1
|
Wang J, Zeng W, Cheng J, Xie J, Fu Y, Jiang D, Lin Y. lncRsp1, a long noncoding RNA, influences Fgsp1 expression and sexual reproduction in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2022; 23:265-277. [PMID: 34841640 PMCID: PMC8743023 DOI: 10.1111/mpp.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/05/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) are crucial regulators of gene expression in many biological processes, but their biological functions remain largely unknown, especially in fungi. Fusarium graminearum is an important pathogen that causes the destructive disease Fusarium head blight (FHB) or head scab disease on wheat and barley. In our previous RNA sequencing (RNA-Seq) study, we discovered that lncRsp1 is an lncRNA that is located +99 bp upstream of a putative sugar transporter gene, Fgsp1, with the same transcription direction. Functional studies revealed that ΔlncRsp1 and ΔFgsp1 were normal in growth and conidiation but had defects in ascospore discharge and virulence on wheat coleoptiles. Moreover, lncRsp1 and Fgsp1 were shown to negatively regulate the expression of several deoxynivalenol (DON) biosynthesis genes, TRI4, TRI5, TRI6, and TRI13, as well as DON production. Further analysis showed that the overexpression of lncRsp1 enhanced the ability of ascospore release and increased the mRNA expression level of the Fgsp1 gene, while lncRsp1-silenced strains reduced ascospore discharge and inhibited Fgsp1 expression during the sexual reproduction stage. In addition, the lncRsp1 complementary strains lncRsp1-LC-1 and lncRsp1-LC-2 restored ascospore discharge to the level of the wild-type strain PH-1. Taken together, our results reveal the distinct and specific functions of lncRsp1 and Fgsp1 in F. graminearum and principally demonstrate that lncRsp1 can affect the release of ascospores by regulating the expression of Fgsp1.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Wenping Zeng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Environment Change and Resources Use in Beibu GulfMinistry of EducationNanning Normal UniversityNanningChina
| | - Jiasen Cheng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Jiatao Xie
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Yanping Fu
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Daohong Jiang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Yang Lin
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
2
|
Kim JE, Nam H, Park J, Choi GJ, Lee YW, Son H. Characterization of the CCAAT-binding transcription factor complex in the plant pathogenic fungus Fusarium graminearum. Sci Rep 2020; 10:4898. [PMID: 32184445 PMCID: PMC7078317 DOI: 10.1038/s41598-020-61885-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
The CCAAT sequence is a ubiquitous cis-element of eukaryotic promoters, and genes containing CCAAT sequences have been shown to be activated by the CCAAT-binding transcription factor complex in several eukaryotic model organisms. In general, CCAAT-binding transcription factors form heterodimers or heterotrimeric complexes that bind to CCAAT sequences within the promoters of target genes and regulate various cellular processes. To date, except Hap complex, CCAAT-binding complex has been rarely reported in fungi. In this study, we characterized two CCAAT-binding transcription factors (Fct1 and Fct2) in the plant pathogenic fungus Fusarium graminearum. Previously, FCT1 and FCT2 were shown to be related to DNA damage response among eight CCAAT-binding transcription factors in F. graminearum. We demonstrate that the nuclear CCAAT-binding complex of F. graminearum has important functions in various fungal developmental processes, not just DNA damage response but virulence and mycotoxin production. Moreover, the results of biochemical and genetic analyses revealed that Fct1 and Fct2 may form a complex and play distinct roles among the eight CCAAT-binding transcription factors encoded by F. graminearum. To the best of our knowledge, the results of this study represent a substantial advancement in our understanding of the molecular mechanisms underlying the functions of CCAAT-binding factors in eukaryotes.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hyejin Nam
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea
| | - Jiyeun Park
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea
| | - Gyung Ja Choi
- Therapeutic & Biotechnology Division, Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Yin-Won Lee
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hokyoung Son
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea.
| |
Collapse
|
3
|
The SR-protein FgSrp2 regulates vegetative growth, sexual reproduction and pre-mRNA processing by interacting with FgSrp1 in Fusarium graminearum. Curr Genet 2020; 66:607-619. [PMID: 32040734 DOI: 10.1007/s00294-020-01054-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/22/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
Serine/arginine (SR) proteins play significant roles in pre-mRNA splicing in eukaryotes. To investigate how gene expression influences fungal development and pathogenicity in Fusarium graminearum, a causal agent of Fusarium head blight (FHB) of wheat and barley, our previous study identified a SR protein FgSrp1 in F. graminearum, and showed that it is important for conidiation, plant infection and pre-mRNA processing. In this study, we identified another SR protein FgSrp2 in F. graminearum, which is orthologous to Schizosaccharomyces pombe Srp2. Our data showed that, whereas yeast Srp2 is essential for growth, deletion of FgSRP2 resulted in only slight defects in vegetative growth and perithecia melanization. FgSrp2 localized to the nucleus and both its N- and C-terminal regions were important for the localization to the nucleus. FgSrp2 interacted with FgSrp1 to form a complex in vivo. Double deletion of FgSRP1 and FgSRP2 revealed that they had overlapping functions in vegetative growth and sexual reproduction. RNA-seq analysis revealed that, although deletion of FgSRP2 alone had minimal effects, deletion of both FgSRP1 and FgSRP2 caused significant changes in gene transcription and RNA splicing. Overall, our results indicated that FgSrp2 regulates vegetative growth, sexual reproduction and pre-mRNA processing by interacting with FgSrp1.
Collapse
|
4
|
Wang H, Chen D, Li C, Tian N, Zhang J, Xu JR, Wang C. Stage-specific functional relationships between Tub1 and Tub2 beta-tubulins in the wheat scab fungus Fusarium graminearum. Fungal Genet Biol 2019; 132:103251. [PMID: 31319136 DOI: 10.1016/j.fgb.2019.103251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/06/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
Abstract
The filamentous ascomycete Fusarium graminearum contains two β-tubulin genes TUB1 and TUB2 that differ in functions during vegetative growth and sexual reproduction. To further characterize their functional relationship, in this study we determined the co-localization of Tub1 and Tub2 and assayed their expression levels in different mutants and roles in DON production. Tub1 co-localized with Tub2 to the same regions of microtubules in conidia, hyphae, and ascospores. Whereas deletion of TUB1 had no obvious effect on the transcription of TUB2 and two α-tubulin genes (TUB4 and TUB5), the tub2 mutant was up-regulated in TUB1 transcription. To assay their protein expression levels, polyclonal antibodies that could specifically detect four α- and β-tubulin proteins were generated. Western blot analyses showed that the abundance of Tub1 proteins was increased in tub2 but reduced in tub4 and tub5 mutants. Interestingly, protein expression of Tub4 and Tub5 was decreased in the tub1 mutant in comparison with the wild type, despite a lack of obvious changes in their transcription. In contrast, deletion of TUB2 had no effect on translation of TUB4 and TUB5. Ectopic expression of Tub2-mCherry partially recovered the growth defect of the tub1 mutant but did not rescue its defect in sexual reproduction. Expression of Tub1-GFP in the tub2 mutant also partially rescued its defects in vegetative growth, suggesting that disturbance in the balance of α- and β-tubulins contributes to mutant defects. The tub2 but not tub1 mutant was almost blocked in DON biosynthesis. Expression of TRI genes, toxisome formation, and DON-related cellular differentiation were significantly reduced in the tub2 mutant. Overall, our results showed that Tub1 and Tub2 share similar subcellular localization and have overlapping functions during vegetative growth but they differ in functions in DON production and ascosporogenesis in F. graminearum.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daipeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengliang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Neng Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ju Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Zhang C, Luo Z, He D, Su L, Yin H, Wang G, Liu H, Rensing C, Wang Z. FgBud3, a Rho4-Interacting Guanine Nucleotide Exchange Factor, Is Involved in Polarity Growth, Cell Division and Pathogenicity of Fusarium graminearum. Front Microbiol 2018; 9:1209. [PMID: 29930543 PMCID: PMC5999796 DOI: 10.3389/fmicb.2018.01209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/17/2018] [Indexed: 11/24/2022] Open
Abstract
Rho GTPases are signaling macromolecules that are associated with developmental progression and pathogenesis of Fusarium graminearum. Generally, enzymatic activities of Rho GTPases are regulated by Rho GTPase guanine nucleotide exchange factors (RhoGEFs). In this study, we identified a putative RhoGEF encoding gene (FgBUD3) in F. graminearum database and proceeded further by using a functional genetic approach to generate FgBUD3 targeted gene deletion mutant. Phenotypic analysis results showed that the deletion of FgBUD3 caused severe reduction in growth of FgBUD3 mutant generated during this study. We also observed that the deletion of FgBUD3 completely abolished sexual reproduction and triggered the production of abnormal asexual spores with nearly no septum in ΔFgbud3 strain. Further results obtained from infection assays conducted during this research revealed that the FgBUD3 defective mutant lost its pathogenicity on wheat and hence, suggests FgBud3 plays an essential role in the pathogenicity of F. graminearum. Additional, results derived from yeast two-hybrid assays revealed that FgBud3 strongly interacted with FgRho4 compared to the interaction with FgRho2, FgRho3, and FgCdc42. Moreover, we found that FgBud3 interacted with both GTP-bound and GDP-bound form of FgRho4. From these results, we subsequently concluded that, the Rho4-interacting GEF protein FgBud3 crucially promotes vegetative growth, asexual and sexual development, cell division and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
- Chengkang Zhang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zenghong Luo
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongdong He
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Su
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Yin
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guo Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,J. Craig Venter Institute, La Jolla, CA, United States
| | - Zonghua Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Li C, Zhang Y, Wang H, Chen L, Zhang J, Sun M, Xu J, Wang C. The PKR regulatory subunit of protein kinase A (PKA) is involved in the regulation of growth, sexual and asexual development, and pathogenesis in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2018; 19:909-921. [PMID: 28665481 PMCID: PMC6638095 DOI: 10.1111/mpp.12576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 05/25/2023]
Abstract
Fusarium graminearum is a causal agent of wheat scab disease and a producer of deoxynivalenol (DON) mycotoxins. Treatment with exogenous cyclic adenosine monophosphate (cAMP) increases its DON production. In this study, to better understand the role of the cAMP-protein kinase A (PKA) pathway in F. graminearum, we functionally characterized the PKR gene encoding the regulatory subunit of PKA. Mutants deleted of PKR were viable, but showed severe defects in growth, conidiation and plant infection. The pkr mutant produced compact colonies with shorter aerial hyphae with an increased number of nuclei in hyphal compartments. Mutant conidia were morphologically abnormal and appeared to undergo rapid autophagy-related cell death. The pkr mutant showed blocked perithecium development, but increased DON production. It had a disease index of less than unity and failed to spread to neighbouring spikelets. The mutant was unstable and spontaneous suppressors with a faster growth rate were often produced on older cultures. A total of 67 suppressor strains that grew faster than the original mutant were isolated. Three showed a similar growth rate and colony morphology to the wild-type, but were still defective in conidiation. Sequencing analysis with 18 candidate PKA-related genes in three representative suppressor strains identified mutations only in the CPK1 catalytic subunit gene. Further characterization showed that 10 of the other 64 suppressor strains also had mutations in CPK1. Overall, these results showed that PKR is important for the regulation of hyphal growth, reproduction, pathogenesis and DON production, and mutations in CPK1 are partially suppressive to the deletion of PKR in F. graminearum.
