1
|
Cocchi M, Mondo E, Romeo M, Traina G. The Inflammatory Conspiracy in Multiple Sclerosis: A Crossroads of Clues and Insights through Mast Cells, Platelets, Inflammation, Gut Microbiota, Mood Disorders and Stem Cells. Int J Mol Sci 2022; 23:ijms23063253. [PMID: 35328673 PMCID: PMC8950240 DOI: 10.3390/ijms23063253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Multiple Sclerosis is a chronic neurological disease characterized by demyelination and axonal loss. This pathology, still largely of unknown etiology, carries within it a complex series of etiopathogenetic components of which it is difficult to trace the origin. An inflammatory state is likely to be the basis of the pathology. Crucial elements of the inflammatory process are the interactions between platelets and mast cells as well as the bacterial component of the intestinal microbiota. In addition, the involvement of mast cells in autoimmune demyelinating diseases has been shown. The present work tries to hang up on that Ariadne’s thread which, in the molecular complexity of the interactions between mast cells, platelets, microbiota and inflammation, characterizes Multiple Sclerosis and attempts to bring the pathology back to the causal determinism of psychopathological phenomenology. Therefore, we consider the possibility that the original error of Multiple Sclerosis can be investigated in the genetic origin of the depressive pathology.
Collapse
Affiliation(s)
- Massimo Cocchi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.C.); (E.M.)
| | - Elisabetta Mondo
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.C.); (E.M.)
| | - Marcello Romeo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Correspondence:
| |
Collapse
|
2
|
Nishino S, Sakai N, Nishino N, Ono T. Brain Mast Cells in Sleep and Behavioral Regulation. Curr Top Behav Neurosci 2022; 59:427-446. [PMID: 35711025 DOI: 10.1007/7854_2022_359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The function of mast cells in the brain for the mediation of neurobehavior is largely unknown. Mast cells are a heterogeneous population of granulocytic cells in the immune system. Mast cells contain numerous mediators, such as histamine, serotonin, cytokines, chemokines, and lipid-derived factors. Mast cells localize not only in the periphery but are also resident in the brain of mammalians. Mast cells in the brain are constitutively active, releasing their contents gradually or rapidly by anaphylactic degranulation. Their activity is also increased by a wide range of stimuli including both immune and non-immune signals. Brain mast cell neuromodulation may thus be involved in various neurobehavior in health and diseases.Using Kit mutant mast cell deficient mice (KitW/KitW-v), we obtained results indicating that brain mast cells regulate sleep/wake and other behavioral phenotypes and that histamine from brain mast cells promotes wakefulness. These findings were also confirmed using a newer inducible and Kit-independent mast cell deficient Mas-TRECK (toxin receptor knockout) mouse. Injections of diphtheria toxin (DT) selectively deplete mast cells and reduce wakefulness during the periods of mast cell depletion.We recently introduced a mouse model for chronic sleep loss associated with diabetes. The mice reared on the wire net for 3 weeks (i.e., mild stress [MS]) showed decreased amount of non-rapid eye movement (NREM) sleep, increased sleep fragmentation, and abnormal glucose tolerance test [GTT] and insulin tolerance test [ITT], phenotypes which mirror human chronic insomnia. Interestingly, these mice with insomnia showed an increased number of mast cells in both the brain and adipose tissue. Mast cell deficient mice (KitW/KitW-v) and inhibition of mast cell functions with cromolyn or a histamine H1 receptor antagonist administration ameliorated both insomnia and abnormal glycometabolism. Mast cells may therefore represent an important pathophysiological mediator in sleep impairments and abnormal glycometabolism associated with chronic insomnia.
