR-Y1158F was impaired in its ability to phosphorylate insulin receptor substrate (IRS)-1 and induce downstream signals of IRS-1 phosphorylation, such as the association of IRS-1 with phosphatidyl-inositol-3'-kinase and the activation of protein kinase B (Akt). In contrast with the phosphorylation of IRS-1, the phosphorylation of IRS-2 and extracellular regulated protein kinase-1/-2 was normal in EIR-Y1158F expressing cells. These observations suggest that the level of IRS-1 phosphorylation rather than the level of IRS-2 phosphorylation mediates insulin-induced glycogen synthesis and DNA synthesis in 3T3-L1 pre-adipocytes.
Collapse
Affiliation(s)
- D Telting
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
16
|
Osman AA, Pendergrass M, Koval J, Maezono K, Cusi K, Pratipanawatr T, Mandarino LJ. Regulation of MAP kinase pathway activity in vivo in human skeletal muscle. Am J Physiol Endocrinol Metab 2000; 278:E992-9. [PMID: 10827000 DOI: 10.1152/ajpendo.2000.278.6.e992] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin and exercise potently stimulate glucose metabolism and gene transcription in vivo in skeletal muscle. A single bout of exercise increases the rate of insulin-stimulated glucose uptake and metabolism in skeletal muscle in the postexercise period. The nature of the intracellular signaling mechanisms that control responses to exercise is not known. In mammalian tissues, numerous reports have established the existence of the mitogen-activated protein (MAP) kinase signaling pathway that is activated by a variety of growth factors and hormones. This study was undertaken to determine how a single bout of exercise and physiological hyperinsulinemia activate the MAP kinase pathway. The euglycemic-hyperinsulinemic clamp and cycle ergometer exercise techniques combined with percutaneous muscle biopsies were used to answer this question. In healthy subjects, within 30 min, insulin significantly increased MAP kinase [isoforms p42(MAPK) and p44(MAPK) (ERK1 and ERK2)] phosphorylation (141 +/- 2%, P < 0.05) and activity (177 +/- 5%, P < 0.05), and the activity of its upstream activator MEK1 (161 +/- 16%, P < 0.05). Insulin also increased the activity of the MAP kinase downstream substrate, the p90 ribosomal S6 kinase 2 (RSK2) almost twofold (198 +/- 45%, P < 0.05). In contrast, a single 30-min bout of moderate-intensity exercise had no effect on the MAP kinase pathway activation from MEK to RSK2 in muscle of healthy subjects. However, 60 min of exercise did increase extracellular signal-related kinase activity. Therefore, despite similar effects on glucose metabolism after 30 min, insulin and exercise regulate the MAP kinase pathway differently. Insulin more rapidly activates the MAP kinase pathway.
Collapse
Affiliation(s)
- A A Osman
- Department of Medicine and Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, DeFronzo RA, Kahn CR, Mandarino LJ. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000; 105:311-20. [PMID: 10675357 PMCID: PMC377440 DOI: 10.1172/jci7535] [Citation(s) in RCA: 756] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The broad nature of insulin resistant glucose metabolism in skeletal muscle of patients with type 2 diabetes suggests a defect in the proximal part of the insulin signaling network. We sought to identify the pathways compromised in insulin resistance and to test the effect of moderate exercise on whole-body and cellular insulin action. We conducted euglycemic clamps and muscle biopsies on type 2 diabetic patients, obese nondiabetics and lean controls, with and without a single bout of exercise. Insulin stimulation of the phosphatidylinositol 3-kinase (PI 3-kinase) pathway, as measured by phosphorylation of the insulin receptor and IRS-1 and by IRS protein association with p85 and with PI 3-kinase, was dramatically reduced in obese nondiabetics and virtually absent in type 2 diabetic patients. Insulin stimulation of the MAP kinase pathway was normal in obese and diabetic subjects. Insulin stimulation of glucose-disposal correlated with association of p85 with IRS-1. Exercise 24 hours before the euglycemic clamp increased phosphorylation of insulin receptor and IRS-1 in obese and diabetic subjects but did not increase glucose uptake or PI 3-kinase association with IRS-1 upon insulin stimulation. Thus, insulin resistance differentially affects the PI 3-kinase and MAP kinase signaling pathways, and insulin-stimulated IRS-1-association with PI 3-kinase defines a key step in insulin resistance.
