1
|
Koster CC, Kleefeldt AA, van den Broek M, Luttik M, Daran JM, Daran-Lapujade P. Long-read direct RNA sequencing of the mitochondrial transcriptome of Saccharomyces cerevisiae reveals condition-dependent intron abundance. Yeast 2024; 41:256-278. [PMID: 37642136 DOI: 10.1002/yea.3893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
Mitochondria fulfil many essential roles and have their own genome, which is expressed as polycistronic transcripts that undergo co- or posttranscriptional processing and splicing. Due to the inherent complexity and limited technical accessibility of the mitochondrial transcriptome, fundamental questions regarding mitochondrial gene expression and splicing remain unresolved, even in the model eukaryote Saccharomyces cerevisiae. Long-read sequencing could address these fundamental questions. Therefore, a method for the enrichment of mitochondrial RNA and sequencing using Nanopore technology was developed, enabling the resolution of splicing of polycistronic genes and the quantification of spliced RNA. This method successfully captured the full mitochondrial transcriptome and resolved RNA splicing patterns with single-base resolution and was applied to explore the transcriptome of S. cerevisiae grown with glucose or ethanol as the sole carbon source, revealing the impact of growth conditions on mitochondrial RNA expression and splicing. This study uncovered a remarkable difference in the turnover of Group II introns between yeast grown in either mostly fermentative or fully respiratory conditions. Whether this accumulation of introns in glucose medium has an impact on mitochondrial functions remains to be explored. Combined with the high tractability of the model yeast S. cerevisiae, the developed method enables to monitor mitochondrial transcriptome responses in a broad range of relevant contexts, including oxidative stress, apoptosis and mitochondrial diseases.
Collapse
Affiliation(s)
- Charlotte C Koster
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Askar A Kleefeldt
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Marijke Luttik
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
2
|
Discordant evolution of mitochondrial and nuclear yeast genomes at population level. BMC Biol 2020; 18:49. [PMID: 32393264 PMCID: PMC7216626 DOI: 10.1186/s12915-020-00786-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Background Mitochondria are essential organelles partially regulated by their own genomes. The mitochondrial genome maintenance and inheritance differ from the nuclear genome, potentially uncoupling their evolutionary trajectories. Here, we analysed mitochondrial sequences obtained from the 1011 Saccharomyces cerevisiae strain collection and identified pronounced differences with their nuclear genome counterparts. Results In contrast with pre-whole genome duplication fungal species, S. cerevisiae mitochondrial genomes show higher genetic diversity compared to the nuclear genomes. Strikingly, mitochondrial genomes appear to be highly admixed, resulting in a complex interconnected phylogeny with a weak grouping of isolates, whereas interspecies introgressions are very rare. Complete genome assemblies revealed that structural rearrangements are nearly absent with rare inversions detected. We tracked intron variation in COX1 and COB to infer gain and loss events throughout the species evolutionary history. Mitochondrial genome copy number is connected with the nuclear genome and linearly scale up with ploidy. We observed rare cases of naturally occurring mitochondrial DNA loss, petite, with a subset of them that do not suffer the expected growth defect in fermentable rich media. Conclusions Overall, our results illustrate how differences in the biology of two genomes coexisting in the same cells can lead to discordant evolutionary histories.
Collapse
|
3
|
Programmed translational bypassing elements in mitochondria: structure, mobility, and evolutionary origin. Trends Genet 2015; 31:187-94. [PMID: 25795412 DOI: 10.1016/j.tig.2015.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 02/03/2023]
Abstract
Programmed translational bypassing enables ribosomes to 'ignore' a precise mRNA interval of several dozen nucleotides. Well-characterized bypassed sequences include hop and byp elements, present in bacteriophage T4 and mitochondria of the yeast Magnusiomyces capitatus, respectively. The bypassing mechanism of byps is probably similar to that of hop, yet the former appears more effective and less constrained as to sequence context. Furthermore, both elements are mobile but hop moves as part of a cassette including a homing endonuclease, whereas byps seem to spread like miniature DNA transposable elements known as GC clusters. Here, we argue that hop and byps arose independently by convergent evolution, and that byps evolved in magnusiomycete mitochondria due to (as yet unknown) alterations of the mitochondrial translation machinery.
Collapse
|
4
|
Foury F, Roganti T, Lecrenier N, Purnelle B. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 1998; 440:325-31. [PMID: 9872396 DOI: 10.1016/s0014-5793(98)01467-7] [Citation(s) in RCA: 326] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The currently available yeast mitochondrial DNA (mtDNA) sequence is incomplete, contains many errors and is derived from several polymorphic strains. Here, we report that the mtDNA sequence of the strain used for nuclear genome sequencing assembles into a circular map of 85,779 bp which includes 10 kb of new sequence. We give a list of seven small hypothetical open reading frames (ORFs). Hot spots of point mutations are found in exons near the insertion sites of optional mobile group I intron-related sequences. Our data suggest that shuffling of mobile elements plays an important role in the remodelling of the yeast mitochondrial genome.
Collapse
Affiliation(s)
- F Foury
- Unité de Biochimie Physiologique, Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
5
|
Paquin B, O'Kelly CJ, Lang BF. Intron-encoded open reading frame of the GIY-YIG subclass in a plastid gene. Curr Genet 1995; 28:97-9. [PMID: 8536320 DOI: 10.1007/bf00311888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Group-I introns, containing open reading frames (ORFs) that code for homing endonucleases, are widely distributed amongst eukaryotic organellar genomes. However, endonucleases of the GIY-YIG subclass have a restricted distribution in mitochondria and bacteriophages, and have never been observed in plastids. We have found the GIY-YIG motif in an intronic ORF within the previously published psbA gene sequence from Chlamydomonas reinhardtii chloroplasts. Based on phylogenetic analysis and an evaluation of amino-acid substitutions, this ORF is not closely related to any of the other GIY-YIG ORFs. These results suggest that GIY-YIG ORFs have a longer evolutionary history than previously assumed.
Collapse
Affiliation(s)
- B Paquin
- Département de Biochimie, Université de Montréal, Canada
| | | | | |
Collapse
|
6
|
Abu-Amero SN, Charter NW, Buck KW, Brasier CM. Nucleotide-sequence analysis indicates that a DNA plasmid in a diseased isolate of Ophiostoma novo-ulmi is derived by recombination between two long repeat sequences in the mitochondrial large subunit ribosomal RNA gene. Curr Genet 1995; 28:54-9. [PMID: 8536313 DOI: 10.1007/bf00311881] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The nucleotide sequence of a mitochondrial plasmid (2234 bp) in a diseased isolate of Ophiostoma novo-ulmi, and sequences of the mitochondrial DNA that overlap and flank the plasmid end-points, have been determined. The plasmid was shown to be derived from the O. novo-ulmi mitochondrial large subunit ribosomal RNA gene and contained most of intron 1, the whole of exon 2, and probably the first part of intron 2. Within intron 1 there is an open reading frame with the potential to encode a 323 amino-acid polypeptide which contained dodecapeptide sequences typical of RNA maturases and DNA endonucleases. The endpoints of the plasmid in the mtDNA were located within two 90-bp direct imperfect repeat sequences, one of which comprised the last 7 bp of exon 1 and the first 83 bp of intron 1 whilst the other comprised the last 7 bp of exon 2 and the first 83 bp of intron 2. It is proposed that the Ld plasmid was generated by intramolecular recombination between these two repeats with the crossover point probably within the last 15 bp.