Collapse
Affiliation(s)
- Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Noriaki Sakai
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Naoya Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Taisuke Ono
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
3
|
Pharmacological screening of some newly synthesized triazoles for H1 receptor antagonist activity. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1928-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Li N, Zhang X, Dong H, Hu Y, Qian Y. Bidirectional relationship of mast cells-neurovascular unit communication in neuroinflammation and its involvement in POCD. Behav Brain Res 2017; 322:60-69. [PMID: 28082194 DOI: 10.1016/j.bbr.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 11/26/2022]
Abstract
Postoperative cognitive dysfunction (POCD) has been hypothesized to be mediated by surgery-induced neuroinflammation, which is also a key element in the pathobiology of neurodegenerative diseases, stroke, and neuropsychiatric disorders. There is extensive communication between the immune system and the central nervous system (CNS). Inflammation resulting from activation of the innate immune system cells in the periphery can impact central nervous system behaviors, such as cognitive performance. Mast cells (MCs), as the"first responders" in the CNS, can initiate, amplify, and prolong other immune and nervous responses upon activation. In addition, MCs and their secreted mediators modulate inflammatory processes in multiple CNS pathologies and can thereby either contribute to neurological damage or confer neuroprotection. Neuroinflammation has been considered to be linked to neurovascular dysfunction in several neurological disorders. This review will provide a brief overview of the bidirectional relationship of MCs-neurovascular unit communication in neuroinflammation and its involvement in POCD, providing a new and unique therapeutic target for the adjuvant treatment of POCD.
Collapse
Affiliation(s)
- Nana Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Xiang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Youli Hu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China.
| |
Collapse
|
5
|
Contreras M, Riveros ME, Quispe M, Sánchez C, Perdomo G, Torrealba F, Valdés JL. The Histaminergic Tuberomamillary Nucleus Is Involved in Appetite for Sex, Water and Amphetamine. PLoS One 2016; 11:e0148484. [PMID: 26845170 PMCID: PMC4743640 DOI: 10.1371/journal.pone.0148484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022] Open
Abstract
The histaminergic system is one component of the ascending arousal system which is involved in wakefulness, neuroendocrine control, cognition, psychiatric disorders and motivation. During the appetitive phase of motivated behaviors the arousal state rises to an optimal level, thus giving proper intensity to the behavior. Previous studies have demonstrated that the histaminergic neurons show an earlier activation during the appetitive phase of feeding, compared to other ascending arousal system nuclei, paralleled with a high increase in arousal state. Lesions restricted to the histaminergic neurons in rats reduced their motivation to get food even after 24 h of food deprivation, compared with intact or sham lesioned rats. Taken together, these findings indicate that the histaminergic system is important for appetitive behavior related to feeding. However, its role in other goal-directed behaviors remains unexplored. In the present work, male rats rendered motivated to obtain water, sex, or amphetamine showed an increase in Fos-ir of histaminergic neurons in appetitive behaviors directed to get those reinforcers. However, during appetitive tests to obtain sex, or drug in amphetamine-conditioned rats, Fos expression increased in most other ascending arousal system nuclei, including the orexin neurons in the lateral hypothalamus, dorsal raphe, locus coeruleus and laterodorsal tegmental neurons, but not in the ventral tegmental area, which showed no Fos-ir increase in any of the 3 conditions. Importantly, all these appetitive behaviors were drastically reduced after histaminergic cell-specific lesion, suggesting a critical contribution of histamine on the intensity component of several appetitive behaviors.
Collapse
Affiliation(s)
- Marco Contreras
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - María E. Riveros
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
- Centro de Fisiología Celular Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo. Santiago, Chile
| | - Maricel Quispe
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Cristián Sánchez
- Programa disciplinario de Fisiología y Biofísica, Biomedical Neuroscience Institute, BNI, I.C.B.M., Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Guayec Perdomo
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Fernando Torrealba
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - José L. Valdés
- Programa disciplinario de Fisiología y Biofísica, Biomedical Neuroscience Institute, BNI, I.C.B.M., Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| |
Collapse
|
6
|
Mori H, Matsuda KI, Yamawaki M, Kawata M. Estrogenic regulation of histamine receptor subtype H1 expression in the ventromedial nucleus of the hypothalamus in female rats. PLoS One 2014; 9:e96232. [PMID: 24805361 PMCID: PMC4013143 DOI: 10.1371/journal.pone.0096232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 04/04/2014] [Indexed: 02/03/2023] Open
Abstract
Female sexual behavior is controlled by central estrogenic action in the ventromedial nucleus of the hypothalamus (VMN). This region plays a pivotal role in facilitating sex-related behavior in response to estrogen stimulation via neural activation by several neurotransmitters, including histamine, which participates in this mechanism through its strong neural potentiating action. However, the mechanism through which estrogen signaling is linked to the histamine system in the VMN is unclear. This study was undertaken to investigate the relationship between estrogen and histamine receptor subtype H1 (H1R), which is a potent subtype among histamine receptors in the brain. We show localization of H1R exclusively in the ventrolateral subregion of the female VMN (vl VMN), and not in the dorsomedial subregion. In the vl VMN, abundantly expressed H1R were mostly colocalized with estrogen receptor α. Intriguingly, H1R mRNA levels in the vl VMN were significantly elevated in ovariectomized female rats treated with estrogen benzoate. These data suggest that estrogen can amplify histamine signaling by enhancing H1R expression in the vl VMN. This enhancement of histamine signaling might be functionally important for allowing neural excitation in response to estrogen stimulation of the neural circuit and may serve as an accelerator of female sexual arousal.