Collapse
Affiliation(s)
- K Cusi
- Division of Diabetes, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Koval JA, Maezono K, Patti ME, Pendergrass M, DeFronzo RA, Mandarino LJ. Effects of exercise and insulin on insulin signaling proteins in human skeletal muscle. Med Sci Sports Exerc 1999; 31:998-1004. [PMID: 10416561 DOI: 10.1097/00005768-199907000-00012] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Insulin and exercise independently increase glucose metabolism in muscle. Moreover, exercise training or a prior bout of exercise increases insulin-stimulated glucose uptake in resting skeletal muscle. The present study was undertaken to compare how physiological hyperinsulinemia and moderate intensity aerobic exercise affect the tyrosine phosphorylation state and activity of insulin signaling molecules in healthy, physically inactive volunteers. Subjects had biopsies of the vastus lateralis muscle before and immediately after 30 min of either hyperinsulinemia (euglycemic insulin clamp) or moderate-intensity exercise on a cycle ergometer (approximately 60% of VO2max). Insulin receptor and IRS-1 tyrosine phosphorylation, association of the p85 regulatory subunit of PI 3-kinase with IRS-1, IRS-1 associated PI 3-kinase activity, and glycogen synthase activity were determined in muscle biopsy specimens taken from healthy subjects before and after insulin or exercise. Physiological hyperinsulinemia increased the rate of glucose disposal from 11.4 +/- 1.5 to 25.6 +/- 6.7 micromol x kg(-1) x min(-1) (P < 0.01), insulin receptor and IRS-1 tyrosine phosphorylation (173 +/- 19% and 159 +/- 35% of basal values, respectively, P < 0.05), association of the p85 regulatory subunit of PI 3-kinase with IRS-1 (159 +/- 10%, P < 0.05), and glycogen synthase fractional velocity (136 +/- 11%, P < 0.01). Exercise also increased glucose disposal, from 10.4 +/- 0.5 to 15.6 +/- 1.7 micromol x kg(-1) x min(-1) (P < 0.01) and glycogen synthase fractional velocity (253 +/- 35% of basal, P < 0.01). The exercise-induced increase in glycogen synthase was greater than that due to insulin (P < 0.05). In contrast to insulin, exercise decreased tyrosine phosphorylation of the insulin receptor to 72 +/- 10% of basal values (P < 0.05 vs basal and P < 0.05 vs insulin) and had no effect on IRS-1 tyrosine phosphorylation, or association of p85 with IRS-1. The exercise-induced decreased insulin receptor tyrosine phosphorylation could explain the well-known effect of exercise to enhance the sensitivity of muscle to insulin.