Collapse
Affiliation(s)
- S N Abu-Amero
- Department of Biology, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | |
Collapse
|
7
|
Carbone I, Anderson JB, Kohn LM. A group-I intron in the mitochondrial small subunit ribosomal RNA gene of Sclerotinia sclerotiorum. Curr Genet 1995; 27:166-76. [PMID: 7788720 DOI: 10.1007/bf00313431] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A 1,380-bp intervening sequence within the mitochondrial small subunit ribosomal RNA (mt SSU rRNA) gene of the fungus Sclerotinia sclerotiorum has been sequenced and identified as a group-I intron. This is the first report of an intron in the mt SSU rRNA gene. The intron shows close similarity in secondary structure to the subgroup-IC2 introns from Podospora (ND3i1, ND5i2, and COIi5) and Neurospora (ND5i1). The intron has an open reading frame (ORF) that encodes a putative protein of 420 amino acids which contains two copies of the LAGLI-DADG motif. The ORF belongs to a family of ORFs identified in Podospora (ND3i1, ND4Li1, ND4Li2, ND5i2, and COIi5) and Neurospora (ND5i1). The putative 420-aa polypeptide is also similar to a site-specific endonuclease in the chloroplast large subunit ribosomal RNA (LSU rRNA) gene of the green alga Chlamydomonas eugametos. In each clone of S. sclerotiorum examined, including several clones which were sampled over a 3-year period from geographically separated sites, all isolates either had the intron or lacked the intron within the mt SSU rRNA gene. Screening by means of Southern hybridization and PCR amplification detected the intron in the mt SSU rRNA genes of S. minor, S. trifoliorum and Sclerotium cepivorum, but not in other members of the Sclerotiniaceae, such as Botrytis anamorphs of Botryotinia spp., or in other ascomycetous and basidiomycetous fungi.
Collapse
Affiliation(s)
- I Carbone
- Department of Botany, University of Toronto, Erindale College, Mississauga, Ontario, Canada
| | | | | |
Collapse
|
8
|
Matsuoka M, Matsubara M, Kakehi M, Imanaka T. Homologous maturase-like proteins are encoded within the group I introns in different mitochondrial genes specifying Yarrowia lipolytica cytochrome c oxidase subunit 3 and Saccharomyces cerevisiae apocytochrome b. Curr Genet 1994; 26:377-81. [PMID: 7533056 DOI: 10.1007/bf00309922] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A mitochondrial cox3 gene in the alkane yeast, Yarrowia lipolytica, encodes a subunit-3 protein of cytochrome c oxidase, and contains a 1044 base-pair-long intron, as compared with the corresponding intronless gene in Saccharomyces cerevisiae. The intron belongs to a group I intron as determined by the cDNA sequence for the splicing sites as well as the predicted RNA secondary structure. Remarkably, this intron could code for a protein of 206 amino-acid residues which showed 63% similarity with an RNA maturase encoded by the second intron of the mitochondrial apocytochrome b gene in S. cerevisiae. Both introns occurred within the conserved exon sequence, 5'-TT(G/C)AGGTGC-3', suggesting the possible transposition of a common ancestral intron.
Collapse
Affiliation(s)
- M Matsuoka
- Department of Biotechnology, Faculty of Engineering, Osaka University, Japan
| | | | | | | |
Collapse
|
9
|
Abstract
The genes encoding the NADH dehydrogenase subunits of respiratory complex I have not been identified so far in the mitochondrial DNA (mtDNA) of yeasts. In the linear mtDNA of Candida parapsilosis, we found six new open reading frames whose sequences were unambiguously homologous to those of the genes known to code for NADH dehydrogenase subunit proteins of different organisms, i.e., ND1, ND2, ND3, ND4L, ND5, and ND6. The gene for ND4 also appears to be present, as judged from hybridization experiments with a Podospora gene probe. Specific transcripts from these open reading frames (ND genes) could be detected in the mitochondria. Hybridization experiments using C. parapsilosis genes as probes suggested that ND genes are present in the mtDNAs of a wide range of yeast species including Candida catenulata, Pichia guilliermondii, Clavispora lusitaniae, Debaryomyces hansenii, Hansenula polymorpha, and others.
Collapse
Affiliation(s)
- J Nosek
- Institut Curie, Section de Biologie, Centre Universitaire Paris XI, Orsay, France
| | | |
Collapse
|
10
|
Drissi R, Sor F, Nosek J, Fukuhara H. Genes of the linear mitochondrial DNA of Williopsis mrakii: coding sequences for a maturase-like protein, a ribosomal protein VAR1 homologue, cytochrome oxidase subunit 2 and methionyl tRNA. Yeast 1994; 10:391-8. [PMID: 8017108 DOI: 10.1002/yea.320100312] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mitochondrial DNA (mtDNA) in some yeasts has a linear structure with inverted terminal repeats closed by a single-stranded loop. These mtDNAs have generally a constant gene order, beginning with a small ribosomal RNA gene at the right end and terminating with a cytochrome oxidase subunit 2 gene (COX2) at the left end, independently of the wide variation in genome size. In the mtDNAs from several species of the genus Williopsis, we found an additional open reading frame, ORF1, which was homologous to the Saccharomyces cerevisiae RF1 gene encoding a group I intron maturase-like protein. ORF1 genes from W. mrakii and W. suaveolens were mapped and sequenced. Next to ORF1, COX2 and methionyl tRNA genes were present on the opposite strand. The same relative positions of genes in the mtDNAs so far examined suggests that the constancy of gene order is generally conserved also at the level of individual tRNA genes. We identified another open reading frame, ORF2, in W. mrakii mtDNA. It was mapped next to the cytochrome oxidase subunit 3 gene. Rich in adenine-thymine bases, ORF2 appears to be a homologue of the VAR1 gene which codes for a small ribosomal subunit protein in S. cerevisiae mitochondria. Nucleotide sequences data have been deposited in the EmBL data library under the following Accession Numbers: X66594 (Apocytochrome b and ORF2 genes of W. mrakii), X66595 (ORF1, tRNA-Met and COX2 genes of W. mrakii), X73415 (tRNA-Met and COX2 genes of W. suaveolens), X73416 (ORF1 gene of W. suaveolens) and X73414 (tRNA-Met and COX2 genes of P. jadinii).