Collapse
Affiliation(s)
- Hiroko Mori
- Department of Medical Education, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, Japan
- * E-mail:
| | - Ken-Ichi Matsuda
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Masanaga Yamawaki
- Department of Medical Education, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
7
|
Infralimbic cortex controls core body temperature in a histamine dependent manner. Physiol Behav 2014; 128:1-8. [PMID: 24480074 DOI: 10.1016/j.physbeh.2014.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 12/31/2013] [Accepted: 01/16/2014] [Indexed: 11/24/2022]
Abstract
An increase in body temperature accelerates biochemical reactions and behavioral and physiological responses. A mechanism to actively increase body temperature would be beneficial during motivated behaviors. The prefrontal cortex is implicated in organizing motivated behavior; the infralimbic cortex, a subregion of the medial prefrontal cortex, has the necessary connectivity to serve the role of initiating such thermogenic mechanism at the beginning of the appetitive phase of motivated behavior; further, this cortex is active during motivated behavior and its disinhibition produces a marked behavioral and vegetative arousal increase, together with increases in histamine levels. We wanted to explore if this arousal was related to histaminergic activation after pharmacological infralimbic disinhibition and during the appetitive phase of motivated behavior. We measured core temperature and motor activity in response to picrotoxin injection in the infralimbic cortex, as well as during food-related appetitive behavior, evoked by enticing hungry rats with food. Pretreatment with the H1 receptor antagonist pyrilamine decreased thermal response to picrotoxin and enticement and completely blunted motor response to enticement. Motor and temperature responses to enticement were also completely abolished by infralimbic cortex inhibition with muscimol. To assess if this histamine dependent temperature increase was produced by an active sympathetic mediated thermogenic mechanism or was just a consequence of increased locomotor activity, we injected propranolol (i.p.), a β adrenergic receptor blocker, before picrotoxin injection into the infralimbic cortex. Propranolol reduced the temperature increase without affecting locomotor activity. Altogether, these results suggest that infralimbic activation is necessary for appetitive behavior by inducing a motor and a vegetative arousal increase mediated by central histamine.
Collapse
|
8
|
Anand P, Singh B, Jaggi AS, Singh N. Mast cells: an expanding pathophysiological role from allergy to other disorders. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:657-70. [PMID: 22562473 DOI: 10.1007/s00210-012-0757-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/17/2012] [Indexed: 12/16/2022]
Abstract
The mast cells are multi-effector cells with wide distribution in the different body parts and traditionally their role has been well-defined in the development of IgE-mediated hypersensitivity reactions including bronchial asthma. Due to the availability of genetically modified mast cell-deficient mice, the broadened pathophysiological role of mast cells in diverse diseases has been revealed. Mast cells exert different physiological and pathophysiological roles by secreting their granular contents, including vasoactive amines, cytokines and chemokines, and various proteases, including tryptase and chymase. Furthermore, mast cells also synthesize plasma membrane-derived lipid mediators, including prostaglandins and leukotrienes, to produce diverse biological actions. The present review discusses the pathophysiological role of mast cells in different diseases, including atherosclerosis, pulmonary hypertension, ischemia-reperfusion injury, male infertility, autoimmune disorders such as rheumatoid arthritis and multiple sclerosis, bladder pain syndrome (interstitial cystitis), anxiety, Alzheimer's disease, nociception, obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Preet Anand
- Department of Chemistry, Punjabi University, Patiala 147002, India
| | | | | | | |
Collapse
|
9
|
Schober J, Weil Z, Pfaff D. How generalized CNS arousal strengthens sexual arousal (and vice versa). Horm Behav 2011; 59:689-95. [PMID: 20950622 DOI: 10.1016/j.yhbeh.2010.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 09/23/2010] [Accepted: 10/02/2010] [Indexed: 12/22/2022]
Abstract
Heightened states of generalized CNS arousal are proposed here to facilitate sexual arousal in both males and females. Genetic, pharmacologic and biophysical mechanisms by which this happens are reviewed. Moreover, stimulation of the genital epithelia, as triggers of sex behavior, is hypothesized to lead to a greater generalized arousal in a manner that intensifies sexual motivation. Finally, launched from histochemical studies intended to characterize cells in the genital epithelium, a surprising idea is proposed that links density of innervation with the efficiency of wound healing and with the capacity of that epithelium to stimulate generalized CNS arousal. Thus, bidirectional arousal-related mechanisms that foster sexual behaviors are envisioned as follows: from specific to generalized (as with genital stimulation) and from generalized to specific.