Collapse
Affiliation(s)
- J A Koval
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 78284-7886, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kitamura T, Ogawa W, Sakaue H, Hino Y, Kuroda S, Takata M, Matsumoto M, Maeda T, Konishi H, Kikkawa U, Kasuga M. Requirement for activation of the serine-threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport. Mol Cell Biol 1998; 18:3708-17. [PMID: 9632753 PMCID: PMC108953 DOI: 10.1128/mcb.18.7.3708] [Citation(s) in RCA: 249] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A wide variety of biological activities including the major metabolic actions of insulin is regulated by phosphatidylinositol (PI) 3-kinase. However, the downstream effectors of the various signaling pathways that emanate from PI 3-kinase remain unclear. Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, is thought to be one such downstream effector. A mutant Akt (Akt-AA) in which the phosphorylation sites (Thr308 and Ser473) targeted by growth factors are replaced by alanine has now been shown to lack protein kinase activity and, when overexpressed in CHO cells or 3T3-L1 adipocytes with the use of an adenovirus vector, to inhibit insulin-induced activation of endogenous Akt. Akt-AA thus acts in a dominant negative manner in intact cells. Insulin-stimulated protein synthesis, which is sensitive to wortmannin, a pharmacological inhibitor of PI 3-kinase, was abolished by overexpression of Akt-AA without an effect on amino acid transport into the cells, suggesting that Akt is required for insulin-stimulated protein synthesis. Insulin activation of p70 S6 kinase was inhibited by approximately 75% in CHO cells and approximately 30% in 3T3-L1 adipocytes, whereas insulin-induced activation of endogenous Akt was inhibited by 80 to 95%, by expression of Akt-AA. Thus, Akt activity appears to be required, at least in part, for insulin stimulation of p70 S6 kinase. However, insulin-stimulated glucose uptake in both CHO cells and 3T3-L1 adipocytes was not affected by overexpression of Akt-AA, suggesting that Akt is not required for this effect of insulin. These data indicate that Akt acts as a downstream effector in some, but not all, of the signaling pathways downstream of PI 3-kinase.
Collapse
Affiliation(s)
- T Kitamura
- Second Department of Internal Medicine, Kobe University School of Medicine, Chuo-ku, Kobe 650, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Srivastava AK. Use of pharmacological agents in elucidating the mechanism of insulin action. Trends Pharmacol Sci 1998; 19:205-9. [PMID: 9666709 DOI: 10.1016/s0165-6147(98)01208-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A K Srivastava
- Department of Medicine, University of Montreal, Québec, Canada
| |
Collapse
|
21
|
Lee-Kwon W, Park D, Bernier M. Involvement of the Ras/extracellular signal-regulated kinase signalling pathway in the regulation of ERCC-1 mRNA levels by insulin. Biochem J 1998; 331 ( Pt 2):591-7. [PMID: 9531502 PMCID: PMC1219393 DOI: 10.1042/bj3310591] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Expression of DNA repair enzymes, which includes ERCC-1, might be under the control of hormonal and growth factor stimulation. In the present study it was observed that insulin increased ERCC-1 mRNA levels both in Chinese hamster ovary cells overexpressing human insulin receptors (HIRc cells) and in fully differentiated 3T3-L1 adipocytes. To investigate the mechanisms underlying the increase in ERCC-1 gene expression in HIRc cells, we used a variety of pharmacological tools known to inhibit distinct signalling pathways. None of these inhibitors affected the amount of ERCC-1 mRNA in unstimulated cells. The pretreatment of cells with two chemically unrelated phosphatidylinositol 3'-kinase inhibitors, wortmannin and LY294002, failed to block the doubling of ERCC-1 mRNA content by insulin. Similarly, inhibition of pp70 S6 kinase by rapamycin had no apparent effects on this insulin response. In contrast, altering the p21(ras)-dependent pathway with either manumycin, an inhibitor of Ras farnesylation, or PD98059, an inhibitor of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) kinase, suppressed the induction of ERCC-1 mRNA by insulin (P<0.001). Furthermore inhibition of RNA and protein synthesis negatively regulated the expression of this insulin-regulated gene (P<0.005). These results suggest that insulin enhances ERCC-1 mRNA levels by the activation of the Ras-ERK-dependent pathway without the involvement of the phosphatidylinositol 3'-kinase/pp70 S6 kinase.