Collapse
Affiliation(s)
- R Drissi
- Institut Curie, Centre Universitaire Paris XI, Orsay, France
| | | | | | | |
Collapse
|
11
|
Hofmann TJ, Min J, Zassenhaus HP. Formation of the 3' end of yeast mitochondrial mRNAs occurs by site-specific cleavage two bases downstream of a conserved dodecamer sequence. Yeast 1993; 9:1319-30. [PMID: 7512302 DOI: 10.1002/yea.320091205] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial mRNAs in yeast arise by processing of polygenic primary transcripts at a conserved dodecamer sequence (5'-AAUAAPyAUUCUU-3'). Previous results indicated that processing at dodecamer sites interrupted the sequence implying that it functioned primarily as a signal for 3' end formation of mRNAs. We have determined the precise cleavage site for RNAs processed at the dodecamer sequences associated with the oli1 gene and the omega intron of the 21S rRNA gene. In both cases cleavage occurred two bases downstream of the site. Hydrolysis left the PO4 group attached to the 3' terminus of the cleavage products. These results demonstrate for the first time that mature mitochondrial mRNAs terminate with an intact dodecamer sequence. In light of the recent identification of a protein complex within mitochondria that binds to RNAs terminating with an intact dodecamer sequence, these results support the idea that the dodecamer sequence functions not only within pre-mRNAs as a processing site, but within mature mRNAs as well, possibly for the stabilization and/or translation.
Collapse
Affiliation(s)
- T J Hofmann
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, NJ 08544
| | | | | |
Collapse
|
12
|
Pietrokovski S, Trifonov EN. Imported sequences in the mitochondrial yeast genome identified by nucleotide linguistics. Gene 1992; 122:129-37. [PMID: 1452019 DOI: 10.1016/0378-1119(92)90040-v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In addition to universally appearing mitochondrial (mt) genes, origins of replication and transcription start regions typical of all mt genome variants of the yeast Saccharomyces cerevisiae, the mt genomes of some of the strains contain variable sequences. These sequences are apparently largely dispensable. They are mainly composed of group-I and -II introns and intergenic open reading frames (ORFs). Many of the introns contain ORFs, some of which were shown by genetic and biochemical means to be involved in splicing and transposition of the mt introns. Some of the optional sequences are hypothesized to be mobile genetic elements. Nucleotide (nt) sequences of the mt genome of S. cerevisiae were examined by analyzing occurrences of oligodeoxyribonucleotide (oligo) 'words'. This linguistic technique had been found to be sensitive to both function and origin of the sequence [Pietrokovski et al., J. Biomol. Struct. Dyn. 7 (1990) 1251-1268]. A clear difference is found between the oligo vocabularies of the optional and basic yeast mt sequences. The difference is mainly located in protein coding segments of the optional sequences which contain conserved amino acid motifs, characteristic of intronic and intergenic ORFs. The use of nt linguistics to detect the sequence dissimilarity and its causes in yeast mitochondria provides fast and straightforward results, identifying the intronic and intergenic ORFs as DNA sequences of foreign, non-mt origin.
Collapse
Affiliation(s)
- S Pietrokovski
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
13
|
Hardy CM, Clark-Walker GD. Nucleotide sequence of the COX1 gene in Kluyveromyces lactis mitochondrial DNA: evidence for recent horizontal transfer of a group II intron. Curr Genet 1991; 20:99-114. [PMID: 1657415 DOI: 10.1007/bf00312772] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cytochrome oxidase subunit 1 gene (COX1) in K. lactis K8 mtDNA spans 8,826 bp and contains five exons (termed E1-E5) totalling 1,602 bp that show 88% nucleotide base matching and 91% amino acid homology to the equivalent gene in S. cerevisiae. The four introns (termed K1 cox1.1-1.4) contain open reading frames encoding proteins of 786, 333, 319 and 395 amino acids respectively that potentially encode maturase enzymes. The first intron belongs to group II whereas the remaining three are group I type B. Introns K1 cox1.1, 1.3, and 1.4 are found at identical locations to introns Sc cox1.2, 1.5 a, and 1.5 b respectively from S. cerevisiae. Horizontal transfer of an intron between recent progenitors of K. lactis and S. cerevisiae is suggested by the observation that K1 cox1.1 and Sc cox1.2 show 96% base matching. Sequence comparisons between K1 cox1.3/Sc cox1.5 a and K1 cox1.4/Sc cox1.5 b suggest that these introns are likely to have been present in the ancestral COX1 gene of these yeasts. Intron K1 cox1.2 is not found in S. cerevisiae and appears at an unique location in K. lactis. A feature of the DNA sequences of the group I introns K1 cox1.2, 1.3, and 1.4 is the presence of 11 GC-rich clusters inserted into both coding and noncoding regions. Immediately downstream of the COX1 gene is the ATPase subunit 8 gene (A8) that shows 82.6% base matching to its counterpart in S. cerevisiae mtDNA.
Collapse
Affiliation(s)
- C M Hardy
- Molecular and Population Genetics Group, Research School of Biological Sciences, Australian National University, Canberra
| | | |
Collapse
|
14
|
Tian GL, Macadre C, Kruszewska A, Szczesniak B, Ragnini A, Grisanti P, Rinaldi T, Palleschi C, Frontali L, Slonimski PP. Incipient mitochondrial evolution in yeasts. I. The physical map and gene order of Saccharomyces douglasii mitochondrial DNA discloses a translocation of a segment of 15,000 base-pairs and the presence of new introns in comparison with Saccharomyces cerevisiae. J Mol Biol 1991; 218:735-46. [PMID: 1850804 DOI: 10.1016/0022-2836(91)90262-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have determined the physical and genetic map of the 73,000 base-pair mitochondrial genome of a novel yeast species Saccharomyces douglasii. Most of the protein and RNA-coding genes known to be present in the mitochondrial DNA of Saccharomyces cerevisiae have been identified and located on the S. douglasii mitochondrial genome. The nuclear genomes of the two species are thought to have diverged some 50 to 80 million years ago and their nucleo-mitochondrial hybrids are viable but respiratorily deficient. The mitochondrial genome of S. douglasii displays many interesting features in comparison with that of S. cerevisiae. The three mosaic genes present in both genomes are quite different with regard to their structure. The S. douglasii COXI gene has two new introns and is missing the five introns of the S. cerevisiae gene. The S. douglasii cytochrome b gene has one new intron and lacks two introns of the S. cerevisiae gene. Finally, the L-rRNA gene of S. douglasii, like that of S. cerevisiae, has one intron of which the structure is different. Another salient feature of the S. douglasii mitochondrial genome reported here is that the gene order is different in comparison with S. cerevisiae mitochondrial DNA. In particular, a segment of approximately 15,000 base-pairs including the genes coding for COXIII and S-rRNA has been translocated to a position between the genes coding for varl and L-rRNA.