Collapse
Affiliation(s)
- Justine Schober
- Laboratory of Neurobiology and Behavior, The Rockefeller University, NY, USA
| | | | | |
Collapse
|
10
|
Histaminergic responses by hypothalamic neurons that regulate lordosis and their modulation by estradiol. Proc Natl Acad Sci U S A 2010; 107:12311-6. [PMID: 20562342 DOI: 10.1073/pnas.1006049107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
How do fluctuations in the level of generalized arousal of the brain affect the performance of specific motivated behaviors, such as sexual behaviors that depend on sexual arousal? A great deal of previous work has provided us with two important starting points in answering this question: (i) that histamine (HA) serves generalized CNS arousal and (ii) that heightened electrical activity of neurons in the ventromedial nucleus of the hypothalamus (VMN) is necessary and sufficient for facilitating the primary female sex behavior in laboratory animals, lordosis behavior. Here we used patch clamp recording technology to analyze HA effects on VMN neuronal activity. The results show that HA acting through H1 receptors (H1R) depolarizes these neurons. Further, acute administration of estradiol, an estrogen necessary for lordosis behavior to occur, heightens this effect. Hyperpolarization, which tends to decrease excitability and enhance inhibition, was not affected by acute estradiol or mediated by H1R but was mediated by other HA receptor subtypes, H2 and H3. Sampling of mRNA from individual VMN neurons showed colocalization of expression of H1 receptor mRNA with estrogen receptor (ER)-alpha mRNA but also revealed ER colocalization with the other HA receptor subtypes and colocalization of different subtypes with each other. The latter finding provides the molecular basis for complex "push-pull" regulation of VMN neuronal excitability by HA. Thus, in the simplest causal route, HA, acting on VMN neurons through H1R provides a mechanism by which elevated states of generalized CNS arousal can foster a specific estrogen-dependent, aroused behavior, sexual behavior.
Collapse
|
11
|
Abstract
Although there is an extensive amount known about specific sensory and motor functions of the vertebrate brain, less is understood about the regulation of global brain states. We have recently proposed that a function termed generalized arousal (Ag) serves as the most elemental driving force in the nervous system, responsible for the initial activation of all behavioral responses. An animal with increased generalized CNS arousal is characterized by greater motor activity, increased responsivity to sensory stimuli, and greater emotional lability. Implicit in this theory was the prediction that increases in generalized arousal would augment specific motivated behaviors that depend on arousal. Here, we address the idea directly by testing two lines of mice bred for high or low levels of generalized arousal and assessing their responses in tests of specific forms of behavioral arousal, sex and anxiety/exploration. We report that animals selected for differential generalized arousal exhibit marked increases in sensory, motor, and emotional reactivity in our arousal assay. Furthermore, male mice selected for high levels of generalized arousal were excitable and showed more incomplete mounts before the first intromission (IN), but having achieved that IN, they exhibited far fewer IN before ejaculating, as well as ejaculating much sooner after the first IN, thus indicating a high level of sexual arousal. Additionally, high-arousal animals of both sexes exhibited greater levels of anxiety-like behaviors and reduced exploratory behavior in the elevated plus maze and light-dark box tasks. Taken together, these data illustrate the impact of Ag on motivated behaviors.
Collapse
|
12
|
Abstract
Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient Kit(W-sh/W-sh) (sash(-/-)) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links.