Collapse
Affiliation(s)
- Chaoqun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Yonghui Zhang
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| | - Huan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Lingfeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Ju Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Jin‐Rong Xu
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| |
Collapse
|
7
|
Zhang Y, Gao X, Sun M, Liu H, Xu JR. The FgSRP1 SR-protein gene is important for plant infection and pre-mRNA processing in Fusarium graminearum. Environ Microbiol 2017; 19:4065-4079. [PMID: 28654215 DOI: 10.1111/1462-2920.13844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
The versatile functions of SR (serine/arginine-rich) proteins in pre-mRNA splicing and processing are modulated by reversible phosphorylation. Previous studies showed that FgPrp4, the only protein kinase among spliceosome components, is important for intron splicing and the FgSrp1 SR protein is phosphorylated at five conserved sites in Fusarium graminearum. In this study, we showed that the Fgsrp1 deletion mutant rarely produced conidia and caused only limited symptoms on wheat heads and corn silks. Deletion of FgSRP1 also reduced ascospore ejection and deoxynivalenol (DON) production. Interestingly, FgSRP1 had two transcript isoforms due to alternative splicing and both of them were required for its normal functions in growth and DON biosynthesis. FgSrp1 localized to the nucleus and interacted with FgPrp4 in vivo. Deletion of all four conserved phosphorylation sites but not individual ones affected the FgSRP1 function, suggesting their overlapping functions. RNA-seq analysis showed that the expression of over thousands of genes and splicing efficiency in over 140 introns were affected. Taken together, FgSRP1 is important for conidiation, and pathogenesis and alternative splicing is important for its normal functions. The FgSrp1 SR protein is likely important for pre-mRNA processing or splicing of various genes in different developmental and infection processes.
Collapse
Affiliation(s)
- Yimei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Shin JY, Bui DC, Lee Y, Nam H, Jung S, Fang M, Kim JC, Lee T, Kim H, Choi GJ, Son H, Lee YW. Functional characterization of cytochrome P450 monooxygenases in the cereal head blight fungus Fusarium graminearum. Environ Microbiol 2017; 19:2053-2067. [PMID: 28296081 DOI: 10.1111/1462-2920.13730] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 11/27/2022]
Abstract
Fusarium graminearum is a prominent plant pathogenic fungus causing Fusarium head blight in major cereal crops worldwide. To understand the molecular mechanisms underlying fungal development and virulence, large collections of F. graminearum mutants have been constructed. Cytochrome P450 monooxygenases (P450s) are widely distributed in organisms and are involved in a diverse array of molecular/metabolic processes; however, no systematic functional analysis of P450s has been attempted in filamentous fungi. In this study, we constructed a genome-wide deletion mutant set covering 102 P450s and analyzed these mutants for changes in 38 phenotypic categories, including fungal development, stress responses and responses to several xenobiotics, to build a comprehensive phenotypic dataset. Most P450 mutants showing defective phenotypes were impaired in a single phenotypic trait, demonstrating that our mutant library is a good genetic resource for further fungal genetic studies. In particular, we identified novel P450s specifically involved in virulence (5) and both asexual (1) and sexual development (2). Most P450s seem to play redundant roles in the degradation of xenobiotics in F. graminearum. This study is the first phenome-based functional analysis of P450s, and it provides a valuable genetic resource for further basic and applied biological research in filamentous fungi and other plant pathogens.
Collapse
Affiliation(s)
- Ji Young Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Duc-Cuong Bui
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonji Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejin Nam
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soyun Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Miao Fang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Cheol Kim
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Theresa Lee
- Microbial Safety Team, National Academy of Agricultural Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hun Kim
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hokyoung Son
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Cao S, Zhang S, Hao C, Liu H, Xu JR, Jin Q. FgSsn3 kinase, a component of the mediator complex, is important for sexual reproduction and pathogenesis in Fusarium graminearum. Sci Rep 2016; 6:22333. [PMID: 26931632 PMCID: PMC4773989 DOI: 10.1038/srep22333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/08/2016] [Indexed: 01/05/2023] Open
Abstract
Fusarium graminearum is an important pathogen of wheat and barley. In addition to severe yield losses, infested grains are often contaminated with harmful mycotoxins. In this study, we characterized the functions of FgSSN3 kinase gene in different developmental and infection processes and gene regulation in F. graminearum. The FgSSN3 deletion mutant had a nutrient-dependent growth defects and abnormal conidium morphology. It was significantly reduced in DON production, TRI gene expression, and virulence. Deletion of FgSSN3 also resulted in up-regulation of HTF1 and PCS1 expression in juvenile cultures, and repression of TRI genes in DON-producing cultures. In addition, Fgssn3 was female sterile and defective in hypopodium formation and infectious growth. RNA-seq analysis showed that FgSsn3 is involved in the transcriptional regulation of a wide variety genes acting as either a repressor or activator. FgSsn3 physically interacted with C-type cyclin Cid1 and the cid1 mutant had similar phenotypes with Fgssn3, indicating that FgSsn3 and Cid1 form the CDK-cyclin pair as a component of the mediator complex in F. graminearum. Taken together, our results indicate that FgSSN3 is important for secondary metabolism, sexual reproduction, and plant infection, as a subunit of mediator complex contributing to transcriptional regulation of diverse genes.
Collapse
Affiliation(s)
- Shulin Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shijie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Qiaojun Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Bui DC, Son H, Shin JY, Kim JC, Kim H, Choi GJ, Lee YW. The FgNot3 Subunit of the Ccr4-Not Complex Regulates Vegetative Growth, Sporulation, and Virulence in Fusarium graminearum. PLoS One 2016; 11:e0147481. [PMID: 26799401 PMCID: PMC4723064 DOI: 10.1371/journal.pone.0147481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/05/2016] [Indexed: 01/23/2023] Open
Abstract
The Ccr4-Not complex is evolutionarily conserved and important for multiple cellular functions in eukaryotic cells. In this study, the biological roles of the FgNot3 subunit of this complex were investigated in the plant pathogenic fungus Fusarium graminearum. Deletion of FgNOT3 resulted in retarded vegetative growth, retarded spore germination, swollen hyphae, and hyper-branching. The ΔFgnot3 mutants also showed impaired sexual and asexual sporulation, decreased virulence, and reduced expression of genes related to conidiogenesis. Fgnot3 deletion mutants were sensitive to thermal stress, whereas NOT3 orthologs in other model eukaryotes are known to be required for cell wall integrity. We found that FgNot3 functions as a negative regulator of the production of secondary metabolites, including trichothecenes and zearalenone. Further functional characterization of other components of the Not module of the Ccr4-Not complex demonstrated that the module is conserved. Each subunit primarily functions within the context of a complex and might have distinct roles outside of the complex in F. graminearum. This is the first study to functionally characterize the Not module in filamentous fungi and provides novel insights into signal transduction pathways in fungal development.
Collapse
Affiliation(s)
- Duc-Cuong Bui
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Ji Young Shin
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Jin-Cheol Kim
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Hun Kim
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Hou R, Jiang C, Zheng Q, Wang C, Xu JR. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2015; 16:987-99. [PMID: 25781642 PMCID: PMC6638501 DOI: 10.1111/mpp.12254] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium graminearum, is harmful to humans and animals. Because different nitrogen sources are known to have opposite effects on DON production, in this study, we characterized the regulatory mechanisms of the AREA transcription factor in trichothecene biosynthesis. The ΔareA mutant showed significantly reduced vegetative growth and DON production in cultures inoculated with hyphae. Suppression of TRI gene expression and DON production by ammonium were diminished in the ΔareA mutant. The deletion of AREA also affected the stimulatory effects of arginine on DON biosynthesis. The AreA-green fluorescent protein (GFP) fusion complemented the ΔareA mutant, and its localization to the nucleus was enhanced under nitrogen starvation conditions. Site-directed mutagenesis showed that the conserved predicted protein kinase A (PKA) phosphorylation site S874 was important for AreA function, indicating that AreA may be a downstream target of the cyclic adenosine monophosphate (cAMP)-PKA pathway, which is known to regulate DON production. We also showed that AreA interacted with Tri10 in co-immunoprecipitation assays. The interaction of AreA with Tri10 is probably related to its role in the regulation of TRI gene expression. Interestingly, the ΔareA mutant showed significantly reduced PKA activity and expression of all three predicted ammonium permease (MEP) genes, in particular MEP1, under low ammonium conditions. Taken together, our results show that AREA is involved in the regulation of DON production by ammonium suppression and the cAMP-PKA pathway. The AreA transcription factor may interact with Tri10 and control the expression and up-regulation of MEP genes.
