1
|
Krieger J, Hörnig MK, Kenning M, Hansson BS, Harzsch S. More than one way to smell ashore - Evolution of the olfactory pathway in terrestrial malacostracan crustaceans. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:101022. [PMID: 33385761 DOI: 10.1016/j.asd.2020.101022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Crustaceans provide a fascinating opportunity for studying adaptations to a terrestrial lifestyle because within this group, the conquest of land has occurred at least ten times convergently. The evolutionary transition from water to land demands various morphological and physiological adaptations of tissues and organs including the sensory and nervous system. In this review, we aim to compare the brain architecture between selected terrestrial and closely related marine representatives of the crustacean taxa Amphipoda, Isopoda, Brachyura, and Anomala with an emphasis on the elements of the olfactory pathway including receptor molecules. Our comparison of neuroanatomical structures between terrestrial members and their close aquatic relatives suggests that during the convergent evolution of terrestrial life-styles, the elements of the olfactory pathway were subject to different morphological transformations. In terrestrial anomalans (Coenobitidae), the elements of the primary olfactory pathway (antennules and olfactory lobes) are in general considerably enlarged whereas they are smaller in terrestrial brachyurans compared to their aquatic relatives. Studies on the repertoire of receptor molecules in Coenobitidae do not point to specific terrestrial adaptations but suggest that perireceptor events - processes in the receptor environment before the stimuli bind - may play an important role for aerial olfaction in this group. In terrestrial members of amphipods (Amphipoda: Talitridae) as well as of isopods (Isopoda: Oniscidea), however, the antennules and olfactory sensilla (aesthetascs) are largely reduced and miniaturized. Consequently, their primary olfactory processing centers are suggested to have been lost during the evolution of a life on land. Nevertheless, in terrestrial Peracarida, the (second) antennae as well as their associated tritocerebral processing structures are presumed to compensate for this loss or rather considerable reduction of the (deutocerebral) primary olfactory pathway. We conclude that after the evolutionary transition from water to land, it is not trivial for arthropods to establish aerial olfaction. If we consider insects as an ingroup of Crustacea, then the Coenobitidae and Insecta may be seen as the most successful crustacean representatives in this respect.
Collapse
Affiliation(s)
- Jakob Krieger
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Marie K Hörnig
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Matthes Kenning
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Bill S Hansson
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, 07745, Jena, Germany.
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| |
Collapse
|
2
|
Scholtz G, Ng PKL, Moore S. A crab with three eyes, two rostra, and a dorsal antenna-like structure. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:163-173. [PMID: 24211269 DOI: 10.1016/j.asd.2013.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/16/2013] [Accepted: 10/28/2013] [Indexed: 06/02/2023]
Abstract
We describe a malformed specimen of the freshwater crab Amarinus lacustris from New Zealand. With three eyes in a horizontal row, two rostra, and a dorsal antenna-like structure, the pattern of malformation of this animal is unique and has not been described before. A careful inspection and description of external and internal structures, in particular the central nervous system, were carried out. These revealed, in addition to the external abnormalities, a retarded brain with a hypertrophied and backwards bent protocerebrum connected with all three eyes and putatively with the dorsal antenna-like structure. Based on these data, a variety of hypotheses about the causes for this kind of malformation are discussed. A scenario combining a conjoined twin (Duplicitas anterior) based on the duplication of the embryonic anterior head lobes and a regeneration event leading to the replacement of an eye by an antenna shows the best fit to the observed patterns.