Collapse
|
13
|
Pfaff D, Ribeiro A, Matthews J, Kow LM. Concepts and Mechanisms of Generalized Central Nervous System Arousal. Ann N Y Acad Sci 2008; 1129:11-25. [DOI: 10.1196/annals.1417.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Zhou J, Lee AW, Devidze N, Zhang Q, Kow LM, Pfaff DW. Histamine-induced excitatory responses in mouse ventromedial hypothalamic neurons: ionic mechanisms and estrogenic regulation. J Neurophysiol 2007; 98:3143-52. [PMID: 17942628 DOI: 10.1152/jn.00337.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histamine is capable of modulating CNS arousal states by regulating neuronal excitability. In the current study, histamine action in the ventromedial hypothalamus (VMH), its related ionic mechanisms, and its possible facilitation by estrogen were investigated using whole cell patch-clamp recording in brain slices from ovariectomized female mice. Under current clamp, a bath application of histamine (20 microM) caused membrane depolarization, associated with an increased membrane resistance. In some cells, the depolarization was accompanied by action potentials. Histamine application also significantly reduced the latency of action potential evoked by current steps. Histamine-induced depolarization was not affected by either tetrodotoxin or Cd(2+). However, after blocking K(+) channels with tetraethylammonium, 4-aminopyridine, and Cs(+), depolarization was significantly decreased. Under voltage clamp, histamine-induced depolarization was associated with an inward current. The current-voltage relationship revealed that this inward current reversed near E(K). The histamine effect was mimicked by a histamine receptor 1 (H(1)) agonist, but not a histamine receptor 2 (H(2)) agonist. An H(1) antagonist, but not H(2) antagonist, abolished histamine responses. When ovariectomized mice were treated with estradiol benzoate (E2), histamine-induced depolarization was significantly enhanced with an increased percentage of cells showing action potential firing. These results suggest that histamine depolarized VMH neurons by attenuating a K(+) leakage current and this effect was mediated by H(1) receptor. E2 facilitated histamine-induced excitation of VMH neurons. This histamine effect may present a potential mechanism by which estrogens modulate the impact of generalized CNS arousal on a sexual arousal-related neuronal group.
Collapse
Affiliation(s)
- Jin Zhou
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
A fundamental capacity of the mammalian CNS is becoming amenable to study with the techniques of functional genomics. Emphasized in this review are ascending connections from the medullary reticular formation and descending connections from the paraventricular nucleus of the hypothalamus. In particular, sex hormone effects on neurons allow us to relate generalized arousal to a specific form of arousal which is required for reproductive behaviors.
Collapse
Affiliation(s)
- Donald Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York 10021, USA.
| | | | | |
Collapse
|
16
|
Kow LM, Easton A, Pfaff DW. Acute estrogen potentiates excitatory responses of neurons in rat hypothalamic ventromedial nucleus. Brain Res 2005; 1043:124-31. [PMID: 15862525 DOI: 10.1016/j.brainres.2005.02.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 02/16/2005] [Accepted: 02/23/2005] [Indexed: 02/05/2023]
Abstract
In a previous behavioral study, brief application of a membrane-limited estrogen to neurons in rat hypothalamic ventromedial nucleus (VMN) facilitated lordosis behavior-inducing genomic actions of estrogen. Here, electrophysiological recordings from single neurons were employed to characterize these membrane-initiated actions. From rat hypothalamic slices, electrical activity was recorded from neurons in the ventrolateral VMN, the cell group crucial for estrogen induction of lordosis. In addition to the resting activity, neuronal responses to histamine (HA) and N-methyl-d-aspartate (NMDA) were also recorded before, during, and after a brief (10-15 min) application of estradiol (E, 10 nM). These two transmitters were chosen because their actions are mediated by different mechanisms: HA through G protein-coupled receptors and NMDA by ligand-activated ion channels. Vehicle applications did not affect either resting activity or neuronal responses. In contrast, acute E exposure modulated neuronal responses to transmitters, with no significant effect on the resting activity. It potentiated excitatory responses to HAs (20 out of 48 cells tested) and to NMDA (10 out of 19 cells), but attenuated inhibitory responses to HA (3 out of 6 units). Both of these hormonal actions would increase VMN neuronal excitation. In separate experiments, neuronal excitation was found to be suppressed by anesthetics, which would block E's induction of lordosis when administered at the time of estrogen application. These data are consistent with the notion that increasing electrical excitation of VMN neurons can be a mechanism by which acute E exposure facilitates the lordosis-inducing genomic actions of estrogens.