Collapse
Affiliation(s)
- Rui Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
| | - Qian Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
12
|
Li C, Melesse M, Zhang S, Hao C, Wang C, Zhang H, Hall MC, Xu JR. FgCDC14 regulates cytokinesis, morphogenesis, and pathogenesis in Fusarium graminearum. Mol Microbiol 2015; 98:770-86. [PMID: 26256689 DOI: 10.1111/mmi.13157] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2015] [Indexed: 12/20/2022]
Abstract
Members of Cdc14 phosphatases are common in animals and fungi, but absent in plants. Although its orthologs are conserved in plant pathogenic fungi, their functions during infection are not clear. In this study, we showed that the CDC14 ortholog is important for pathogenesis and morphogenesis in Fusarium graminearum. FgCDC14 is required for normal cell division and septum formation and FgCdc14 possesses phosphatase activity with specificity for a subset of Cdk-type phosphorylation sites. The Fgcdc14 mutant was reduced in growth, conidiation, and ascospore formation. It was defective in ascosporogenesis and pathogenesis. Septation in Fgcdc14 was reduced and hyphal compartments contained multiple nuclei, indicating defects in the coordination between nuclear division and cytokinesis. Interestingly, foot cells of mutant conidia often differentiated into conidiogenous cells, resulting in the production of inter-connected conidia. In the interphase, FgCdc14-GFP localized to the nucleus and spindle-pole-body. Taken together, our results indicate that Cdc14 phosphatase functions in cell division and septum formation in F. graminearum, likely by counteracting Cdk phosphorylation, and is required for plant infection.
Collapse
Affiliation(s)
- Chaohui Li
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Michael Melesse
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Shijie Zhang
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - ChaoFeng Hao
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenfang Wang
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongchang Zhang
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mark C Hall
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jin-Rong Xu
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
13
|
Liu H, Zhang S, Ma J, Dai Y, Li C, Lyu X, Wang C, Xu JR. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum. PLoS Pathog 2015; 11:e1004913. [PMID: 26083253 PMCID: PMC4470668 DOI: 10.1371/journal.ppat.1004913] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/26/2015] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic cell cycle involves a number of protein kinases important for the onset and progression through mitosis, most of which are well characterized in the budding and fission yeasts and conserved in other fungi. However, unlike the model yeast and filamentous fungi that have a single Cdc2 essential for cell cycle progression, the wheat scab fungus Fusarium graminearum contains two CDC2 orthologs. The cdc2A and cdc2B mutants had no obvious defects in growth rate and conidiation but deletion of both of them is lethal, indicating that these two CDC2 orthologs have redundant functions during vegetative growth and asexual reproduction. However, whereas the cdc2B mutant was normal, the cdc2A mutant was significantly reduced in virulence and rarely produced ascospores. Although deletion of CDC2A had no obvious effect on the formation of penetration branches or hyphopodia, the cdc2A mutant was limited in the differentiation and growth of infectious growth in wheat tissues. Therefore, CDC2A plays stage-specific roles in cell cycle regulation during infectious growth and sexual reproduction. Both CDC2A and CDC2B are constitutively expressed but only CDC2A was up-regulated during plant infection and ascosporogenesis. Localization of Cdc2A- GFP to the nucleus but not Cdc2B-GFP was observed in vegetative hyphae, ascospores, and infectious hyphae. Complementation assays with chimeric fusion constructs showed that both the N- and C-terminal regions of Cdc2A are important for its functions in pathogenesis and ascosporogenesis but only the N-terminal region is important for its subcellular localization. Among the Sordariomycetes, only three Fusarium species closely related to F. graminearum have two CDC2 genes. Furthermore, F. graminearum uniquely has two Aurora kinase genes and one additional putative cyclin gene, and its orthologs of CAK1 and other four essential mitotic kinases in the budding yeast are dispensable for viability. Overall, our data indicate that cell cycle regulation is different between vegetative and infectious hyphae in F. graminearum and Cdc2A, possibly by interacting with a stage-specific cyclin, plays a more important role than Cdc2B during ascosporogenesis and plant infection. In the model yeasts and filamentous fungi, CDC2 is an essential gene that encodes the only CDK essential for mitotic cell cycle progression. However, the wheat scab fungus F. graminearum contains two CDC2 orthologs. The cdc2A and cdc2B deletion mutants had no defects in vegetative growth but deletion of both is lethal. Whereas the cdc2B mutant was normal, the cdc2A mutant was almost non-pathogenic, indicating that only Cdc2A is essential in infectious hyphae. Cdc2A and Cdc2B differ in subcellular localization and only localization of Cdc2A to the nucleus was increased in cells active in mitosis. Furthermore, F. graminearum uniquely has two orthologs of Ipl1 Aurora kinase and mutants deleted of orthologs of five essential yeast mitotic kinase genes were viable. However, most of these mutants were significantly reduced in virulence. Overall, our data indicate that F. graminearum differs from the model fungi in CDK and other key mitotic kinase genes, and cell cycle regulation is different between vegetative and infectious hyphae. This is the first report on two Cdc2 kinases in fungi and they differ in subcellular localization and functions during sexual reproduction and plant infection.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Shijie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jiwen Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yafeng Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Chaohui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xueliang Lyu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
14
|
Yang C, Liu H, Li G, Liu M, Yun Y, Wang C, Ma Z, Xu JR. The MADS-box transcription factor FgMcm1 regulates cell identity and fungal development in Fusarium graminearum. Environ Microbiol 2015; 17:2762-76. [PMID: 25627073 DOI: 10.1111/1462-2920.12747] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, MADS-box genes are known to play major regulatory roles in various biological processes by combinatorial interactions with other transcription factors. In this study, we functionally characterized the FgMCM1 MADS-box gene in Fusarium graminearum, the causal agent of wheat and barley head blight. Deletion of FgMCM1 resulted in the loss of perithecium production and phialide formation. The Fgmcm1 mutant was significantly reduced in virulence, deoxynivalenol biosynthesis and conidiation. In yeast two-hybrid assays, FgMcm1 interacted with Mat1-1-1 and Fst12, two transcription factors important for sexual reproduction. Whereas Fgmcm1 mutants were unstable and produced stunted subcultures, Fgmcm1 mat1-1-1 but not Fgmcm1 fst12 double mutants were stable. Furthermore, spontaneous suppressor mutations occurred frequently in stunted subcultures to recover growth rate. Ribonucleic acid sequencing analysis indicated that a number of sexual reproduction-related genes were upregulated in stunted subcultures compared with the Fgmcm1 mutant, which was downregulated in the expression of genes involved in pathogenesis, secondary metabolism and conidiation. We also showed that culture instability was not observed in the Fvmcm1 mutants of the heterothallic Fusarium verticillioides. Overall, our data indicate that FgMcm1 plays a critical role in the regulation of cell identity, sexual and asexual reproduction, secondary metabolism and pathogenesis in F. graminearum.
Collapse
Affiliation(s)
- Cui Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Guotian Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Meigang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Yingzi Yun
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
15
|
Lee Y, Min K, Son H, Park AR, Kim JC, Choi GJ, Lee YW. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1344-1355. [PMID: 25083910 DOI: 10.1094/mpmi-05-14-0145-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fusarium graminearum is an important fungal plant pathogen that causes serious losses in cereal crop yields and mycotoxicoses in humans and livestock. In this study, we characterized an insertion mutant, Z39R9282, with pleiotropic defects in sexual development and virulence. We determined that the insertion occurred in a gene encoding an ortholog of yeast elongator complex protein 3 (ELP3). Deletion of elp3 led to significant defects in sexual and asexual development in F. graminearum. In the elp3 deletion mutant, the number of perithecia formed was reduced and maturation of perithecia was delayed. This mutant also produced morphologically abnormal ascospores and conidia. Histone acetylation in the elp3 deletion mutant was reduced compared with the wild type, which likely caused the developmental defects. Trichothecenes were not produced at detectable levels, and expression of trichothecene biosynthesis genes were significantly reduced in the elp3 deletion mutant. Infection of wheat heads revealed that the elp3 deletion mutant was unable to spread from inoculated florets to neighboring spikelets. Furthermore, the elp3 deletion mutant was more sensitive to oxidative stress than the wild type, and the expression of putative catalase genes was reduced. We demonstrate that elp3 functions in sexual and asexual development, virulence, and the oxidative stress response of F. graminearum by regulating the expression of genes involved in these various developmental processes.