Collapse
Affiliation(s)
- W Lee-Kwon
- Diabetes Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
22
|
Sakaue H, Ogawa W, Takata M, Kuroda S, Kotani K, Matsumoto M, Sakaue M, Nishio S, Ueno H, Kasuga M. Phosphoinositide 3-kinase is required for insulin-induced but not for growth hormone- or hyperosmolarity-induced glucose uptake in 3T3-L1 adipocytes. Mol Endocrinol 1997; 11:1552-62. [PMID: 9280070 DOI: 10.1210/mend.11.10.9986] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The(1) regulatory mechanism of glucose uptake in 3T3-L1 adipocytes was investigated with the use of recombinant adenovirus vectors encoding various dominant negative proteins. Infection with a virus encoding a mutant regulatory subunit of phosphoinositide (PI) 3-kinase that does not bind the 110-kDa catalytic subunit (delta p85) inhibited the insulin-induced increase in PI 3-kinase activity co-precipitated by antibodies to phosphotyrosine and glucose uptake in a virus dose-dependent manner. Overexpression of a dominant negative RAS mutant in which Asp57 is replaced with tyrosine (RAS57Y) or of a dominant negative SOS mutant that lacks guanine nucleotide exchange activity (delta SOS) abolished the insulin-induced increase in mitogen-activated protein kinase activity, but had no effect on PI 3-kinase activity or glucose uptake. Although GH and hyperosmolarity attributable to 300 mM sorbitol each promoted glucose uptake and translocation of glucose transporter (GLUT)4 to an extent comparable to that of insulin, these stimuli triggered little or no association of PI 3-kinase activity with tyrosine-phosphorylated proteins. Overexpression of delta p85 or treatment of cells with wortmannin, an inhibitor of PI 3-kinase activity, had no effect on glucose uptake or translocation of GLUT4 stimulated by GH or hyperosmolarity. Moreover, overexpression of delta SOS or RAC17N also did not affect the increase in glucose uptake induced by these stimuli. A serine/threonine kinase Akt, a constitutively active mutant of which was previously shown to stimulate glucose uptake, is activated by insulin, GH, and hyperosmolarity to approximately 4-fold, approximately 2.1-fold, and approximately 2.3-fold over basal level, respectively. These results suggest that insulin-induced but neither GH- or hyperosmolarity-induced glucose uptake is PI 3-kinase-dependent, and neither RAS nor RAC is required for glucose uptake induced by these stimuli in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- H Sakaue
- Second Department of Internal Medicine, Kobe University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ouwens DM, Mikkers HM, van der Zon GC, Stein-Gerlach M, Ullrich A, Maassen JA. Insulin-induced tyrosine dephosphorylation of paxillin and focal adhesion kinase requires active phosphotyrosine phosphatase 1D. Biochem J 1996; 318 ( Pt 2):609-14. [PMID: 8809054 PMCID: PMC1217664 DOI: 10.1042/bj3180609] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Insulin stimulation of fibroblasts rapidly induces the tyrosine dephosphorylation of proteins of 68 kDa and 125 kDa, in addition to the tyrosine phosphorylation of the insulin receptor beta-chain, insulin receptor substrates 1 and 2, and Shc. Using specific antibodies, the 68 kDa and 125 kDa proteins were identified as paxillin and focal adhesion kinase (pp125FAK) respectively. We have examined whether dephosphorylation of paxillin and pp125FAK requires interaction of the cells with the extracellular matrix. For this, cells were grown on poly(L-lysine) plates, and the tyrosine phosphorylation of pp125FAK and paxillin was increased by addition of lysophosphatidic acid. Under these conditions, insulin still induced the complete dephosphorylation of pp125FAK and paxillin, indicating that this process can occur independently of the interaction of integrins with extracellular matrix proteins. We also studied whether dephosphorylation of pp125FAK and paxillin results from the action of a phosphotyrosine phosphatase. It was found that phenylarsine oxide, a phosphotyrosine phosphatase inhibitor, prevented the insulin-induced dephosphorylation of pp125FAK and paxillin. Furthermore, this insulin-induced dephosphorylation was also impaired in cells expressing a dominant-negative mutant of phosphotyrosine phosphatase 1D (PTP 1D). Thus we have identified paxillin as a target for dephosphorylation by insulin. In addition, we have obtained evidence that the insulin-mediated dephosphorylation of paxillin and pp125FAK requires active PTP 1D.
Collapse
Affiliation(s)
- D M Ouwens
- Department of Medical Biochemistry, Sylvius Laboratory, University of Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|