Collapse
Affiliation(s)
- L-M Kow
- Lab. of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021-6399, USA.
| | | | | |
Collapse
|
17
|
Easton A, Norton J, Goodwillie A, Pfaff DW. Sex differences in mouse behavior following pyrilamine treatment: role of histamine 1 receptors in arousal. Pharmacol Biochem Behav 2005; 79:563-72. [PMID: 15582029 DOI: 10.1016/j.pbb.2004.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Revised: 09/09/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
Arousal, the activation of brain and behavior, is a fundamental component of behavior. While sex differences in behavior are pervasive, it is unknown whether they could be due to an underlying dimorphism in arousal mechanisms. Because histamine (HA) acting through histamine 1 (H1) receptors is one essential component of arousal neural circuitry, the aim of the current experiment was to measure sex differences in behavioral arousal following treatment with the H1 receptor antagonist, pyrilamine (PYRL). Castrated male and ovariectomized female Swiss-Webster mice were treated subcutaneously with either 15 or 35 mg/kg of PYRL. The effect of drug treatment was determined in an array of behaviors: sensory responsiveness, running wheel activity, and fearfulness. Surprisingly, the lower dose of PYRL increased some aspects of arousal, sensory responsiveness, and anxiety-like behavior, while the higher dose of PYRL resulted in decreases in arousal across tests, indicating that antagonism of histamine receptors does not have a linear relationship with arousal. Females were more sensitive to the arousal-reducing effects of PYRL than males in sensory and running wheel tasks but not in tests of emotion. In conclusion, antagonism of H1 receptors can alter arousal in a sex-dependent manner, independent of circulating gonadal steroids, in mice.
Collapse
Affiliation(s)
- A Easton
- Laboratory of Neurobiology and Physiology, Box #275, Rockefeller University, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
18
|
Pár G, Szekeres-Barthó J, Buzás E, Pap E, Falus A. Impaired reproduction of histamine deficient (histidine-decarboxylase knockout) mice is caused predominantly by a decreased male mating behavior. Am J Reprod Immunol 2003; 50:152-8. [PMID: 12846679 DOI: 10.1034/j.1600-0897.2003.00066.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PROBLEM Histamine induces a Th2 shift. As successful allopregnancy is characterized by a peripheral Th2 dominance, we investigated the role of histamine in reproduction. METHOD OF STUDY HDC knockout (HDC-/-) or wild-type (HDC+/+) mice kept on histamine-deficient or normal diet were mated. Appearance of vaginal plugs indicated day 0.5 of pregnancy. On day 10.5 uteri were inspected. Splenic IFN-gamma production and cytotoxic activity were determined. RESULTS In HDC+/+ or HDC-/- females on normal diet, plugs appeared between 3 and 6 days. In 80% of the (HDC-/-)/(HDC-/-) matings on histamine-deficient diet, no vaginal plugs were observed for more than 1 month. After replacing males with the wild type, plugs appeared within 3 days. In HDC-/- mice, litter size was lower than in HDC+/+ animals. Cytotoxicity and IFN-gamma production were significantly increased in non-pregnant histamine-deficient mice, but not in pregnant mice. CONCLUSION Histamine affects male mating behavior, but is not indispensable for successful pregnancy.
Collapse
Affiliation(s)
- Gabriella Pár
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pecs, Pecs, Hungary
| | | | | | | | | |
Collapse
|
19
|
Almeida RG, Florio JC, Spinosa HS, Bernardi MM. Comparative effects of maternal prenatal and postnatal exposures to astemizole on reproductive parameters of rats. Neurotoxicol Teratol 2002; 24:255-65. [PMID: 11943513 DOI: 10.1016/s0892-0362(02)00203-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The prenatal and postnatal effects of administration of a nonsedative antihistamine H1, astemizole (ATZ), were compared. ATZ (10 mg/kg) was injected daily into female Wistar rats throughout pregnancy (prenatal treatment) or during the first 6 days of lactation (postnatal treatment). Neither treatment modified dam body weight. Prenatal exposure reduced offspring body weight and lead to a latter expression of the vaginal opening of female offspring. In addition, a long-term disruption of male reproductive behavior was observed, while female sexual behavior was not modified. The sexual activity index and the intromission frequency were increased in prenatally treated animals. Testes wet weight was reduced, but no modifications were detected in vas deferens or seminal vesicles. Postnatal treatment did not alter offspring body weight, open-field activity, sexual behavior and organ weight as well as did not delay testes descent but reduced the time until vaginal opening. Hypothalamic serotonin (5-HT), dopamine (DA) and noradrenaline (NA) as well as DA and NA metabolites were not modified by both prenatal and postnatal treatments. Increased striatal 3,4-dihydroxyphenylacetic acid (DOPAC) levels were observed after prenatal and postnatal treatments, while only postnatal 5-HT levels were increased. We propose that the present results indicate that prenatal ATZ exposure can have long-lasting organizational effects on reproductive behavior of male rats, while postnatal exposure to this drug did not alter mating behavior. In relation to female rats, prenatal and postnatal exposures to ATZ accelerated puberty but did not alter sexual behavior. Neurochemical data show that both treatments increased striatal dopaminergic system activity, suggesting a central ATZ effect after perinatal exposure.