Collapse
Affiliation(s)
- Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstrasse 13, D-10115 Berlin, Germany.
| | - Peter K L Ng
- Raffles Museum of Biodiversity Research, Department of Biological Sciences, Faculty of Science, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore.
| | - Stephen Moore
- Landcare Research, 231 Morrin Rd, Tamaki Campus, University of Auckland, Private Bag 92170, Auckland, New Zealand.
| |
Collapse
|
3
|
Krieger J, Sombke A, Seefluth F, Kenning M, Hansson BS, Harzsch S. Comparative brain architecture of the European shore crab Carcinus maenas (Brachyura) and the common hermit crab Pagurus bernhardus (Anomura) with notes on other marine hermit crabs. Cell Tissue Res 2012; 348:47-69. [DOI: 10.1007/s00441-012-1353-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 01/27/2012] [Indexed: 12/12/2022]
|
4
|
Harzsch S, Hansson BS. Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell. BMC Neurosci 2008; 9:58. [PMID: 18590553 PMCID: PMC2459186 DOI: 10.1186/1471-2202-9-58] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 06/30/2008] [Indexed: 11/10/2022] Open
Abstract
Background During the evolutionary radiation of Crustacea, several lineages in this taxon convergently succeeded in meeting the physiological challenges connected to establishing a fully terrestrial life style. These physiological adaptations include the need for sensory organs of terrestrial species to function in air rather than in water. Previous behavioral and neuroethological studies have provided solid evidence that the land hermit crabs (Coenobitidae, Anomura) are a group of crustaceans that have evolved a good sense of aerial olfaction during the conquest of land. We wanted to study the central olfactory processing areas in the brains of these organisms and to that end analyzed the brain of Coenobita clypeatus (Herbst, 1791; Anomura, Coenobitidae), a fully terrestrial tropical hermit crab, by immunohistochemistry against synaptic proteins, serotonin, FMRFamide-related peptides, and glutamine synthetase. Results The primary olfactory centers in this species dominate the brain and are composed of many elongate olfactory glomeruli. The secondary olfactory centers that receive an input from olfactory projection neurons are almost equally large as the olfactory lobes and are organized into parallel neuropil lamellae. The architecture of the optic neuropils and those areas associated with antenna two suggest that C. clypeatus has visual and mechanosensory skills that are comparable to those of marine Crustacea. Conclusion In parallel to previous behavioral findings of a good sense of aerial olfaction in C. clypeatus, our results indicate that in fact their central olfactory pathway is most prominent, indicating that olfaction is a major sensory modality that these brains process. Interestingly, the secondary olfactory neuropils of insects, the mushroom bodies, also display a layered structure (vertical and medial lobes), superficially similar to the lamellae in the secondary olfactory centers of C. clypeatus. More detailed analyses with additional markers will be necessary to explore the question if these similarities have evolved convergently with the establishment of superb aerial olfactory abilities or if this design goes back to a shared principle in the common ancestor of Crustacea and Hexapoda.
Collapse
Affiliation(s)
- Steffen Harzsch
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Beutenberg Campus, Hans-Knöll-Str, 8, D-07745 Jena, Germany.
| | | |
Collapse
|
5
|
Schmidt M. The olfactory pathway of decapod crustaceans--an invertebrate model for life-long neurogenesis. Chem Senses 2007; 32:365-84. [PMID: 17404151 DOI: 10.1093/chemse/bjm008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The first part of this review includes a short description of the cellular and morphological organization of the olfactory pathway of decapod crustaceans, followed by an overview of adult neurogenesis in this pathway focusing on the olfactory lobe (OL), the first synaptic relay in the brain. Adult neurogenesis in the central olfactory pathway has the following characteristics. 1) It is present in all the diverse species of decapod crustaceans so far studied. 2) In all these species, projection neurons (PNs), which have multiglomerular dendritic arborizations, are generated. 3) Neurons are generated by one round of symmetrical cell divisions of a small population of immediate precursor cells that are located in small proliferation zones at the inner margin of the respective soma clusters. 4) The immediate precursor cells in each soma cluster appear to be generated by repeated cell divisions of one or few neuronal stem cells that are located outside of the proliferation zone. 5) These neuronal stem cells are enclosed in a highly structured clump of small glial-like cells, which likely establishes a specific microenvironment and thus can be regarded as a stem cell niche. 6) Diverse internal and external factors, such as presence of olfactory afferents, age, season of the year, and living under constant and deprived conditions modulate the generation and/or survival of new neurons. In the second part of this review, I address the question why in decapod crustaceans adult neurogenesis persists in the visual and olfactory pathways of the brain but is lacking in all other mechanosensory-chemosensory pathways. Due to the indeterminate growth of most adult decapod crustaceans, new sensory neurons of all modalities (olfaction and chemo-, mechano-, and photoreception) are continuously added during adulthood and provide an ever-increasing sensory input to all primary sensory neuropils of the central nervous system. From these facts, I conclude that adult neurogenesis in the brain cannot simply be a mechanism to accommodate increasing sensory input and propose instead that it is causally linked to the specific "topographic logic" of information processing implemented in the sensory neuropils serving different modalities. For the presumptive odotopic type of information processing in the OL, new multiglomerular PNs allow interconnection of novel combinations of spatially unrelated input channels (glomeruli), whose simultaneous activation by specific odorants is the basis of odor coding. Thus, adult neurogenesis could provide a unique way to increase the resolution of odorant quality coding and allow adaptation of the olfactory system of these long-lived animals to ever-changing odor environments.