Collapse
Affiliation(s)
- G L Tian
- Centre de Génétique Moléculaire du C.N.R.S., Laboratoire Propre Associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tian GL, Michel F, Macadre C, Slonimski PP, Lazowska J. Incipient mitochondrial evolution in yeasts. II. The complete sequence of the gene coding for cytochrome b in Saccharomyces douglasii reveals the presence of both new and conserved introns and discloses major differences in the fixation of mutations in evolution. J Mol Biol 1991; 218:747-60. [PMID: 1708831 DOI: 10.1016/0022-2836(91)90263-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have determined the complete sequence of the mitochondrial gene coding for cytochrome b in Saccharomyces douglasii. The gene is 6310 base-pairs long and is interrupted by four introns. The first one (1311 base-pairs) belongs to the group ID of secondary structure, contains a fragment open reading frame with a characteristic GIY ... YIG motif, is absent from Saccharomyces cerevisiae and is inserted in the same site in which introns 1 and 2 are inserted in Neurospora crassa and Podospora anserina, respectively. The next three S. douglasii introns are homologous to the first three introns of S. cerevisiae, are inserted at the same positions and display various degrees of similarity ranging from an almost complete identity (intron 2 and 4) to a moderate one (intron 3). We have compared secondary structures of intron RNAs, and nucleotide and amino acid sequences of cytochrome b exons and intron open reading frames in the two Saccharomyces species. The rules that govern fixation of mutations in exon and intron open reading frames are different: the relative proportion of mutations occurring in synonymous codons is low in some introns and high in exons. The overall frequency of mutations in cytochrome b exons is much smaller than in nuclear genes of yeasts, contrary to what has been found in vertebrates, where mitochondrial mutations are more frequent. The divergence of the cytochrome b gene is modular: various parts of the gene have changed with a different mode and tempo of evolution.
Collapse
Affiliation(s)
- G L Tian
- Centre de Génétique Moléculaire du C.N.R.S., Laboratoire Propre Associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
16
|
Elelj-Fridhi N, Pallier C, Zelikson R, Guetari M, Bolotin-Fukuhara M. Mutational studies of the major tRNA region of the S. cerevisiae mitochondrial genome. Curr Genet 1991; 19:301-8. [PMID: 1651178 DOI: 10.1007/bf00355059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The major tRNA genes in S. cerevisiae mitochondria are contained within a 20 kb segment of the mitochondrial DNA. In order to analyze the functional role of this region we have isolated several mitochondrial mutations, which are temperature-sensitive for growth on non-fermentable carbon sources. These mutations, localized in the major tRNA cluster region, can be classified in different groups according to their (a) genetic and physical localization, (b) spectrum of suppression and (c) biochemical characteristics. Some of these are mutations in tRNA genes which affect tRNA function; others alter the synthesis of the gene product. Finally, we found two mutations localized in, or in the vicinity of, the open reading frame RF2. RF2 has been postulated to be a maturase-like protein (Michel 1984) but no function for it has yet been demonstrated. The existence of defective mutants may confirm that RF2 is indeed necessary for mitochondrial biogenesis and so allow for a study of the expression of this gene.
Collapse
Affiliation(s)
- N Elelj-Fridhi
- Laboratoire de Génétique Moléculaire, URA 1354 du CNRS, Orsay, France
| | | | | | | | | |
Collapse
|
17
|
A maturase-like subunit of the sequence-specific endonuclease endo.SceI from yeast mitochondria. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52388-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Hardy CM, Clark-Walker GD. Nucleotide sequence of the cytochrome oxidase subunit 2 and val-tRNA genes and surrounding sequences from Kluyveromyces lactis K8 mitochondrial DNA. Yeast 1990; 6:403-10. [PMID: 2171241 DOI: 10.1002/yea.320060505] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleotide sequence of the cytochrome oxidase subunit 2 (cox2) and val-tRNA genes and surrounding regions from Kluyveromyces lactis mitochondrial DNA is reported. Analysis of the coding region shows that the codons CUN (Thr), CGN (Arg) and AUA (Met) are absent in this gene. A single sequence, ATATAAGTAA, identical to the baker's yeast mtRNA polymerase recognition site, was detected upstream of val-tRNA. This sequence is absent from regions between val-tRNA-cox2 and cox2-cox1. In addition a sequence AATAATATTCTT, identical to the mRNA processing site in other yeast mitochondrial genomes is present 32-43 bp downstream to the TAA stop codon for the cox2 gene. Another short conserved sequence of 5 bp, TCTAA, is present upstream of the coding regions of cox2 genes in several yeasts, including K. lactis, but is not present upstream of other genes. Comparison of cox2 sequences from other organisms indicates that the mitochondrial DNA of K. lactis is closely related to that of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- C M Hardy
- Molecular and Population Genetics Group, Research School of Biological Sciences, Australian National University, Canberra, A.C.T
| | | |
Collapse
|
19
|
Cummings DJ, McNally KL, Domenico JM, Matsuura ET. The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 1990; 17:375-402. [PMID: 2357736 DOI: 10.1007/bf00334517] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complete 94,192 bp sequence of the mitochondrial genome from race s of Podospora anserina is presented (1 kb = 10(3) base pairs). Three regions unique to race A are also presented bringing the size of this genome to 100,314 bp. Race s contains 31 group I introns (33 in race A) and 2 group II introns (3 in race A). Analysis shows that the group I introns can be categorized according to families both with regard to secondary structure and their open reading frames. All identified genes are transcribed from the same strand. Except for the lack of ATPase 9, the Podospora genome contains the same genes as its fungal counterparts, N. crassa and A. nidulans. About 20% of the genome has not yet been identified. DNA sequence studies of several excision-amplification plasmids demonstrate a common feature to be the presence of short repeated sequences at both termini with a prevalence of GGCGCAAGCTC.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology/Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | | | |
Collapse
|
20
|
Cummings DJ, Michel F, Domenico JM, McNally KL. Mitochondrial DNA sequence analysis of the cytochrome oxidase subunit II gene from Podospora anserina. A group IA intron with a putative alternative splice site. J Mol Biol 1990; 212:287-94. [PMID: 2157023 DOI: 10.1016/0022-2836(90)90125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A 5 kb region of the 95 kb mitochondrial genome of Podospora anserina race s has been mapped and sequenced (1 kb = 10(3) base-pairs). This DNA region is continuous with the sequence for the ND4L and ND5 gene complex in the accompanying paper. We show that this sequence contains the gene for cytochrome oxidase subunit II (COII). This gene is 4 kb in length and is interrupted by a subgroup IB intron (1267 base-pairs (bp) in length) and a subgroup IA intron (1992 bp in length). This group IA intron has a long open reading frame (ORF; 472 amino acid residues) discontinuous with the upstream exon sequence. A putative alternative splice site is present, which brings the ORF into phase with the 5' exon sequence. The 5'- and 3'-flanking regions of the COII gene contain G + C-rich palindromic sequences that resemble similar sequences flanking many Neurospora crassa mitochondrial genes.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | | | |
Collapse
|
21
|
Cummings DJ, Michel F, Domenico JM, McNally KL. DNA sequence analysis of the mitochondrial ND4L-ND5 gene complex from Podospora anserina. Duplication of the ND4L gene within its intron. J Mol Biol 1990; 212:269-86. [PMID: 2319602 DOI: 10.1016/0022-2836(90)90124-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A 15 kb region of the 100 kb mitochondrial genome of Podospora anserina has been mapped and sequenced (1 kb = 10(3) base-pairs). The genes for ND4L and ND5 are identified as contiguous genes with overlapping termination and initiation codons. In race A (101 kb) the gene for ND4L (4.3 kb) has a gene duplication within an intron including a second subgroup IC intron. Race s (95 kb) lacks this second gene complex. Each intron has the identical 5' exon boundary. Secondary structure analysis showed that the closest relative of the second intron is the first intron itself. The open reading frames of the two introns are also closely related to each other as well as to their counterpart in the ND4L gene of Neurospora crassa. The 9.9 kb ND5 gene starts immediately at the termination codon of ND4L and is split by two group IB introns, one group IC intron and one group II intron. The group II intron is closely related to other group II introns although its open reading frame sequence similarity with retroviral reverse transcriptase appears to be more divergent. The similarities in secondary structure and open reading frames for these six introns are discussed.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | | | |
Collapse
|
22
|
Cummings DJ, Michel F, McNally KL. DNA sequence analysis of the apocytochrome b gene of Podospora anserina: a new family of intronic open reading frame. Curr Genet 1989; 16:407-18. [PMID: 2611913 DOI: 10.1007/bf00340720] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The 5,969 bp (base pair) DNA sequence of the apocytochrome b mitochondrial (mt) gene of race A Podospora anserina was located in a 8.5 Kbp region. This gene contained a 2,499 bp subgroup IB and a 1,306 bp subgroup ID intron as well as a 990 bp subgroup IB intron which is present in race A but not race s. The large subgroup IB intron and the race A specific IB intron both contained potential alternate splice sites which brought their open reading frames into phase with their upstream exon sequences. All three introns were compared with regard to their secondary structures and open reading frames to the other 30 group I introns in Podospora anserina, as well as to other fungal introns. We detected a new family of intronic ORFs comprising seven P. anserina introns, several N. crassa introns, as well as the T4td bacteriophage intron. Sequence similarities to intron-encoded endonucleases were noteworthy. The DNA sequences reported here and in the accompanying paper complete the analysis of race s and race A mitochondrial DNA.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | |
Collapse
|
23
|
Abstract
Group I introns form a structural and functional group of introns with widespread but irregular distribution among very diverse organisms and genetic systems. Evidence is now accumulating that several group I introns are mobile genetic elements with properties similar to those originally described for the omega system of Saccharomyces cerevisiae: mobile group I introns encode sequence-specific double-strand (ds) endoDNases, which recognize and cleave intronless genes to insert a copy of the intron by a ds-break repair mechanism. This mechanism results in: the efficient propagation of group I introns into their cognate sites; their maintenance at the site against spontaneous loss; and, perhaps, their transposition to different sites. The spontaneous loss of group I introns occurs with low frequency by an RNA-mediated mechanism. This mechanism eliminates introns defective for mobility and/or for RNA splicing. Mechanisms of intron acquisition and intron loss must create an equilibrium, which explains the irregular distribution of group I introns in various genetic systems. Furthermore, the observed distribution also predicts that horizontal transfer of intron sequences must occur between unrelated species, using vectors yet to be discovered.
Collapse
Affiliation(s)
- B Dujon
- Unité de Génétique Moléculaire des Levures, Institut Pasteur, Paris, France
| |
Collapse
|
24
|
Weiller G, Schueller CM, Schweyen RJ. Putative target sites for mobile G + C rich clusters in yeast mitochondrial DNA: single elements and tandem arrays. MOLECULAR & GENERAL GENETICS : MGG 1989; 218:272-83. [PMID: 2674655 DOI: 10.1007/bf00331278] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
GC clusters constitute the major repetitive elements in the mitochondrial (mt) genome of the yeast Saccharomyces cerevisiae. Many of these clusters are optional and thus contribute much to the polymorphism of yeast mtDNAs. We have made a systematic search for polymorphic sites by comparing mtDNA sequences of various yeast strains. Most of the 26 di- or polymorphic sites found differ by the presence or absence of a GC cluster of the majority class, here referred to as the M class, which terminate with an AGGAG motif. Comparison of sequences with and without the GC clusters reveal that elements of the subclasses M1 and M2 are inserted 3' to a TAG, flanked by A + T rich sequences. M3 elements, in contrast, only occur in tandem arrays of two to four GC clusters; they are consistently inserted 3' to the AGGAG terminal sequence of a preexisting cluster. The TAG or the terminal AGGAG, therefore, are regarded as being part of the target sites for M1 and M2 or M3 elements, respectively. The dinucleotide AG is in common to both target sites; it also occurs at the 3' terminus (AGGAG). This suggests its duplication during GC cluster insertion. This notion is supported by the observation that GC clusters of the minor classes G and V similarily repeat at their 3' terminus a GT or an AA dinucleotide, respectively, from their putative target sites.
Collapse
Affiliation(s)
- G Weiller
- Institut für Genetik und Mikrobiologie, Universität München, Federal Republic of Germany
| | | | | |
Collapse
|
25
|
Grivell LA. Nucleo-mitochondrial interactions in yeast mitochondrial biogenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 182:477-93. [PMID: 2666128 DOI: 10.1111/j.1432-1033.1989.tb14854.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- L A Grivell
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| |
Collapse
|
26
|
Cummings DJ, Domenico JM, Nelson J. DNA sequence and secondary structures of the large subunit rRNA coding regions and its two class I introns of mitochondrial DNA from Podospora anserina. J Mol Evol 1989; 28:242-55. [PMID: 2494353 DOI: 10.1007/bf02102482] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA sequence analysis has shown that the gene coding for the mitochondrial (mt) large subunit ribosomal RNA (rRNA) from Podospora anserina is interrupted by two class I introns. The coding region for the large subunit rRNA itself is 3715 bp and the two introns are 1544 (r1) and 2404 (r2) bp in length. Secondary structure models for the large subunit rRNA were constructed and compared with the equivalent structure from Escherichia coli 23S rRNA. The two structures were remarkably similar despite an 800-base difference in length. The additional bases in the P. anserina rRNA appear to be mostly in unstructured regions in the 3' part of the RNA. Secondary structure models for the two introns show striking similarities with each other as well as with the intron models from the equivalent introns in Saccharomyces cerevisiae, Neurospora crassa, and Aspergillus nidulans. The long open reading frames in each intron are different from each other, however, and the nucleotide sequence similarity diverges as it proceeds away from the core structure. Each intron is located within regions of the large subunit rRNA gene that are highly conserved in both sequence and structure. Computer analysis showed that the open reading frame for intron r1 contained a common maturase-like polypeptide. The open reading frames of intron r2 appeared to be chimeric, displaying high sequence similarity with the open reading frames in the r1 and ATPase 6 introns of N. crassa.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | |
Collapse
|
27
|
Lazowska J, Claisse M, Gargouri A, Kotylak Z, Spyridakis A, Slonimski PP. Protein encoded by the third intron of cytochrome b gene in Saccharomyces cerevisiae is an mRNA maturase. Analysis of mitochondrial mutants, RNA transcripts proteins and evolutionary relationships. J Mol Biol 1989; 205:275-89. [PMID: 2538624 DOI: 10.1016/0022-2836(89)90341-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have established the nucleotide sequence of the wild-type and that of a trans-acting mutant located in the third (bi3) intron of the Saccharomyces cerevisiae mitochondrial cytochrome b gene. The intron, 1691 base-pairs long, has an open reading frame 1045 base-pairs long, in phase with the preceding exon and the mutation replaces the evolutionarily conserved Gly codon of the second consensus motif by an Asp codon and blocks the formation of mature cytochrome b mRNA. Splicing intermediates of 5300 and 3900 bases with unexcised bi3 intron and a characteristic novel polypeptide (p50), the size of which corresponds to the chimeric protein encoded by upstream exons and the bi3 intronic open reading frame (ORF), accumulate in this and other bi3 splicing-deficient mutants. We conclude that the protein encoded by the bi3 ORF is a specific mRNA maturase involved in the splicing of the cytochrome b mRNA. The open reading frame of the third intron is remarkably similar to that of the unique intron of the cytochrome b gene (cob A) of Aspergillus nidulans. Both are located in exactly the same position and possibly derive from a recent common ancestor by a horizontal transfer. We have established the nucleotide sequence of an exonic mutant located in the B3 exon. This missense mutation changes the Phe codon 151 into a Cys codon and leads to the absence of functional cytochrome b but does not affect splicing. Finally, we have studied the splicing pathway leading to the synthesis of cytochrome b mRNA by analysing, in a comprehensive manner, the 22 splicing intermediates of several mutants located in bi3.