Collapse
|
16
|
Pasquali M, Migheli Q. Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria. Int J Food Microbiol 2014; 189:164-82. [DOI: 10.1016/j.ijfoodmicro.2014.08.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/30/2014] [Accepted: 08/05/2014] [Indexed: 01/19/2023]
|
17
|
Jiang C, Zhang S, Zhang Q, Tao Y, Wang C, Xu JR. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum. Environ Microbiol 2014; 17:1245-60. [PMID: 25040476 DOI: 10.1111/1462-2920.12561] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/28/2014] [Indexed: 11/30/2022]
Abstract
Fusarium head blight caused by Fusarium graminearum is one of the most destructive diseases of wheat and barley. Deoxynivalenol (DON) produced by the pathogen is an important mycotoxins and virulence factor. Because oxidative burst is a common defense response and reactive oxygen species (ROS) induces DON production, in this study, we characterized functional relationships of three stress-related transcription factor genes FgAP1, FgATF1 and FgSKN7. Although all of them played a role in tolerance to oxidative stress, deletion of FgAP1 or FgATF1 had no significant effect on DON production. In contrast, Fgskn7 mutants were reduced in DON production and defective in H2 O2 -induced TRI gene expression. The Fgap1 mutant had no detectable phenotype other than increased sensitivity to H2 O2 and Fgap1 Fgatf1 and Fgap1 Fgskn7 mutants lacked additional or more severe phenotypes than the single mutants. The Fgatf1, but not Fgskn7, mutant was significantly reduced in virulence and delayed in ascospore release. The Fgskn7 Fgatf1 double mutant had more severe defects in growth, conidiation and virulence than the Fgatf1 or Fgskn7 mutant. Instead of producing four-celled ascospores, it formed eight small, single-celled ascospores in each ascus. Therefore, FgSKN7 and FgATF1 must have overlapping functions in intracellular ROS signalling for growth, development and pathogenesis in F. graminearum.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | | | | | |
Collapse
|
18
|
Hu S, Zhou X, Gu X, Cao S, Wang C, Xu JR. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:557-66. [PMID: 24450772 DOI: 10.1094/mpmi-10-13-0306-r] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Like many other filamentous ascomycetes, Fusarium graminearum contains two genes named CPK1 and CPK2 that encode the catalytic subunits of cyclic AMP (cAMP)-dependent protein kinase A (PKA). To determine the role of cAMP signaling in pathogenesis and development in F. graminearum, we functionally characterized these two genes. In addition, we generated and characterized the cpk1 cpk2 double and fac1 adenylate cyclase gene deletion mutants. The cpk1 mutant was significantly reduced in vegetative growth, conidiation, and deoxynivalenol production but it had increased tolerance to elevated temperatures. It was defective in the production of penetration branches on plant surfaces, colonization of wheat rachises, and spreading in flowering wheat heads. Deletion of CPK1 had no effect on perithecium development but the cpk1 mutant was defective in ascospore maturation and releasing. In contrast, the cpk2 mutant had no detectable phenotypes, suggesting that CPK2 contributes minimally to PKA activities in F. graminearum. Nevertheless, the cpk1 cpk2 double mutant had more severe defects in vegetative growth and rarely produced morphologically abnormal conidia. The double mutant, unlike the cpk1 or cpk2 mutant, was nonpathogenic and failed to form perithecia on self-mating plates. Therefore, CPK1 and CPK2 must have overlapping functions in vegetative growth, differentiation, and plant infection in F. graminearum. The fac1 mutant was also nonpathogenic and had growth defects similar to those of the cpk1 cpk2 mutant. However, deletion of FAC1 had no effect on conidium morphology. These results indicated that CPK1 is the major PKA catalytic subunit gene and that the cAMP-PKA pathway plays critical roles in hyphal growth, conidiation, ascosporogenesis, and plant infection in F. graminearum.
Collapse
|
19
|
Kim Y, Kim H, Son H, Choi GJ, Kim JC, Lee YW. MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum. PLoS One 2014; 9:e94359. [PMID: 24722578 PMCID: PMC3983115 DOI: 10.1371/journal.pone.0094359] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/12/2014] [Indexed: 11/19/2022] Open
Abstract
We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the Δmyt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the Δmyt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the Δmyt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the Δmyt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum.
Collapse
Affiliation(s)
- Yongsoo Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Hun Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jin-Cheol Kim
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
20
|
Transcription factor RFX1 is crucial for maintenance of genome integrity in Fusarium graminearum. EUKARYOTIC CELL 2014; 13:427-36. [PMID: 24465002 DOI: 10.1128/ec.00293-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The survival of cellular organisms depends on the faithful replication and transmission of DNA. Regulatory factor X (RFX) transcription factors are well conserved in animals and fungi, but their functions are diverse, ranging from the DNA damage response to ciliary gene regulation. We investigated the role of the sole RFX transcription factor, RFX1, in the plant-pathogenic fungus Fusarium graminearum. Deletion of rfx1 resulted in multiple defects in hyphal growth, conidiation, virulence, and sexual development. Deletion mutants of rfx1 were more sensitive to various types of DNA damage than the wild-type strain. Septum formation was inhibited and micronuclei were produced in the rfx1 deletion mutants. The results of the neutral comet assay demonstrated that disruption of rfx1 function caused spontaneous DNA double-strand breaks (DSBs). The transcript levels of genes involved in DNA DSB repair were upregulated in the rfx1 deletion mutants. DNA DSBs produced micronuclei and delayed septum formation in F. graminearum. Green fluorescent protein (GFP)-tagged RFX1 localized in nuclei and exhibited high expression levels in growing hyphae and conidiophores, where nuclear division was actively occurring. RNA-sequencing-based transcriptomic analysis revealed that RFX1 suppressed the expression of many genes, including those required for the repair of DNA damage. Taken together, these findings indicate that the transcriptional repressor rfx1 performs crucial roles during normal cell growth by maintaining genome integrity.
Collapse
|
21
|
Kim H, Son H, Lee YW. Effects of light on secondary metabolism and fungal development of Fusarium graminearum. J Appl Microbiol 2013; 116:380-9. [DOI: 10.1111/jam.12381] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/10/2013] [Accepted: 10/13/2013] [Indexed: 01/07/2023]
Affiliation(s)
- H. Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul Korea
| | - H. Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul Korea
| | - Y.-W. Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul Korea
| |
Collapse
|
22
|
Kim HK, Lee S, Jo SM, McCormick SP, Butchko RAE, Proctor RH, Yun SH. Functional roles of FgLaeA in controlling secondary metabolism, sexual development, and virulence in Fusarium graminearum. PLoS One 2013; 8:e68441. [PMID: 23874628 PMCID: PMC3713025 DOI: 10.1371/journal.pone.0068441] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/29/2013] [Indexed: 01/19/2023] Open
Abstract
Fusarium graminearum, the causal agent of Fusarium head blight in cereal crops, produces mycotoxins such as trichothecenes and zearalenone in infected plants. Here, we focused on the function of FgLaeA in F. graminearum, a homolog of Aspergillus nidulans LaeA encoding the global regulator for both secondary metabolism and sexual development. Prior to gene analysis, we constructed a novel luciferase reporter system consisting of a transgenic F. graminearum strain expressing a firefly luciferase gene under control of the promoter for either TRI6 or ZEB2 controlling the biosynthesis of these mycotoxins. Targeted deletion of FgLaeA led to a dramatic reduction of luminescence in reporter strains, indicating that FgLaeA controls the expression of these transcription factors in F. graminearum; reduced toxin accumulation was further confirmed by GC-MS analysis. Overexpression of FgLaeA caused the increased production of trichothecenes and additional metabolites. RNA seq-analysis revealed that gene member(s) belonging to ~70% of total tentative gene clusters, which were previously proposed, were differentially expressed in the ΔFgLaeA strain. In addition, ΔFgLaeA strains exhibited an earlier induction of sexual fruiting body (perithecia) formation and drastically reduced disease symptoms in wheat, indicating that FgLaeA seems to negatively control perithecial induction, but positively control virulence toward the host plant. FgLaeA was constitutively expressed under both mycotoxin production and sexual development conditions. Overexpression of a GFP-FgLaeA fusion construct in the ΔFgLaeA strain restored all phenotypic changes to wild-type levels and led to constitutive expression of GFP in both nuclei and cytoplasm at different developmental stages. A split luciferase assay demonstrated that FgLaeA was able to interact with FgVeA, a homolog of A. nidulans veA. Taken together, these results demonstrate that FgLaeA, a member of putative FgVeA complex, controls secondary metabolism, sexual development, and virulence in F. graminearum, although the specific regulation pattern differs from that of LaeA in A. nidulans.
Collapse
Affiliation(s)
- Hee-Kyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Republic of Korea
| | - Seunghoon Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Republic of Korea
| | - Seong-Mi Jo
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Republic of Korea
| | - Susan P. McCormick
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Robert A. E. Butchko
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Robert H. Proctor
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Sung-Hwan Yun
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
23
|
Min K, Son H, Lee J, Choi GJ, Kim JC, Lee YW. Peroxisome function is required for virulence and survival of Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1617-1627. [PMID: 22913493 DOI: 10.1094/mpmi-06-12-0149-r] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Peroxisomes are organelles that are involved in a number of important cellular metabolic processes, including the β-oxidation of fatty acids, biosynthesis of secondary metabolites, and detoxification of reactive oxygen species (ROS). In this study, the role of peroxisomes was examined in Fusarium graminearum by targeted deletion of three genes (PEX5, PEX6, and PEX7) encoding peroxin (PEX) proteins required for peroxisomal protein import. PEX5 and PEX7 deletion mutants were unable to localize the fluorescently tagged peroxisomal targeting signal type 1 (PTS1)- and PTS2-containing proteins to peroxisomes, respectively, whereas the PEX6 mutant failed to localize both fluorescent proteins. Deletion of PEX5 and PEX6 resulted in retarded growth on long-chain fatty acids and butyrate, while the PEX7 deletion mutants utilized fatty acids other than butyrate. Virulence on wheat heads was greatly reduced in the PEX5 and PEX6 deletion mutants, and they were defective in spreading from inoculated florets to the adjacent spikelets through rachis. Deletion of PEX5 and PEX6 dropped survivability of aged cells in planta and in vitro due to the accumulation of ROS followed by necrotic cell death. These results demonstrate that PTS1-dependent peroxisomal protein import mediated by PEX5 and PEX6 are critical to virulence and survival of F. graminearum.
Collapse
Affiliation(s)
- Kyunghun Min
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Zheng D, Zhang S, Zhou X, Wang C, Xiang P, Zheng Q, Xu JR. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS One 2012; 7:e49495. [PMID: 23166686 PMCID: PMC3498113 DOI: 10.1371/journal.pone.0049495] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022] Open
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum is a destructive disease of wheat and barley worldwide. In a previous study of systematic characterization of protein kinase genes in F. graminearum, mutants of three putative components of the osmoregulation MAP kinase pathway were found to have distinct colony morphology and hyphal growth defects on PDA plates. Because the osmoregulation pathway is not known to regulate aerial hyphal growth and branching, in this study we further characterized the functions of the FgHog1 pathway in growth, pathogenesis, and development. The Fghog1, Fgpbs2, and Fgssk2 mutants were all reduced in growth rate, aerial hyphal growth, and hyphal branching angle. These mutants were not only hypersensitive to osmotic stress but also had increased sensitivity to oxidative, cytoplasm membrane, and cell wall stresses. The activation of FgHog1 was blocked in the Fgpbs2 and Fgssk2 mutants, indicating the sequential activation of FgSsk2-FgPbs2-FgHog1 cascade. Interestingly, the FgHog1 MAPK pathway mutants appeared to be sensitive to certain compounds present in PDA. They were female sterile but retained male fertility. We also used the metabolomics profiling approach to identify compatible solutes that were accumulated in the wild type but not in the Fghog1 deletion mutant. Overall, our results indicate that the FgSsk2-FgPbs2-FgHog1 MAPK cascade is important for regulating hyphal growth, branching, plant infection, and hyperosmotic and general stress responses in F. graminearum.