Collapse
Affiliation(s)
- Manfred Schmidt
- Department of Biology, Georgia State University, PO Box 4010, Atlanta, GA 30303, USA.
| |
Collapse
|
6
|
Santhoshi S, Sugumar V, Munuswamy N. Localization of Serotonin Neuropiles in the Brain and Thoracic Ganglia of the Indian White Shrimp,Fenneropenaeus indicus: Phylogenetic Comparisons and Implications for Arthropod Relationships. Microsc Res Tech 2007. [DOI: 10.1002/jemt.20468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Schmidt M, Chien H, Tadesse T, Johns ME, Derby CD. Rosette-type tegumental glands associated with aesthetasc sensilla in the olfactory organ of the Caribbean spiny lobster, Panulirus argus. Cell Tissue Res 2006; 325:369-95. [PMID: 16555053 DOI: 10.1007/s00441-006-0163-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 09/06/2005] [Indexed: 10/24/2022]
Abstract
The lateral antennular flagellum of decapod crustaceans bears unique olfactory sensilla, namely the aesthetascs, and other sensilla types. In this study, we identify a new major tissue in the lateral flagellum of the Caribbean spiny lobster, Panulirus argus, namely "aesthetasc tegumental glands" (ATGs), based on immunostaining with antibodies against CUB serine protease (Csp), in situ hybridization with csp-specific probes, labeling with the F-actin marker phalloidin, labeling with the nuclear marker Hoechst 33258, and staining with methylene blue. Each ATG has 12-20 secretory cells arranged in a rosette. Each secretory cell has a Csp-immunoreactive basal portion and an apical portion containing granular material (metachromatic staining indicative of acid mucopolysaccharides). At the center of each secretory rosette is a phalloidin-positive common locus that gives rise to a main drainage duct projecting toward the cuticle. Scanning electron and light microscopy show that thin ducts traverse the cuticle and connect to "peg pores" proximal to the bases of the aesthetascs, with 3.4 peg pores per aesthetasc. Since the number of common loci is correlated with the number of peg pores, we conclude that each pore represents the outlet of one ATG, and that the secretions are released from them. We conclude further that ATGs and aesthetascs are functionally linked. We hypothesize that ATG secretions have antifouling and/or friction-reducing properties, and that they are spread over the surface of the aesthetascs by antennular grooming. A review of the literature suggests that ATGs are common in decapod crustacean antennules, and that rosette glands and grooming might be functionally coupled in other body areas.