Collapse
Affiliation(s)
- J Lazowska
- Centre de Génétique Moléculaire du C.N.R.S., Laboratoire Propre Associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
28
|
Cummings DJ, Domenico JM. Sequence analysis of mitochondrial DNA from Podospora anserina. Pervasiveness of a class I intron in three separate genes. J Mol Biol 1988; 204:815-39. [PMID: 2975708 DOI: 10.1016/0022-2836(88)90044-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A 48 kb region of the 95 kb mitochondrial genome of Podospora anserina has been mapped and sequenced (1 kb = 10(3) base-pairs). The DNA sequence of the genes for ND2, 3, 4, ATPase 6 and URFC are presented here. As in Neurospora crassa, the ND2 and 3 genes consist of a unit separated by one TAA stop codon. ND3, 4 and ATPase 6 are interrupted by class I introns. All three introns are remarkably similar in the C-domain of their secondary structure, sufficient enough to designate them as new subgroup, class IC introns. The open reading frames of the ND3 and 4 introns bear a high sequence similarity to the open reading frame of the class IB introns of ATPase 6 from N. crassa and ND1 from Neurospora intermedia Varkud. We also show that the tRNA Met-2 gene is duplicated and is involved in a recombinational event. The 5' region of URFC is also duplicated but no involvement of this gene with recombination or formation of plasmids is known. The evolutionary significance of the similarities of intron secondary structures and open reading frames of the ND3, 4 and ATPase 6 genes is discussed, including the possible separate evolution of structural and coding sequences.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | |
Collapse
|
29
|
Cummings DJ, Domenico JM, Michel F. DNA sequence and organization of the mitochondrial ND1 gene from Podospora anserina: analysis of alternate splice sites. Curr Genet 1988; 14:253-64. [PMID: 3197134 DOI: 10.1007/bf00376746] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Earlier, we reported that the ND1 mitochondrial gene of Podospora anserina is mosaic, containing at least three class I introns. We have now completed the sequence of the ND1 gene and have determined that it contains four class I introns of 1,820, 2,631, 2,256 and 2,597 bp with the entire gene complex containing 10,505 bp, only 1,101 of which are exon sequences. Introns 1 and 3 appear to be related in that their open reading frames (ORFS) exhibit extensive amino acid sequence similarity and like the URFN sequence from Neurospora crassa have multiple sequence repetitions. Introns 2 and 4 are similar in that both appear to be mosaic introns. Where intron 2 has many short ORFS, intron 4 has two, 391 and 262 aa respectively. The first ORF has some patch work sequence similarity with one of the intron 2 ORFs but the second ORF is strikingly similar to the single intron ORF in the ND1 gene of N. crassa. Just upstream of the sequences necessary to form the central core of the P. anserina intron 4 secondary structure, there is a 17 bp sequence which is an exact replica of the exon sequence abutting the 5' flank of the 1,118 bp N. crassa ND1 intron. Secondary structure analysis suggests that the 2,597 bp intron 4 can fold as an entity but a similar structure can be constructed just from an 1,130 bp portion by utilizing the 17 bp element as an alternate splice site. Detailed structural analysis suggests that intron 4 (as well as the single ND1 intron from N. crassa) can utilize helical configurations which bring the downstream open reading frame into juxtaposition with the exon sequences.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | |
Collapse
|
30
|
Independent evolution of structural and coding regions in a Neurospora mitochondrial intron. Nature 1988; 332:654-6. [PMID: 2965793 DOI: 10.1038/332654a0] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The discovery of intervening sequences (introns) in eukaryotic genes has raised questions about the origin and evolution of these sequences. Hypotheses concerning these topics usually consider the intron as a unit that could be lost or gained over time, or as a region within which recombination can occur to facilitate the production of new proteins by exon shuffling. Additional complexities are observed in introns of mitochondrial and chloroplast genes which contain secondary structures required for messenger RNA splicing and open-reading frames encoding proteins. Here we describe differences in the organization of protein-coding sequences in the intron of the mitochondrial ND1 gene in two closely related species of Neurospora. These differences show that intron sequences involved in secondary structure formation and in protein coding can evolve as physically distinct elements. Indeed, the secondary structure elements of the ND1 intron can contain two different coding sequences located at two different positions within the intron.
Collapse
|
31
|
Bordonné R, Dirheimer G, Martin RP. Expression of the oxi1 and maturase-related RF1 genes in yeast mitochondria. Curr Genet 1988; 13:227-33. [PMID: 2838184 DOI: 10.1007/bf00387768] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transcription of the yeast mitochondrial oxi1 gene (cytochrome oxidase subunit 2) is initiated at a variant non anucleotide sequence, TTAAAAGTA, located 54 bp upstream from the protein-coding gene. Transcriptional initiation at this site gives rise to a 2,500 nucleotide primary transcript containing both the oxi1 gene and the downstream maturase-related reading frame, RF1. Precise transcript mapping has revealed that the 3'-end of the mature oxi1 mRNA is generated by an endonucleolytic cleavage which takes place after the conserved dodecamer sequence, AAUAAUAUUCUU (End-of-Messenger signal), 75 nucleotides downstream from the oxi1 stop codon. Since the RF1 5'-terminal coding region overlaps the oxi1 3'-terminal coding sequence, cleavage at this motif truncates the RF1 message suggesting that the expression of the putative RF1 protein is controlled at the level of dodecamer processing.