Collapse
Affiliation(s)
- Dawei Zheng
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shijie Zhang
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (XZ); (JX)
| | - Chenfang Wang
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ping Xiang
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Zheng
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (XZ); (JX)
| |
Collapse
|
25
|
Min K, Shin Y, Son H, Lee J, Kim JC, Choi GJ, Lee YW. Functional analyses of the nitrogen regulatory gene areA in Gibberella zeae. FEMS Microbiol Lett 2012; 334:66-73. [DOI: 10.1111/j.1574-6968.2012.02620.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Kyunghun Min
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul; Korea
| | - Yungin Shin
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul; Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul; Korea
| | - Jungkwan Lee
- Department of Applied Biology; Dong-A University; Busan; Korea
| | - Jin-Cheol Kim
- Eco-friendly New Materials Research Group; Division of Convergence Chemistry; Research Center for Biobased Chemistry; Korea Research Institute of Chemical Technology; Daejeon; Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group; Division of Convergence Chemistry; Research Center for Biobased Chemistry; Korea Research Institute of Chemical Technology; Daejeon; Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul; Korea
| |
Collapse
|
26
|
Yoshida M, Nakajima T, Tomimura K, Suzuki F, Arai M, Miyasaka A. Effect of the Timing of Fungicide Application on Fusarium Head Blight and Mycotoxin Contamination in Wheat. PLANT DISEASE 2012; 96:845-851. [PMID: 30727359 DOI: 10.1094/pdis-10-11-0819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fungicide application to control Fusarium head blight (FHB) and accompanying mycotoxin contamination in wheat is generally performed at anthesis because wheat is most susceptible to FHB around this stage. In this study, we evaluated the effect of the timing of fungicide application on FHB and mycotoxin (deoxynivalenol and nivalenol) accumulation in wheat based on our previous finding that the late period of grain development (beyond 20 days after anthesis [DAA]) is important to determine the final toxin contamination level in wheat. Thiophanate-methyl fungicide was tested under artificial inoculation conditions in which moisture and inoculum spores were provided throughout the testing period. Eight treatments differing in application timing (anthesis, 10, 20, and 30 DAA) and in the number of applications (0 to 2) were tested for 2 years. The results indicated that fungicide application timing differentially affects FHB (disease) and mycotoxin concentration. Fungicide application at 20 DAA reduced mycotoxin concentration in matured grain without reducing FHB severity, whereas application at anthesis was crucial for reducing FHB. These results and our previous findings suggest that around 20 DAA (late milk stage) is a potentially critical timing for mycotoxin control in wheat.
Collapse
Affiliation(s)
- Megumi Yoshida
- NARO Kyushu Okinawa Agricultural Research Center (NARO/KARC), 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Takashi Nakajima
- NARO Kyushu Okinawa Agricultural Research Center (NARO/KARC), 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Kenta Tomimura
- NARO Kyushu Okinawa Agricultural Research Center (NARO/KARC), 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Fumihiko Suzuki
- NARO Kyushu Okinawa Agricultural Research Center (NARO/KARC), 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Michiyoshi Arai
- NARO Kyushu Okinawa Agricultural Research Center (NARO/KARC), 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Atsushi Miyasaka
- NARO Kyushu Okinawa Agricultural Research Center (NARO/KARC), 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| |
Collapse
|
27
|
Functional analyses of regulators of G protein signaling in Gibberella zeae. Fungal Genet Biol 2012; 49:511-20. [PMID: 22634273 DOI: 10.1016/j.fgb.2012.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 11/20/2022]
Abstract
Regulators of G protein signaling (RGS) proteins make up a highly diverse and multifunctional protein family that plays a critical role in controlling heterotrimeric G protein signaling. In this study, seven RGS genes (FgFlbA, FgFlbB, FgRgsA, FgRgsB, FgRgsB2, FgRgsC, and FgGprK) were functionally characterized in the plant pathogenic fungus, Gibberella zeae. Mutant phenotypes were observed for deletion mutants of FgRgsA and FgRgsB in vegetative growth, FgFlbB and FgRgsB in conidia morphology, FgFlbA in conidia production, FgFlbA, FgRgsB, and FgRgsC in sexual development, FgFlbA and FgRgsA in spore germination and mycotoxin production, and FgFlbA, FgRgsA, and FgRgsB in virulence. Furthermore, FgFlbA, FgRgsA, and FgRgsB acted pleiotropically, while FgFlbB and FgRgsC deletion mutants exhibited a specific defect in conidia morphology and sexual development, respectively. Amino acid substitutions in Gα subunits and overexpression of the FgFlbA gene revealed that deletion of FgFlbA and dominant active GzGPA2 mutant, gzgpa2(Q207L), had similar phenotypes in cell wall integrity, perithecia formation, mycotoxin production, and virulence, suggesting that FgFlbA may regulate asexual/sexual development, mycotoxin biosynthesis, and virulence through GzGPA2-dependent signaling in G. zeae.
Collapse
|
28
|
Lin Y, Son H, Min K, Lee J, Choi GJ, Kim JC, Lee YW. A putative transcription factor MYT2 regulates perithecium size in the ascomycete Gibberella zeae. PLoS One 2012; 7:e37859. [PMID: 22649560 PMCID: PMC3359310 DOI: 10.1371/journal.pone.0037859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/25/2012] [Indexed: 11/18/2022] Open
Abstract
The homothallic ascomycete fungus Gibberella zeae is a plant pathogen that is found worldwide, causing Fusarium head blight (FHB) in cereal crops and ear rot of maize. Ascospores formed in fruiting bodies (i.e., perithecia) are hypothesized to be the primary inocula for FHB disease. Perithecium development is a complex cellular differentiation process controlled by many developmentally regulated genes. In this study, we selected a previously reported putative transcription factor containing the Myb DNA-binding domain MYT2 for an in-depth study on sexual development. The deletion of MYT2 resulted in a larger perithecium, while its overexpression resulted in a smaller perithecium when compared to the wild-type strain. These data suggest that MYT2 regulates perithecium size differentiation. MYT2 overexpression affected pleiotropic phenotypes including vegetative growth, conidia production, virulence, and mycotoxin production. Nuclear localization of the MYT2 protein supports its role as a transcriptional regulator. Transcriptional analyses of trichothecene synthetic genes suggest that MYT2 additionally functions as a suppressor for trichothecene production. This is the first study characterizing a transcription factor required for perithecium size differentiation in G. zeae, and it provides a novel angle for understanding sexual development in filamentous fungi.
Collapse
Affiliation(s)
- Yang Lin
- Department of Agricultural Biotechnology and the Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology and the Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology and the Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, Republic of Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jin-Cheol Kim
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and the Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
29
|
Lee J, Myong K, Kim JE, Kim HK, Yun SH, Lee YW. FgVelB globally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum. MICROBIOLOGY-SGM 2012; 158:1723-1733. [PMID: 22516221 DOI: 10.1099/mic.0.059188-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The velvet genes are conserved in ascomycetous fungi and function as global regulators of differentiation and secondary metabolism. Here, we characterized one of the velvet genes, designated FgVelB, in the plant-pathogenic fungus Fusarium graminearum, which causes fusarium head blight in cereals and produces mycotoxins within plants. FgVelB-deleted (ΔFgVelB) strains produced fewer aerial mycelia with less pigmentation than those of the wild-type (WT) during vegetative growth. Under sexual development conditions, the ΔFgVelB strains produced no fruiting bodies but retained male fertility, and conidiation was threefold higher compared with the WT strain. Production of trichothecene and zearalenone was dramatically reduced compared with the WT strain. In addition, the ΔFgVelB strains were incapable of colonizing host plant tissues. Transcript analyses revealed that FgVelB was highly expressed during the sexual development stage, and may be regulated by a mitogen-activated protein kinase cascade. Microarray analysis showed that FgVelB affects regulatory pathways mediated by the mating-type loci and a G-protein alpha subunit, as well as primary and secondary metabolism. These results suggest that FgVelB has diverse biological functions, probably by acting as a member of a possible velvet protein complex, although identification of the FgVelB-FgVeA complex and the determination of its roles require further investigation.
Collapse
Affiliation(s)
- Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan 604-714, Republic of Korea
| | - Kilseon Myong
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jung-Eun Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Republic of Korea
| | - Hee-Kyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 336-745, Republic of Korea
| | - Sung-Hwan Yun
- Department of Medical Biotechnology, Soonchunhyang University, Asan 336-745, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
30
|
Population structure of and mycotoxin production by Fusarium graminearum from maize in South Korea. Appl Environ Microbiol 2012; 78:2161-7. [PMID: 22287004 DOI: 10.1128/aem.07043-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusarium graminearum (Gibberella zeae) is an important pathogen of wheat, maize, barley, and rice in South Korea, and harvested grain often is contaminated with trichothecenes such as deoxynivalenol and nivalenol. In this study, we examined 568 isolates of F. graminearum collected from maize at eight locations in South Korea. We used amplified fragment length polymorphisms (AFLPs) to identify four lineages (2, 3, 6, and 7); lineage 7 was the most common (75%), followed by lineage 6 (12%), lineage 3 (12%), and lineage 2 (1%). The genetic identity among populations was high (>0.98), and the effective migration rate between locations was higher than that between lineages. Female fertility varied by lineage: all lineage 7 isolates were fertile, while 70%, 26%, and 14% of the isolates in lineages 6, 3, and 2, respectively, were fertile. All lineage 3 and lineage 7 isolates produced deoxynivalenol, whereas most lineage 2 and 6 isolates produced nivalenol. Genotypic diversity in lineage 3 and lineage 6 populations is similar to that found in previously described Korean rice populations, but genotypic diversity in lineage 7 is much lower, even though similar levels of gene flow occur between lineage 7 populations. We conclude that lineage 7 was relatively recently introduced into South Korea, perhaps accompanying imported maize seeds.