Collapse
Affiliation(s)
- R G Almeida
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, cep: 05508-900, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
20
|
Almeida RG, Massoco CO, Spinosa HS, Bernardi MM. Perinatal astemizole exposure in the rat throughout gestation: long-term behavioral and anatomic effects associated with reproduction. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1996; 114:123-7. [PMID: 8760607 DOI: 10.1016/0742-8413(96)00013-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Astemizole (ATZ), a non-sedative antihistamine, which antagonize histamine at the level of H1 receptor, was administered daily to female Wistar rats as a 10-mg/kg dose throughout pregnancy. ATZ exposure reduced offspring body weight and delayed the pinna detachment and startle reflex without any modification of dams body weight during gestation. Long-term disruption of male reproductive behavior was seen in experimental animals, whereas female sexual behavior was not modified. In addition, no motor alterations were observed in female or males in adulthood. Testis wet weight was reduced, but no modifications were detected in vasa deferentia or seminal vesicle. We proposed that ATZ administration during pregnancy causes several effects mainly of a sexual nature by interfering either with the hormonal mechanism involved in the central nervous system masculinization or by a direct action of the drug on pups during the development.
Collapse
Affiliation(s)
- R G Almeida
- Faculty of Veterinary Medicine, Health Sciences Institute, Paulista University, São Paulo, Brazil
| | | | | | | |
Collapse
|
21
|
Wada H, Inagaki N, Itowi N, Yamatodani A. Histaminergic neuron system in the brain: distribution and possible functions. Brain Res Bull 1991; 27:367-70. [PMID: 1959031 DOI: 10.1016/0361-9230(91)90126-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent immunocytochemical studies have identified the histaminergic neuron system in the brain. In the rat brain, histaminergic neuronal cell bodies are located in the tuberomammillary nucleus in the posterior hypothalamus, while histaminergic fibers are distributed in almost all regions of the brain. Similar distributions of histaminergic neuronal cell bodies and fibers have been reported in the brains of other mammals and nonmammalian vertebrates. As expected from the widespread distributions of the efferent fibers, the central histaminergic neuron system seems to be involved in multiple functions in the brain. The results of intracerebral injection of histamine and administration of alpha-fluoromethylhistidine (FMH), which depletes brain histamine level, suggest that the central histaminergic system may modulate feeding, drinking and sexual behaviors, sleep-wakefulness and circadian rhythm, neuroendocrine and cardiovascular controls and thermoregulation.
Collapse
Affiliation(s)
- H Wada
- Department of Pharmacology II, Osaka University Faculty of Medicine, Suita, Japan
| | | | | | | |
Collapse
|
22
|
Affiliation(s)
- L B Hough
- Department of Pharmacology and Toxicology, Albany Medical College, NY 12208
| |
Collapse
|
23
|
Abstract
This review focuses on the behavioural effects of histamine and drugs which affect histaminergic function, particularly the H1- and H2-receptors antagonists. Research in this area has assumed considerable importance with increasing interest in the role of brain histamine, the clinical use of both H1 and H2 antagonists and evidence of nonmedical use of H1 antagonists. Results from a number of studies show that H1 and H2 antagonists have clear, but distinct subjective effects and that H1 antagonists have discriminative effects in animals. While H1 antagonists are reinforcers in certain conditions, histamine itself is a punisher. Moderate doses of H1 antagonists affect psychomotor performance in some situations, but the results are variable. The exceptions are terfenadine and astemizole, which do not seem to penetrate the blood-brain barrier readily. In studies of schedule-controlled behaviour, marked changes in response rate have been observed following administration of H1 antagonists, with the magnitude and direction dependent on the dose and the baseline behaviour. Histamine reduces avoidance responding, an effect mediated via H1-receptors. Changes in drinking and aggressive behaviour have also been observed following histamine administration and distinct roles for H1- and H2-receptors have been delineated. Separate H1- and H2-receptor mechanisms have also been suggested to account for changes in activity level. While the H2 antagonists do not always have strong behavioural effects when administered peripherally, there is evidence that cimetidine has a depressant effect on sexual function. These and other findings reveal an important role for histaminergic systems in a wide range of behaviour.