Collapse
Affiliation(s)
- R Bordonné
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | |
Collapse
|
32
|
Wolf K, Del Giudice L. The variable mitochondrial genome of ascomycetes: organization, mutational alterations, and expression. ADVANCES IN GENETICS 1988; 25:185-308. [PMID: 3057820 DOI: 10.1016/s0065-2660(08)60460-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- K Wolf
- Institut für Genetik und Mikrobiologie, Universität München, Munich, Federal Republic of Germany
| | | |
Collapse
|
33
|
Séraphin B, Simon M, Faye G. The mitochondrial reading frame RF3 is a functional gene in Saccharomyces uvarum. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61090-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
de Zamaroczy M, Bernardi G. The AT spacers and the var1 genes from the mitochondrial genomes of Saccharomyces cerevisiae and Torulopsis glabrata: evolutionary origin and mechanism of formation. Gene X 1987; 54:1-22. [PMID: 3301538 DOI: 10.1016/0378-1119(87)90342-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intergenic sequences represent 63% of the mitochondrial 'long' (85 kb) genome of Saccharomyces cerevisiae. They comprise 170-200 AT spacers that correspond to 47% of the genome and are separated from each other by GC clusters, ORFs, ori sequences, as well as by protein-coding genes. Intergenic AT spacers have an average size of 190 bp, and a GC level of 5%; they are formed by short (20-30 nt on the average) A/T stretches separated by C/G mono- to trinucleotides. An analysis of the primary structures of all intergenic AT spacers already sequenced (32 kb; 80% of the total) has shown that they are characterized by an extremely high level of short sequence repetitiveness and by a characteristic sequence pattern; the frequencies of A/T isostichs conspicuously deviate from statistical expectations, and exponentially decrease when their (AT + TA)/(AA + TT) ratio, R, decreases. A situation basically identical was found in the AT spacers of the mitochondrial genome (19 kb) of Torulopsis glabrata. The sequence features of the AT spacers indicate that they were built in evolution by an expansion process mainly involving rounds of duplication, inversion and translocation events which affected an initial oligodeoxynucleotide (endowed with a particular R ratio) and the sequences derived from it. In turn, the initial oligodeoxynucleotide appears to have arisen from an ancestral promoter-replicator sequence which was at the origin of the nonanucleotide promoters present in the mitochondrial genomes of several yeasts. Common sequence patterns indicate that the AT spacers so formed gave rise to the var1 gene (by linking and phasing of short ORFs), to the DNA stretches corresponding to the untranslated mRNA sequences and to the central stretches of ori sequences from S. cerevisiae.
Collapse
|
35
|
Burger G, Werner S. Mitochondrial gene URFN of Neurospora crassa codes for a long polypeptide with highly repetitive structure. J Mol Biol 1986; 191:589-99. [PMID: 2949084 DOI: 10.1016/0022-2836(86)90447-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mitochondrial DNA of Neurospora crassa contains a long potential gene, designated URFN, which is located immediately downstream from the CO1 gene. These two genes are encoded in different reading frames and overlap by 13 codons. URFN is 633 triplets long and terminates at a UAG stop codon. Its codon usage is atypical for N. crassa mitochondrial exons and introns, and resembles that of the long open reading frame (ORF) of the mitochondrial plasmid present in N. crassa strain Mauriceville. Multiple sequence repetitions occur in the presumptive URFN polypeptide, most notably a seven-times reiterated motif of 16 to 18 amino acid residues length. The hydropathy pattern shows that the N-terminal third of the URFN polypeptide is predominantly apolar and includes several potentially membrane-spanning stretches; the remaining part is hydrophilic. Calculation of the secondary structure predicts a high proportion (47%) of alpha-helix conformation. The longest alpha-helix contains 40 residues. No similarities to other mitochondrial genes or reading frames have been found, except a significant homology over a stretch of 16 amino acid residues between the N-terminal part of URFN and a well-conserved sequence in the C-terminal region of CO1. The repetitive region in URFN resembles a similarly repetitive stretch in an unassigned reading frame from bacteriophage lambda. Three arguments support the view that URFN is translated. The open reading frame has a considerable length; URFN is transcribed into a mRNA including the overlapping CO1 gene; URFN is most probably conserved among all the various Neurospora species examined thus far, strongly suggesting that it codes for an essential protein.
Collapse
|
36
|
Sibler AP, Dirheimer G, Martin RP. Codon reading patterns in Saccharomyces cerevisiae mitochondria based on sequences of mitochondrial tRNAs. FEBS Lett 1986; 194:131-8. [PMID: 2416594 DOI: 10.1016/0014-5793(86)80064-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sequences of Saccharomyces cerevisiae mitochondrial tRNA Arg1, tRNA Arg2, tRNA Gly, tRNA Lys2, tRNA Leu amd tRNA Pro are reported. Special structural features were found in tRNA Pro, which has A8, C21, A48 instead of the constant residues U8, A21 and pyrimidine 48, and in tRNA Lys2, which has a U excluded from base-paring and bulging out from the TpsiC stem. The tRNA Arg1, tRBA Lys2 and tRNA Leu, which belong to two-codon families ending in a purine, have a modified uridine in the wobble position, which prevents misreading of C and U. It is likely to be 5-carboxymethylaminomethyluridine. tRNA Gly and tRNA Pro have an unmodified uridine in the wobble position allowing the reading of all four codons of a four-codon family. However, tRNA Arg2, which is a minor species and belongs to the CGN four-codon family, has an unmodified A in the wobble position. This unusual feature raises the problem of the mechanism by which the codons CGA, CGG and CGC are recognized.
Collapse
|
37
|
de Zamaroczy M, Bernardi G. The primary structure of the mitochondrial genome of Saccharomyces cerevisiae--a review. Gene X 1986; 47:155-77. [PMID: 3549452 DOI: 10.1016/0378-1119(86)90060-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have collated and compiled all the available primary structure data on the mitochondrial genome of Saccharomyces cerevisiae. Data concern 78,500 bp, namely 92% of the 'long' genomes; they are derived from several laboratory strains. Interstrain differences belong to three classes: a small number of large deletions/additions, mainly concerning introns; a large number of small (10-150 bp) deletions/additions located in the intergenic sequences; 1-3 bp deletions/additions and point mutations; the interstrain sequence divergence due to the latter, is of the order of 2% for the strains compared; this low value is, however, an overestimate because of sequence mistakes.
Collapse
|
38
|
Burger G, Werner S. The mitochondrial URF1 gene in Neurospora crassa has an intron that contains a novel type of URF. J Mol Biol 1985; 186:231-42. [PMID: 3003362 DOI: 10.1016/0022-2836(85)90100-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Neurospora crassa, a 2670 base-pair segment of the mitochondrial DNA was sequenced including a gene homologous to the mammalian URF1 that was recently shown to encode a subunit of the respiratory chain NADH dehydrogenase complex. URF1 of N. crassa is interrupted by an intron of 1118 base-pairs that divides the protein-coding sequence into two exons of 636 and 480 base-pairs length, respectively. The deduced URF1 polypeptide of 371 residues was aligned with that of other eukaryotes, revealing a degree of conservation similar to that of ubiquitous mitochondrial genes. The two highly conserved stretches coincide with the most polar regions of the otherwise hydrophobic URF1 polypeptides and may constitute functional domains of the complex I subunit. In the exon sequences of URF1, 17 codons occur that are infrequently utilized in other mitochondrial genes of N. crassa, indicating a low translational efficiency or a foreign origin of URF1. The URF1 intron is inserted in the most conserved region. It belongs to group I and contains an open reading frame of 305 codons not continuous with the upstream exon. Sequences convincingly homologous to conserved group I decapeptide motifs were not found in the URF1 intronic unassigned reading frame (URF). However, significant homology was detected to intronic URFs of the respective gene from Podospora anserina, suggesting that these reading frames constitute a novel type of group I intronic URFs. Three species of URF1 transcripts were identified. They arise most probably by subsequent removal of the intron and leader sequences from an URF1 precursor transcript.