Collapse
|
31
|
Son H, Seo YS, Min K, Park AR, Lee J, Jin JM, Lin Y, Cao P, Hong SY, Kim EK, Lee SH, Cho A, Lee S, Kim MG, Kim Y, Kim JE, Kim JC, Choi GJ, Yun SH, Lim JY, Kim M, Lee YH, Choi YD, Lee YW. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog 2011; 7:e1002310. [PMID: 22028654 PMCID: PMC3197617 DOI: 10.1371/journal.ppat.1002310] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/25/2011] [Indexed: 12/18/2022] Open
Abstract
Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The fungus produces mycotoxins that are harmful to animal and human. In this study, a systematic analysis of 17 phenotypes of the mutants in 657 Fusarium graminearum genes encoding putative transcription factors (TFs) resulted in a database of over 11,000 phenotypes (phenome). This database provides comprehensive insights into how this cereal pathogen of global significance regulates traits important for growth, development, stress response, pathogenesis, and toxin production and how transcriptional regulations of these traits are interconnected. In-depth analysis of TFs involved in sexual development revealed that mutations causing defects in perithecia development frequently affect multiple other phenotypes, and the TFs associated with sexual development tend to be highly conserved in the fungal kingdom. Besides providing many new insights into understanding the function of F. graminearum TFs, this mutant library and phenome will be a valuable resource for characterizing the gene expression network in this fungus and serve as a reference for studying how different fungi have evolved to control various cellular processes at the transcriptional level. Large collections of mutant lines allow for identification of gene functions. Here we constructed a mutant library of 657 putative transcription factors (TFs) through homologous recombination in the head blight fungus, Fusarium graminearum, providing a resource for understanding gene regulation in fungus. By screening these mutants in 17 phenotypic categories, we constructed a dataset of over 11,000 phenotypes. This study provides new insight into understanding multiple phenotypes caused by single TF as well as regulation of gene expression at the transcription level in F. graminearum. Furthermore, our TF mutant library will be a valuable resource for fungal studies through the distribution of mutants and easy access to our phenotypic and genetic data.
Collapse
Affiliation(s)
- Hokyoung Son
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Young-Su Seo
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Ae Ran Park
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, Korea
| | - Jian-Ming Jin
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Yang Lin
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, Henan, China
| | - Sae-Yeon Hong
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Eun-Kyung Kim
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Seung-Ho Lee
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Aram Cho
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Seunghoon Lee
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Myung-Gu Kim
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Yongsoo Kim
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Jung-Eun Kim
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Jin-Cheol Kim
- Chemical Biotechnology Center, Korea Research Institute of Chemical Technology, Daejon, Korea
| | - Gyung Ja Choi
- Chemical Biotechnology Center, Korea Research Institute of Chemical Technology, Daejon, Korea
| | - Sung-Hwan Yun
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Korea
| | - Jae Yun Lim
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Minkyun Kim
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Yang-Do Choi
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and Agricultural Biomaterials, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
32
|
Lin Y, Son H, Lee J, Min K, Choi GJ, Kim JC, Lee YW. A putative transcription factor MYT1 is required for female fertility in the ascomycete Gibberella zeae. PLoS One 2011; 6:e25586. [PMID: 21984921 PMCID: PMC3184970 DOI: 10.1371/journal.pone.0025586] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/06/2011] [Indexed: 11/19/2022] Open
Abstract
Gibberella zeae is an important pathogen of major cereal crops. The fungus produces ascospores that forcibly discharge from mature fruiting bodies, which serve as the primary inocula for disease epidemics. In this study, we characterized an insertional mutant Z39P105 with a defect in sexual development and identified a gene encoding a putative transcription factor designated as MYT1. This gene contains a Myb DNA-binding domain and is conserved in the subphylum Pezizomycotina of Ascomycota. The MYT1 protein fused with green fluorescence protein localized in nuclei, which supports its role as a transcriptional regulator. The MYT1 deletion mutant showed similar phenotypes to the wild-type strain in vegetative growth, conidia production and germination, virulence, and mycotoxin production, but had defect in female fertility. A mutant overexpressing MYT1 showed earlier germination, faster mycelia growth, and reduced mycotoxin production compared to the wild-type strain, suggesting that improper MYT1 expression affects the expression of genes involved in the cell cycle and secondary metabolite production. This study is the first to characterize a transcription factor containing a Myb DNA-binding domain that is specific to sexual development in G. zeae.
Collapse
Affiliation(s)
- Yang Lin
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Gyung Ja Choi
- Biological Function Research Team, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Jin-Cheol Kim
- Biological Function Research Team, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| |
Collapse
|
33
|
Son H, Lee J, Park AR, Lee YW. ATP citrate lyase is required for normal sexual and asexual development in Gibberella zeae. Fungal Genet Biol 2011; 48:408-17. [PMID: 21237280 DOI: 10.1016/j.fgb.2011.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/13/2010] [Accepted: 01/03/2011] [Indexed: 01/08/2023]
Abstract
Adenosine triphosphate (ATP) citrate lyase (ACL) is a key enzyme in the production of cytosolic acetyl-CoA, which is crucial for de novo lipid synthesis and histone acetylation in mammalian cells. In this study, we characterized the mechanistic roles of ACL in the homothallic ascomycete fungus Gibberella zeae, which causes Fusarium head blight in major cereal crops. Deletion of ACL in the fungus resulted in a complete loss of self and female fertility as well as a reduction in asexual reproduction, virulence, and trichothecene production. When the wild-type strain was spermatized with the ACL deletion mutants, they produced viable ascospores, however ascospore delimitation was not properly regulated. Although lipid synthesis was not affected by ACL deletion, histone acetylation was dramatically reduced in the ACL deletion mutants during sexual development, suggesting that the defects in sexual reproduction were caused by the reduction in histone acetylation. This study is the first report demonstrating a link between sexual development and ACL-mediated histone acetylation in fungi.
Collapse
Affiliation(s)
- Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | |
Collapse
|
34
|
Yoshida M, Nakajima T. Deoxynivalenol and nivalenol accumulation in wheat infected with Fusarium graminearum during grain development. PHYTOPATHOLOGY 2010; 100:763-773. [PMID: 20626280 DOI: 10.1094/phyto-100-8-0763] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The manner in which deoxynivalenol (DON) and nivalenol (NIV) accumulation progresses in wheat grain infected with Fusarium graminearum and the influence of the time of infection on the accumulation of toxins were investigated. Four cultivars were tested in a greenhouse environment, where the plants were spray inoculated at three different stages with a mixture of DON and NIV chemotypes of F. graminearum. The results indicate that high levels of DON and NIV can be produced beyond 20 days after anthesis (DAA), even by early infection. The results of field experiments performed on seven cultivars, where inoculation was conducted using colonized maize kernel inoculum, were consistent with the greenhouse results. In addition, in the greenhouse experiments, late infection, at least as late as 20 DAA, caused grain contamination with these toxins even without clear disease symptoms on the spike. These results indicate the importance of the late stage in grain development in DON and NIV contamination, suggesting that control strategies that cover the late as well as the early stage of grain development should be established to effectively reduce the risk of these toxins' contaminating wheat.
Collapse
Affiliation(s)
- Megumi Yoshida
- Research Team for Fusarium Head Blight Control, National Agricultural Research Center for Kyushu Okinawa Region, 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | | |
Collapse
|
35
|
Ding S, Mehrabi R, Koten C, Kang Z, Wei Y, Seong K, Kistler HC, Xu JR. Transducin beta-like gene FTL1 is essential for pathogenesis in Fusarium graminearum. EUKARYOTIC CELL 2009; 8:867-76. [PMID: 19377037 PMCID: PMC2698311 DOI: 10.1128/ec.00048-09] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 04/01/2009] [Indexed: 11/20/2022]
Abstract
Fusarium head blight caused by Fusarium graminearum is an important disease of wheat and barley. In a previous study, we identified several mutants with reduced virulence by insertional mutagenesis. A transducin beta-like gene named FTL1 was disrupted in one of these nonpathogenic mutants. FTL1 is homologous to Saccharomyces cerevisiae SIF2, which is a component of the Set3 complex involved in late stages of ascospore formation. The Delta ftl1 mutant was significantly reduced in conidiation and failed to cause typical disease symptoms. It failed to colonize the vascular tissues of rachis or cause necrosis on the rachis of inoculated wheat heads. The Delta ftl1 mutant also was defective in spreading from infected anthers to ovaries and more sensitive than the wild type to plant defensins MsDef1 and osmotin. However, the activation of two mitogen-activated protein kinases, Mgv1 and Gpmk1, production of deoxynivalenol, and expression of genes known to be important for plant infection in F. graminearum were not affected, indicating that the defect of the Delta ftl1 mutant in plant infection is unrelated to known virulence factors in this pathogen and may involve novel mechanisms. The Delta ftl1 deletion mutant was significantly reduced in histone deacetylation, and many members of the yeast Set3 complex are conserved in F. graminearum. FTL1 appears to be a component of this well-conserved protein complex that plays a critical role in the penetration and colonization of wheat tissues.
Collapse
Affiliation(s)
- Shengli Ding
- Department of Botany and Plant Pathology, 915 West State Street, Lilly Hall, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yoshida M, Nakajima T, Arai M, Suzuki F, Tomimura K. Effect of the Timing of Fungicide Application on Fusarium Head Blight and Mycotoxin Accumulation in Closed-Flowering Barley. PLANT DISEASE 2008; 92:1164-1170. [PMID: 30769480 DOI: 10.1094/pdis-92-8-1164] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fungicide application is one measure available to reduce the risk of Fusarium head blight (FHB) and mycotoxin contamination in barley. The stage at or near anthesis, or at full head emergence, is generally thought to be optimal for fungicide application, regardless of cultivar. However, we have previously found that the most critical time for Fusarium graminearum infection and mycotoxin accumulation in barley differs among cultivars. Whereas chasmogamous (open-flowering) cultivars were most susceptible at anthesis, cleistogamous (closed-flowering) cultivars were considerably resistant at anthesis but became susceptible after 'spent' anther extrusion. Therefore, this study evaluated the effect of the timing of fungicide application on FHB and mycotoxin (deoxynivalenol and nivalenol) accumulation in cleistogamous barley. Thiophanate-methyl fungicide was applied at different developmental stages, from before anthesis to 30 days after anthesis (DAA), under artificial inoculation conditions in the field in which inoculum spores were provided throughout the testing period. As expected, the optimal timing for chemical control of FHB and mycotoxin accumulation was the time around the beginning of spent anther extrusion rather than at anthesis. Later application, as late as 30 DAA, was also effective in controlling mycotoxin accumulation, although it was not effective in controlling disease levels.