Collapse
Affiliation(s)
- Manfred Schmidt
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 4010, Atlanta, GA 30302-4010, USA.
| | | | | | | | | |
Collapse
|
8
|
Sandeman R, Sandeman D. Development, growth, and plasticity in the crayfish olfactory system. Microsc Res Tech 2003; 60:266-77. [PMID: 12539157 DOI: 10.1002/jemt.10266] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Decapod crustaceans have a well-defined olfactory system characterised by a set of chemosensitive sensilla grouped together in an array (the olfactory organ) on their antennules. Olfactory receptor neurons in the olfactory organ project exclusively to, and terminate in, cone-shaped olfactory glomeruli in a discrete neuropil in the brain, the olfactory lobe. The olfactory organ appears to be the only afferent input to the olfactory lobe, making the system convenient for the study of its development and growth. The progression of development of the olfactory system is a continuum and can be traced from the first appearance of peripheral receptor cells and central stem cells through to the construction of the tracts and neuropils that constitute the adult system. Cell proliferation leading to the production of peripheral and central olfactory neurons can be observed with mitotic markers in both embryonic stages and in postembryonic growth. Cell proliferation in the olfactory system in crayfish persists throughout the lives of the animals and can be modulated by manipulating the living conditions imposed on growing animals. Large serotonergic neurons that are associated with the olfactory system may play a role in the regulation of cell proliferation.
Collapse
Affiliation(s)
- Renate Sandeman
- Biological Science, University of New South Wales, Sydney 2052, NSW, Australia.
| | | |
Collapse
|
9
|
Utting M, Agricola HJ, Sandeman R, Sandeman D. Central complex in the brain of crayfish and its possible homology with that of insects. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000110)416:2%3c245::aid-cne9%3e3.0.co;2-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Utting M, Agricola HJ, Sandeman R, Sandeman D. Central complex in the brain of crayfish and its possible homology with that of insects. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000110)416:2<245::aid-cne9>3.0.co;2-a] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Processing of antennular input in the brain of the spiny lobster, Panulirus argus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1996. [DOI: 10.1007/bf00227375] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Processing of antennular input in the brain of the spiny lobster, Panulirus argus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1996. [DOI: 10.1007/bf00227374] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Sandeman RE, Watson AH, Sandeman DC. Ultrastructure of the synaptic terminals of the dorsal giant serotonin-IR neuron and deutocerebral commissure interneurons in the accessory and olfactory lobes of the crayfish. J Comp Neurol 1995; 361:617-32. [PMID: 8576418 DOI: 10.1002/cne.903610406] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The olfactory and accessory lobes in the crayfish are large spherical neuropils found on each side of its brain. The olfactory lobes receive the afferent axons of chemoreceptors that are located along the outer branches of the biramous first antennae. The accessory lobes receive a large input from interneurons whose axons lie in the deutocerebral commissure. A pair of large serotonergic neurons (the dorsal giant neurons) branch unilaterally in the accessory and olfactory lobes of each side. From physiological recordings, it has been proposed that the deutocerebral commissure interneurons synapse with elements in the accessory lobes that in turn connect to the dorsal giant neuron. It has also been proposed that the dorsal giant neuron is activated by inputs in the accessory lobe and that its output is in the olfactory lobe. This ultrastructural study tests this hypotheses by examining the polarity of synaptic terminals on dorsal giant neurons and deutocerebral interneurons that have been filled with neurobiotin. In double-labelled preparations, we found the deutocerebral interneurons to be presynaptic to elements in the accessory lobes, but none of these postsynaptic elements was identifiable as the dorsal giant neuron. The dorsal giant neurons receive many more synaptic inputs in the accessory lobes than in the olfactory lobe. Very few giant serotonin neuron output synapses were found in either lobe.