Collapse
Affiliation(s)
- J M White
- Department of Psychology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
24
|
|
25
|
Abstract
The chemical tools that could be used to examine the function of histamine in the brain are considered together with the evidence linking histamine specifically with the hypothalamus. The distribution of histamine and the enzymes responsible for its synthesis and metabolism is consistent with there being both mast cells and histaminergic nerve terminals within the hypothalamus. Iontophoresis, mepyramine binding and histamine-stimulated adenylate cyclase studies suggest that both histamine H1- and H2- receptors are present in the hypothalamus. In addition, intracerebroventricularly injected histamine receptor agonists and antagonists affect many functions associated with the hypothalamus such as cardiovascular control, food intake, body temperature control, and pituitary hormones whose release is mediated via the hypothalamus, such as corticotropin, growth hormone, thyroid stimulating hormone, prolactin, gonadotropins and vasopressin. However, only in the case of thyroliberin release, prolactin release, body fluid control and blood pressure control is there evidence yet that such effects are mediated via histamine receptors actually in the hypothalamus. The effects of enzyme inhibitors suggest endogenous histamine may be involved in the physiological control of thyroid stimulating hormone, growth hormone and blood pressure, and the effects of receptor antagonists support a role for endogenous histamine in prolactin control. Otherwise, there is little evidence for a physiological role for endogenous, as against exogenous, histamine whether it be from histaminergic terminals or mast cells. In addition, few studies have tried to distinguish possible effects on presynaptic receptors, postsynaptic receptors, hypothalamic blood vessels or the hypophyseal portal blood vessels. It is concluded that although there is good evidence now linking histamine and the hypothalamus more specific studies are required, for instance using microinjection or in vitro techniques and the more specific chemical tools now available, to enable a clearer understanding of the physiological role of histamine in the hypothalamus.
Collapse
|
26
|
Abstract
Significant elevation in plasma corticosterone of rats achieved by intraperitoneal (i.p.) administration of corticosterone (2.4 mg/kg) was associated with a rapid (2.5 min) and significant increase in hypothalamic histamine (HA) levels which persisted for 60 min. Midbrain and cortical HA concentrations were not affected. Significant and prolonged elevation of hypothalamic, midbrain and cortical HA levels was achieved by L-histidine administration (500 mg/kg i.p.). The most significant increase was noted in the hypothalamus and persisted for 10 hours. The elevated brain HA levels were associated with significant increase in plasma corticosterone levels which lasted for 120 mins. Present data supports the involvement of central HA in endocrine function.
Collapse
|
27
|
Alvarez EO, Guerra FA. Effects of histamine microinjections into the hippocampus on open-field behavior in rats. Physiol Behav 1982; 28:1035-40. [PMID: 7111446 DOI: 10.1016/0031-9384(82)90172-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Increasing evidence supports the concept that histamine would subserve neurotransmitter functions in the brain. In hippocampus, some cases of histamine receptors coupled to adenylate cyclase has been described. In our laboratory we were interested in studying the possible physiological role of these histamine receptors and behavior. Unilateral cannulae were stereotaxically implanted in the caudal hippocampus in adult male rats. Forty-eight hours later, after an acute microinjection of histamine (1 microgram), 3-methyl-histamine (1 microgram) or saline (1 microliter), the following behavioral parameters were measured by an observer in an open-field: locomotor, rearing, sniffing, grooming, social sniffing and holding activities. It was observed that histamine inhibited locomotor and rearing activities; whereas, 3-methyl-histamine induced an increase in almost all behaviors. Results support the concept of a probable function of histamine in exploratory behavior in the rat.
Collapse
|