Collapse
Affiliation(s)
- Megumi Yoshida
- Research Team for Fusarium Head Blight Control, National Agricultural Research Center for Kyushu Okinawa Region (KONARC), 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Takashi Nakajima
- Research Team for Fusarium Head Blight Control, National Agricultural Research Center for Kyushu Okinawa Region (KONARC), 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Michiyoshi Arai
- Research Team for Fusarium Head Blight Control, National Agricultural Research Center for Kyushu Okinawa Region (KONARC), 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Fumihiko Suzuki
- Research Team for Fusarium Head Blight Control, National Agricultural Research Center for Kyushu Okinawa Region (KONARC), 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Kenta Tomimura
- Research Team for Fusarium Head Blight Control, National Agricultural Research Center for Kyushu Okinawa Region (KONARC), 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| |
Collapse
|
37
|
Yoshida M, Kawada N, Nakajima T. Effect of infection timing on fusarium head blight and mycotoxin accumulation in open- and closed-flowering barley. PHYTOPATHOLOGY 2007; 97:1054-1062. [PMID: 18944170 DOI: 10.1094/phyto-97-9-1054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Barley has two flowering types, chasmogamous (open-flowering) and cleistogamous (closed-flowering). We examined the effect of the timing of Fusarium graminearum infection on Fusarium head blight (FHB) and mycotoxin accumulation in barley cultivars with different flowering types using greenhouse experiments. In the first experiment, 13 cultivars were spray inoculated at two different developmental stages, and the severity of FHB was evaluated. The effect of the timing of infection differed among cultivars. Cleistogamous cultivars were resistant at anthesis but susceptible at 10 days after anthesis, whereas chasmogamous cultivars were already susceptible at anthesis. In the second experiment, five cultivars were inoculated at three different developmental stages and the concentrations of deoxynivalenol (DON) and nivalenol (NIV) in mature grain were analyzed. Cleistogamous cultivars accumulated more mycotoxins (DON and NIV) when inoculated 10 or 20 days after anthesis than when inoculated at anthesis, whereas chasmogamous cultivars accumulated more mycotoxins when inoculated at anthesis. Thus, the most critical time for F. graminearum infection and mycotoxin accumulation in barley differs with cultivar, and likely is associated with the flowering type. Late infection, even without accompanied FHB symptoms, was also significant in terms of the risk of mycotoxin contamination.
Collapse
|
38
|
Kim YT, Lee YR, Jin J, Han KH, Kim H, Kim JC, Lee T, Yun SH, Lee YW. Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol Microbiol 2006; 58:1102-13. [PMID: 16262793 DOI: 10.1111/j.1365-2958.2005.04884.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Zearalenone (ZEA) is a polyketide mycotoxin produced by some species of Gibberella/Fusarium and causes hyperestrogenic syndrome in animals. ZEA occurs naturally in cereals infected by Gibberella zeae in temperate regions and threatens animal health. In this study, we report on a set of genes that participate in the biosynthesis of ZEA in G. zeae. Focusing on the non-reducing polyketide synthase (PKS) genes of the G. zeae genome, we demonstrated that PKS13 is required for ZEA production. Subsequent analyses revealed that a continuous, 50 kb segment of DNA carrying PKS13 consisted of three additional open reading frames that were coexpressed as a cluster during the condition for ZEA biosynthesis. These genes, in addition to PKS13, were essential for the ZEA biosynthesis. They include another PKS gene (PKS4) encoding a fungal reducing PKS; zearalenone biosynthesis gene 1 (ZEB1), which shows a high similarity to putative isoamyl alcohol oxidase genes; and ZEB2 whose deduced product carries a conserved, basic-region leucine zipper domain. ZEB1 is responsible for the chemical conversion of beta-zearalenonol (beta-ZOL) to ZEA in the biosynthetic pathway, and ZEB2 controls transcription of the cluster members. Transcription of these genes was strongly influenced by different culture conditions such as nutrient starvations and ambient pH. Furthermore, the same set of genes regulated by ZEB2 was dramatically repressed in the transgenic G. zeae strain with the deletion of PKS13 or PKS4 but not in the ZEB1 deletion strain, suggesting that ZEA or beta-ZOL may be involved in transcriptional activation of the gene cluster required for ZEA biosynthesis in G. zeae. This is the first published report on the molecular characterization of genes required for ZEA biosynthesis.
Collapse
Affiliation(s)
- Yong-Tae Kim
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Llorens A, Hinojo MJ, Mateo R, Medina A, Valle-Algarra FM, González-Jaén MT, Jiménez M. Variability and characterization of mycotoxin-producing Fusarium spp isolates by PCR-RFLP analysis of the IGS-rDNA region. Antonie van Leeuwenhoek 2006; 89:465-78. [PMID: 16779639 DOI: 10.1007/s10482-005-9045-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2005] [Indexed: 10/24/2022]
Abstract
In the present report, a total of 75 Fusarium spp isolates (35 of the Gibberella fujikuroi species complex, 26 of F. oxysporum, 7 of F. graminearum, 5 of F. culmorum, 1 of F. cerealis, and 1 of F. poae) from different hosts were characterized morphologically, physiologically and genetically. Morphological characterization was performed according to macroscopic and microscopic aspects. Physiological characterization was based on their ability to produce fumonisin B1 (FB1), fumonisin B2 (FB2), zearalenone (ZEA) and type B trichothecenes (deoxynivalenol, nivalenol and 3-acetyldeoxynivalenol). FB1, FB2, and ZEA were determined by liquid chromatography and trichothecenes by gas chromatography. Molecular characterization of isolates was carried out using an optimized and simple method for isolation of DNA from filamentous fungi and polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) of the intergenic spacer region (IGS) of the rDNA. The results indicated that G. fujikuroi complex isolates can be divided into low and high fumonisin producers. The haplotypes obtained with HhaI, EcoRI, AluI, PstI and XhoI enzymes provided very characteristic groupings of G. fujikuroi isolates as a function of host type and fumonisin producing capacity. F. graminearum, F. culmorum and F. cerealis isolates were high ZEA and type B trichothecene producers, while F. oxysporum and the G. fujikuroi complex isolates did not show this ability. The haplotypes obtained with CfoI, AluI, HapII, XhoI, EcoRI and PstI enzymes permitted to discern these five Fusarium species and G. fujikuroi complex isolates but the restriction patterns of the IGS region did not show any relationship with the geographic origin of isolates.
Collapse
Affiliation(s)
- A Llorens
- Departamento de Microbiología y Ecología, Universidad de Valencia, Dr. Moliner 50, E-46100, Burjassot, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Llorens A, Hinojo MJ, Mateo R, González-Jaén MT, Valle-Algarra FM, Logrieco A, Jiménez M. Characterization of Fusarium spp. isolates by PCR-RFLP analysis of the intergenic spacer region of the rRNA gene (rDNA). Int J Food Microbiol 2005; 106:297-306. [PMID: 16246443 DOI: 10.1016/j.ijfoodmicro.2005.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 08/16/2005] [Accepted: 09/02/2005] [Indexed: 11/23/2022]
Abstract
In the present study, 44 Fusarium spp. isolates (5 Fusarium culmorum, 7 Fusarium graminearum, 1 Fusarium cerealis, 1 Fusarium poae, 26 Fusarium oxysporum, and 4 Gibberella fujikuroi species complex) were characterized morphologically, physiologically and genetically. All except one (Dutch Collection: CBS 620.72) were isolated from different hosts grown in various Spanish localizations. Morphological characterization was made according to macroscopic and microscopic aspects. Physiological characterization was based on their ability to produce zearalenone (ZEA) and type B trichothecenes (deoxynivalenol, nivalenol and 3-acetyldeoxynivalenol). ZEA was determined by liquid chromatography and trichothecenes by gas chromatography. Confirmation was carried out by liquid chromatography-ion trap-mass spectrometry (ZEA) or gas chromatography-mass spectrometry (trichothecenes). Molecular characterization of isolates was performed using an optimized, simple and low-cost method for isolation of DNA from filamentous fungi and polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) of the intergenic spacer region (IGS) of the rRNA gene (rDNA). The results indicate that F. graminearum, F. culmorum and F. cerealis isolates were high ZEA and type B trichothecene producers, the F. poae isolate produced very low level of nivalenol while F. oxysporum and the G. fujikuroi complex isolates did not show this ability. Restriction patterns of the IGS region did not show any relationship with the host, geographic origin of the isolate and mycotoxin-producing capacity. However, the haplotypes obtained with six restriction enzymes (CfoI, AluI, HapII, XhoI, EcoRI and PstI) permitted to discern the six assayed Fusarium species. Therefore, this is a rapid and suitable methodology that allows closely related strains to group and to estimate the genetic relationships between the groups.