Collapse
Affiliation(s)
- R E Sandeman
- School of Biological Science, University of New South Wales, Kensington, Australia
| | | | | |
Collapse
|
14
|
Sandeman D, Scholtz G. Ground plans, evolutionary changes and homologies in decapod crustacean brains. EXPERIENTIA SUPPLEMENTUM 1995. [DOI: 10.1007/978-3-0348-9219-3_15] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Schmidt M, Ache BW. Antennular projections to the midbrain of the spiny lobster. III. Central arborizations of motoneurons. J Comp Neurol 1993; 336:583-94. [PMID: 8245227 DOI: 10.1002/cne.903360410] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The central organization of antennular motoneurons in the brain of the spiny lobster, Panulirus argus, was analyzed by combining biocytin backfills with serial reconstructions of the antennular nerves and the brain. Eighty-nine to 99 antennular motoneurons occur in each hemibrain. The somata of the motoneurons are distributed in a consistent pattern in two complex soma clusters, the ventral paired mediolateral cluster of the deutocerebrum and the dorsal unpaired median cluster of the tritocerebrum. The motoneurons arborize ipsilaterally in the lateral and median antennular neuropils and the tegumentary neuropil. The backfills indicate a minimum of five morphological types of motoneurons with different arborization patterns. The innervation pattern of the motoneurons, together with previously reported innervation patterns of antennular sensory afferents, suggest that the lateral antennular neuropil is a lower motor center driving local antennular reflexes in response to chemical and mechanical stimulation of the antennule, whereas the median antennular neuropil is a lower motor center for equilibrium responses.
Collapse
Affiliation(s)
- M Schmidt
- Whitney Laboratory, University of Florida, St. Augustine 32086
| | | |
Collapse
|
16
|
Harzsch S, Dawirs RR. On the morphology of the central nervous system in larval stages ofCarcinus maenas L. (Decapoda, Brachyura). ACTA ACUST UNITED AC 1993. [DOI: 10.1007/bf02366185] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
|
18
|
The organization of the olfactory lobes in Euphausiacea and Mysidacea (Crustacea, Malacostraca). ZOOMORPHOLOGY 1992. [DOI: 10.1007/bf01673809] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Male-specific structures in the olfactory system of mysids (Mysidacea; Crustacea). Cell Tissue Res 1992. [DOI: 10.1007/bf00318804] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Schmidt M, Van Ekeris L, Ache BW. Antennular projections to the midbrain of the spiny lobster. I. Sensory innervation of the lateral and medial antennular neuropils. J Comp Neurol 1992; 318:277-90. [PMID: 1583163 DOI: 10.1002/cne.903180305] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The organization of sensory afferents in the antennular nerve (AN) of the spiny lobster and the central arborization of the afferents in the lateral and medial antennular neuropils (LAN, MAN) were analyzed by backfilling the AN with biocytin. The MAN receives primarily thick afferents (diameter greater than or equal to 10 microns) with a consistent pattern of arborization from the medial of the three major divisions of the AN. The LAN, in contrast, receives many thin to medium-sized afferents (diameter less than or equal to 0.3-5 microns), in addition some with diameters greater than or equal to 5 microns, from the lateral and dorsal divisions of the AN. In contrast to the consistent pattern of arborization in the MAN, afferents projecting to the LAN arborize in widely different patterns. Serially arranged, orthogonal side branches that are suggestive of topographical representation of the serially arranged sensilla on the antennule contribute to the stratification of the LAN. Together with existing electrophysiological data, these morphological findings are consistent with the idea that the MAN receives primarily mechanosensory (largely statocyst) input, as previously thought, but that the LAN receives chemosensory as well as mechanosensory input. The chemosensory input to the LAN would represent a novel pathway for processing chemosensory input from the antennule.