Collapse
|
39
|
Michel F, Cummings DJ. Analysis of class I introns in a mitochondrial plasmid associated with senescence of Podospora anserina reveals extraordinary resemblance to the Tetrahymena ribosomal intron. Curr Genet 1985; 10:69-79. [PMID: 3940064 DOI: 10.1007/bf00418495] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Recently, the nucleotide sequences for three "mitochondrial plasmids" associated with senescence of Podospora anserina were determined (Cummings et al. 1985). One of these sequences, corresponding to the plasmid termed epsilon senDNA, contains three class I introns, all within a protein coding sequence equivalent to the mammalian "URF1" gene. Here, we present primary and secondary structure analyses for two of these introns as well as a partial analysis for the third, which extends beyond the DNA sequence determined. With regard to both primary and secondary structure, the closest known relative of intron 1 is the self-splicing intron in the large ribosomal RNA gene of Tetrahymena. One secondary structure domain at the periphery of intron 1 and Tetrahymena models is also present in intron 2. The latter intron is the longest known class I member and contains remnants of two protein-coding sequences, one of which is split by the other. Evolutionary processes that might be responsible for the unusual structure of introns 1 and 2 are discussed.
Collapse
Affiliation(s)
- F Michel
- Centre de Génétique Moléculaire du CNRS, Laboratoire associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | |
Collapse
|
40
|
Lawson JE, Deters DW. Nucleotide sequence of the mitochondrial cytochrome oxidase subunit II gene in the yeast Hansenula saturnus. Curr Genet 1985; 9:351-60. [PMID: 2836090 DOI: 10.1007/bf00421605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The gene for subunit II of cytochrome oxidase in the yeast Hansenula saturnus was previously shown to be located on a 1.7 kb HindIII-BamHI fragment of mitochondrial DNA (Lawson and Deters, accompanying paper). In this paper, we report the nucleotide sequence of a large part of this fragment, covering the coding region of the subunit II gene, designated coxII, and its 5' and 3' flanking regions. The coding region of the coxII gene consists of a continuous open reading frame, 744 nucleotides long, containing 6 in frame TGA codons. Examination of the sequence and alignment with known homologous gene sequences of other organisms indicates that TGA codes for tryptophan in H. saturnus mitochondria as it does in several other mitochondria. Despite considerable homology to subunit II of Saccharomyces cerevisiae, there are 9 codons used in coxII that are not used in the corresponding S. cerevisiae gene. CTT, which is believed to code for threonine in S. cerevisiae mitochondria, appears 3 times in coxII and probably codes for leucine. While the CGN family is rarely, if ever, used in S. cerevisiae mitochondria, CGT appears 4 times in coxII and probably codes for arginine. The deduced amino acid sequence, excluding the first ten amino acids at the N-terminus, is 81% homologous to the amino acid sequence of the S. cerevisiae subunit II protein. The first ten amino acids at the N-terminus are not homologous to the N-terminus of the S. cerevisiae protein but are highly homologous to the first ten amino acids of the deduced amino acid sequence of subunit II of Neurospora crassa. Minor variations of a transcription initiation signal and an end of message or processing signal reported in S. cerevisiae are found in the regions flanking the H. saturnus coxII gene. The subunit II gene contains numerous symmetrical elements, i.e. palindromes, inverted repeats, and direct repeats. Some of these have conserved counterparts in the S. cerevisiae subunit II gene, suggesting that they may be functionally or structurally important.
Collapse
Affiliation(s)
- J E Lawson
- Department of Microbiology, University of Texas at Austin 78712-1095
| | | |
Collapse
|
41
|
Kruszewska A, Szcześniak B. Functional nuclear suppressor of mitochondrial oxi2 mutations in yeast. Curr Genet 1985; 10:87-93. [PMID: 2842069 DOI: 10.1007/bf00636472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A semidominant nuclear suppressor, called nam6, of oxi2-V276 mitochondrial mutation has been isolated and characterized. The nuclear character of nam6 was proved by its retention in rho degree strains, lack of mitotic segregation in diploids and meiotic 2:2 segregation in tetrads. The specificity of nam6 was tested on 315 mit- mutations of four mitochondrial genes (oxi1, oxi2, oxi3, and cob-box). It suppresses clearly only three mutations in the oxi2 gene, restoring partially or completely cytochrome aa3 formation. The results suggest a functional character of the suppression.
Collapse
Affiliation(s)
- A Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw
| | | |
Collapse
|
42
|
Abstract
We have compiled the available primary structural data for the mitochondrial genome of Saccharomyces cerevisiae and have estimated the size of the remaining gaps, which represent 12-13% of the genome. The lengths of sequenced regions and of gaps lead to a new assessment of genome sizes; these range (in round figures) from 85 000 bp for the long genomes, to 78 000 bp for the short genomes, to 74 000 bp for the supershort genome of Saccharomyces carlsbergensis. These values are 8-11% higher than those previously estimated from restriction fragments. Interstrain differences concern not only facultative intervening sequences (introns) and mini-inserts, but also insertions/deletions in intergenic sequences. The primary structure appears to be extremely conserved in genes and ori sequences, and highly conserved in intergenic sequences. Since coding sequences represent at most 33-35% of the genome, at least two thirds of the genome are formed by noncoding and yet highly conserved sequences. The G + C level of genes or exon is 25%, and that of intronic open reading frames (ORFs) 22%; increasingly lower values are shown by intronic closed reading frames (CRFs), 20%, ori sequences, 19%, intergenic ORFs, 17.5% and intergenic sequences, 15%.
Collapse
|
43
|
Abstract
The 2200-bp ori2-ori7 region of the mitochondrial (mt) genome of Saccharomyces cerevisiae has been sequenced on the genome of a petite, b7, excised at those ori sequences from wild-type strain B. The region contains an open reading frame, ORF5, which is transcribed into a 900-nucleotide (nt) RNA in both the parental wild-type strain and its derived petite, b7. This RNA uses as a template the strand used by most mt transcripts. Its start point is located 337 nt upstream of ORF5; and a messenger termination site has been found 900 nt downstream of the initiation site. These data suggest that ORF5 is a new mitochondrial gene. The G + C content of ORF5 is only 15.7%; 90% of the G + C base pairs of ORF5 are comprised in a palindromic G + C cluster similar to that present in the varl gene. The coding capacity of ORF5 is 46 amino acids (aa), mainly represented by methionine, phenylalanine, arginine, valine, asparagine, isoleucine and tyrosine. The aa composition and the codon usage of ORF5 are reminiscent of those of varl and of other intergenic ORFs.
Collapse
|