Collapse
Affiliation(s)
- M Schmidt
- Whitney Laboratory, University of Florida, St. Augustine 32086
| | | | | |
Collapse
|
21
|
Johansson KUI. Identification of different types of serotonin-like immunoreactive olfactory interneurons in four infraorders of decapod crustaceans. Cell Tissue Res 1991. [DOI: 10.1007/bf00313974] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Sandeman RE, Sandeman DC, Watson AH. Substance P antibody reveals homologous neurons with axon terminals among somata in the crayfish and crab brain. J Comp Neurol 1990; 294:569-82. [PMID: 1692854 DOI: 10.1002/cne.902940405] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the search for particular neurons that stain selectively and can be identified, the cerebral ganglia (brains) of the crayfish Cherax destructor and the crab Leptograpsus variegatus were immunocytochemically treated with a monoclonal antibody raised against substance P. Four large neurons in the cerebral ganglion of the crayfish and crab label selectively with a monoclonal antibody raised against substance P. Two of the large neurons have their cell bodies in the protocerebrum and two in the deutocerebrum in both animals. Each protocerebral cell in both animals projects through the ipsilateral and contralateral olfactory lobes to end among the lateral cell somata of the olfactory lobe and not in the neuropile. Electron micrographs show the presence of synapses within the cell somata area and on the cell somata themselves. Each deutocerebral cell in both animals projects only ipsilaterally and ends within the neuropile of the olfactory lobes. The immunoreactivity to substance P antibody and the shapes and the unique projections of the four cells suggest that they are homologous in the two species. Synaptic connections between axons and cell somata are rare in the arthropods but have been found on the Kenyon cells of the mushroom bodies of Limulus. This raises questions about homologies between the crustacean olfactory lobe and the mushroom bodies of Limulus and insects.
Collapse
Affiliation(s)
- R E Sandeman
- School of Biological Science, University of New South Wales, Kensington
| | | | | |
Collapse
|
23
|
Sandeman DC, Sandeman RE, Aitken AR. Atlas of serotonin-containing neurons in the optic lobes and brain of the crayfish, Cherax destructor. J Comp Neurol 1988; 269:465-78. [PMID: 3372724 DOI: 10.1002/cne.902690402] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An atlas of neurons in the brain of the crayfish Cherax destructor that are immunoreactive to antibodies raised against serotonin has been compiled from whole mount preparations. Neuronal networks of serotonin-containing cells are identified in the optic lobes and protocerebrum, in the deutocerebrum, and in the tritocerebrum. The consistency of the whole-mount technique allows 50 out of a total of about 100 immunoreactive cells to be individually identified according to their neuronal architecture or the location of their cell somata or axons. Apart from six neurons with axons in the oesophageal connectives, all the immunoreactive cells are intrinsic to the optic lobes and brain.
Collapse
Affiliation(s)
- D C Sandeman
- School of Zoology, University of New South Wales, Kensington, Australia
| | | | | |
Collapse
|
24
|
Presynaptic inhibition in the crayfish brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1985. [DOI: 10.1007/bf00619110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Neuroanatomical and neurophysiological aspects of vibrational processing in the central nervous system of semi-terrestrial crabs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1985. [DOI: 10.1007/bf00611100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Tautz J, Müller-Tautz R. Antennal neuropile in the brain of the crayfish: morphology of neurons. J Comp Neurol 1983; 218:415-25. [PMID: 6619322 DOI: 10.1002/cne.902180406] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cellular composition of the antennal neuropile of the crayfish is described. As a context for this work the distribution of neuronal cell bodies throughout the supraoesophageal ganglion (brain) is also described. The neuronal cell bodies in the brain are concentrated in 19 distinct clusters. Three paired clusters are located on the dorsal side of the brain, four paired and one midline cluster bend around the brain laterally and frontally respectively. Fewer than ten somata lie outside of these clusters. The antennal neuropile is composed of primary afferent terminals, efferents, and projecting and local interneurons. The structures of individual neurons of all four types were determined by filling them with Lucifer yellow, and an overview of the neuropile structure was obtained with cobalt backfills of selected nerves. The antennal afferents are concentrated in four main tracts that run medially in the outer layer of the antennal neuropile. Up to 11 orthogonal side branches occur at equal distances (25-35 microns) along the main branches and penetrate the neuropile. The efferents contribute very thin dendrites to the antennal neuropile. The majority of the neuronal mass of the antennal lobe consists of projecting and local interneurons. The branching pattern of the interneurons within the antennal neuropile also shows an orthogonal arrangement of main branches and higher-order branches. Thus the antennal neuropile displays a strong geometrical regularity: Main processes of all four types of neurons run in bundles the length of the long axis of the neuropile (lateral to medial inside the brain) giving rise to orthogonal side branches at regular intervals. This branching pattern leads to a striped appearance of the antennal lobe.
Collapse
|
27
|
Punzo F. Localization of brain function and neurochemical correlates of learning in the mud crab, Eurypanopeus depressus (Decapoda). ACTA ACUST UNITED AC 1983. [DOI: 10.1016/0300-9629(83)90085-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Habig C, Taylor RC. The crayfish second antennae. II—motoneuron structure as revealed by cobalt chloride backfilling. ACTA ACUST UNITED AC 1982. [DOI: 10.1016/0300-9629(82)90230-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Barrera-Mera B, Cibrian-Tovar J, García-Díaz DE. The role of protocerebrum in the modulation of circadian rhythmicity in the crayfish visual system. Brain Res Bull 1980; 5:667-72. [PMID: 7470937 DOI: 10.1016/0361-9230(80)90203-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dark-adapted crayfishes with protocerebrum only, were submitted to continuous recordings of electroretinogram (ERG) and of eye glow area (EGA) during several days. Circadian variations of ERG amplitude similar to that of intact animals, were revealed by means of restrained test light stimuli (0.2 Cd/ft2) bilaterally applied to each eyestalk. The period (24.6-38 hr) and range (40-80%) value of ERG oscillations always resulted quite similar to one another side. As in intact animals retinal shielding pigments (RSP) position as measured as EGA size showed a clear circadian rhythm, and also a clear consensual reflex in these preparations. We found a loss of both: circadian and consensual mobilization of distal RSP in animals with complete removal of cerebral ganglion. Our proposition is that the crayfish protocerebrum plays a major role in the modulation of circadian retinal sensitivity, probably through the control-release of hormonal neurosecretions from the sinus gland along the day.
Collapse
|
30
|
Goldstone MW, Cooke IM. Histochemical localization of monoamines in the crab central nervous system. ZEITSCHRIFT FUR ZELLFORSCHUNG UND MIKROSKOPISCHE ANATOMIE (VIENNA, AUSTRIA : 1948) 1971; 116:7-19. [PMID: 5575141 DOI: 10.1007/bf00332854] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Horiuchi E, Hayashi H, Takahashi I. A study of the median giant fiber system in the cephalic ganglion of a crayfish (Procambarus clarkii). J Comp Neurol 1971; 141:53-61. [PMID: 5538890 DOI: 10.1002/cne.901410105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Maynard EA. Microscopic localization of cholinesterases in the nervous systems of the lobsters, Panulirus argus and Homarus americanus. Tissue Cell 1971; 3:215-50. [DOI: 10.1016/s0040-8166(71)80020-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/1970] [Revised: 12/09/1970] [Indexed: 11/15/2022]
|
33
|
Aréchiga H, Wiersma CA. The effect of motor activity on the reactivity of single visual units in the crayfish. JOURNAL OF NEUROBIOLOGY 1969; 1:53-69. [PMID: 5407038 DOI: 10.1002/neu.480010106] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Elofsson R, Kauri T, Nielsen SO, Strömberg JO. Localization of monoaminergic neurons in the central nervous system of Astacus astacus Linné (Crustacea). ZEITSCHRIFT FUR ZELLFORSCHUNG UND MIKROSKOPISCHE ANATOMIE (VIENNA, AUSTRIA : 1948) 1966; 74:464-73. [PMID: 5299272 DOI: 10.1007/bf00496839] [Citation(s) in RCA: 53] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
An effect of eyestalk ablation on antennular function in the spiny lobster, Panulirus argus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1963. [DOI: 10.1007/bf00340474] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
|
37
|
|
38
|
Hanstr�m B. Neue untersuchungen �ber sinnesorgane und nervensystem der crustaceen. I. ZOOMORPHOLOGY 1931. [DOI: 10.1007/bf00446350] [Citation(s) in RCA: 72] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|