Collapse
Affiliation(s)
- A Llorens
- Departamento Microbiologia y Ecología, Facultad de Biología, Universidad de Valencia, Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Kim HS, Lee T, Dawlatana M, Yun SH, Lee YW. Polymorphism of trichothecene biosynthesis genes in deoxynivalenol- and nivalenol-producing Fusarium graminearum isolates. MYCOLOGICAL RESEARCH 2003; 107:190-7. [PMID: 12747330 DOI: 10.1017/s0953756203007317] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diversity in trichothecene mycotoxin production by 167 isolates of Fusarium graminearum was examined by chemical and molecular methods. Isolates from barley, corn, and wheat grown in Korea produced either deoxynivalenol (DON) or nivalenol (NIV), whereas isolates from corn grown in the United States produced DON only. Southern blotting of MseI-digested genomic DNA's from these isolates was performed using a 0.6-kb fragment of Tri5, a key enzyme for trichothecene production, as a probe. This technique revealed a single-band polymorphism between these isolates, with 1.8- and 2.2-kb bands arising from DON and NIV producers, respectively. The same set of isolates was subjected to previously developed PCR assays using primers derived from Tri7 or Tri13. These assays also revealed a single-band polymorphism between NIV- and DON-producing chemotypes. The polymorphisms at Tri5, Tri7, or Tri13 in all of the US isolates were consistent with their chemotypes as identified by GC-MS. However, for seven Korean isolates, chemical and molecular analyses yielded seemingly inconsistent results. This issue was resolved by Southern blot analysis with the Tri5 probe using two other restriction enzymes and sequence comparison of a 3.8-kb region spanning Tri5. In addition, one of these exceptional isolates was found to carry both DON and NIV chemotype-specific regions, possibly resulting from recombination between the two chemotypes.
Collapse
Affiliation(s)
- Hye-Seon Kim
- School of Agricultural Biotechnology and Research Center for New Bio-materials in Agriculture, Seoul National University, Suwon 441-744, Korea
| | | | | | | | | |
Collapse
|
42
|
Lee T, Han YK, Kim KH, Yun SH, Lee YW. Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol 2002; 68:2148-54. [PMID: 11976083 PMCID: PMC127587 DOI: 10.1128/aem.68.5.2148-2154.2002] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2001] [Accepted: 02/11/2002] [Indexed: 11/20/2022] Open
Abstract
Gibberella zeae, a major cause of cereal scab, can be divided into two chemotypes based on production of the 8-ketotrichothecenes deoxynivalenol (DON) and nivalenol (NIV). We cloned and sequenced a Tri13 homolog from each chemotype. The Tri13 from a NIV chemotype strain (88-1) is located in the trichothecene gene cluster and carries an open reading frame similar to that of Fusarium sporotrichioides, whereas the Tri13 from a DON chemotype strain (H-11) carries several mutations. To confirm the roles of the Tri13 and Tri7 genes in trichothecene production by G. zeae, we genetically altered toxin production in 88-1 and H-11. In transgenic strains, the targeted deletion of Tri13 from the genome of 88-1 caused production of DON rather than NIV. Heterologous expression of the 88-1 Tri13 gene alone or in combination with the 88-1 Tri7 gene conferred on H-11 the ability to synthesize NIV; in the latter case, 4-acetylnivalenol (4-ANIV) also was produced. These results suggest that Tri13 and Tri7 are required for oxygenation and acetylation of the oxygen at C-4 during synthesis of NIV and 4-ANIV in G. zeae. These functional analyses of the Tri13 and Tri7 genes provide the first clear evidence for the genetic basis of the DON and NIV chemotypes in G. zeae.
Collapse
Affiliation(s)
- Theresa Lee
- School of Agricultural Biotechnology and Research Center for New Bio-materials in Agriculture, Seoul National University, Suwon 441-744, Korea
| | | | | | | | | |
Collapse
|
43
|
Nielsen KF, Thrane U. Fast methods for screening of trichothecenes in fungal cultures using gas chromatography-tandem mass spectrometry. J Chromatogr A 2001; 929:75-87. [PMID: 11594405 DOI: 10.1016/s0021-9673(01)01174-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The paper presents a fast method for trichothecene profiling and chemotaxonomic studies in species of Fusarium, Stachybotrys. Trichoderma and Memnoniella. Micro scale extracted crude Fusarium extracts were derivatised using pentafluoropropionic anhydride and analysed by gas chromatography with simultaneous full scan and tandem mass spectrometric detection. It was possible to monitor for up to four compounds simultaneous, making detection of acetyl T-2 toxin, T-2 toxin, HT-2 toxin, T-2 triol. T-2 tetraol, neosolaniol, iso-neosolaniol, scirpentriol, 4,15-diacetoxyscirpenol, 15-acetoxyscirpenol, 4-acetoxyscirpentriol, nivalenol, fusarenon-X, deoxynivalenol, 15-acetyl-deoxynivalenol and 3-acetyldeoxynivalenol possible during a 23-min GC run. A slightly modified method could detect trichothecenes produced by Stachybotrys, Memnoniella and Trichoderma, by hydrolysing crude extracts prior to derivatisation with heptafluorobuturyl imidazole. All types of derivatised extracts could be reanalysed using negative ion chemical ionisation (NICI) GC-MS for molecular mass determination and verification purposes. A retention time index could be used for correction in retention time drifts between sequences and worked both in EI+ and NICI mode.
Collapse
Affiliation(s)
- K F Nielsen
- The Mycology Group, BioCentrum-DTU, Technical University of Denmark, Lyngby.
| | | |
Collapse
|
44
|
Lee T, Oh DW, Kim HS, Lee J, Kim YH, Yun SH, Lee YW. Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl Environ Microbiol 2001; 67:2966-72. [PMID: 11425709 PMCID: PMC92968 DOI: 10.1128/aem.67.7.2966-2972.2001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2001] [Accepted: 04/12/2001] [Indexed: 11/20/2022] Open
Abstract
Gibberella zeae, a major cause of cereal scab, may be divided into two chemotypes based on production of the trichothecenes deoxynivalenol (DON) and nivalenol (NIV). We cloned and sequenced the gene cluster for trichothecene biosynthesis from each chemotype. G. zeae H-11 is a DON producer isolated from corn, and G. zeae 88-1 is a NIV producer from barley. We sequenced a 23-kb gene cluster from H-11 and a 26-kb cluster from 88-1, along with the unlinked Tri101 genes. Each gene cluster contained 10 Tri gene homologues in the same order and transcriptional directions as those of Fusarium sporotrichioides. Between H-11 and 88-1 all of the Tri homologues except Tri7 were conserved, with identities ranging from 88 to 98% and 82 to 99% at the nucleotide and amino acid levels, respectively. The Tri7 sequences were only 80% identical at the nucleotide level. We aligned the Tri7 genes and found that the Tri7 open reading frame of H-11 carried several mutations and an insertion containing 10 copies of an 11-bp tandem repeat. The Tri7 gene from 88-1 carried neither the repeat nor the mutations. We assayed 100 G. zeae isolates of both chemotypes by PCR amplification with a primer pair derived from the Tri7 gene and could differentiate the chemotypes by polyacrylamide gel electrophoresis. The PCR-based method developed in this study should provide a simple and reliable diagnostic tool for differentiating the two chemotypes of G. zeae.
Collapse
Affiliation(s)
- T Lee
- School of Agricultural Biotechnology, Seoul National University, Suwon 441-744, Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Langseth W, Rundberget T. The occurrence of HT-2 toxin and other trichothecenes in Norwegian cereals. Mycopathologia 2001; 147:157-65. [PMID: 11040866 DOI: 10.1023/a:1007153416269] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A total of 449 grain samples, 102 barley, 169 wheat and 178 oat samples were collected from different regions of Norway from 1996-1998 crops, mainly from grain loads and silos. The samples were analysed for type A and B trichothecenes, the largest groups of mycotoxins produced by the Fusarium species, by gas chromatography with mass spectrometric detection (GC-MS). Factors affecting the presence of the different trichothecenes are discussed. Deoxynivalenol (DON) and HT-2 toxin were the trichothecenes most frequently detected, followed by T-2 toxin, nivalenol, and scirpentriol, scirpentriol being detected only in seven samples (> 20 micrograms/kg). Oats were the grain species most heavily contaminated with an incidence (% > 20 micrograms/kg) and mean concentration of positive samples of 70% (115 micrograms/kg) for HT-2 toxin, 30% (60 micrograms/kg) for T-2 toxin, 57% (104 micrograms/kg) for DON, and 10% (56 micrograms/kg) for nivalenol. The corresponding values for barley were 22% (73 micrograms/kg), 5% (85 micrograms/kg), 17% (155 micrograms/kg) and 6% (30 micrograms/kg), and for wheat 1.2% (20 micrograms/kg), 0.6% (20 micrograms/kg), 14% (53 micrograms/kg) and 0% for HT-2, T-2, DON and nivalenol, respectively. Norwegian oats were found to contain HT-2 and T-2 toxin in concentrations that might be at threat to human health for high consumers of oats. The amount of DON was significantly lower than in the crop from previous years.
Collapse
Affiliation(s)
- W Langseth
- National Veterinary Institute, Department of Chemistry, Oslo, Norway.
| | | |
Collapse
|
46
|
Langseth W, Bernhoft A, Rundberget T, Kosiak B, Gareis M. Mycotoxin production and cytotoxicity of Fusarium strains isolated from Norwegian cereals. Mycopathologia 1999; 144:103-13. [PMID: 10481290 DOI: 10.1023/a:1007016820879] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thirty-four isolates of the eight most common Fusarium species isolated from Norwegian cereals; F. avenaceum, F. culmorum, F. equiseti, F. graminearum, F. poae, F. sporotrichioides, F. torulosum and F. tricinctum were studied for their cytotoxicity and ability to produce mycotoxins. The strains were cultivated on rice, and analysed for trichothecenes (all species), zearalenone (all species), fusarochromanone (F. equiseti), wortmannin (F. torulosum), moniliformin and enniatins (F. avenaceum, F. tricinctum and F. torulosum). The cytotoxicity of the extracts were examined with an (in vitro) MTT-cell culture assay. All F. graminearum and five of seven F. culmorum isolates belonged to chemotype IA, producing deoxynivalenol and 3-acetyl-deoxynivalenol, while the two other F. culmorum strains were nivalenol producers (chemotype II). The F. equiseti isolates and one of the F. poae isolates produced both type A and B trichothecenes, and relatively large quantities of fusarochromanone were detected in the F. equiseti cultures. All Fusarium species studied showed significant cytotoxicity, but with a large variation between species, and also within each species. F. sporotrichioides and F. equiseti showed the highest average cytotoxicity.
Collapse
Affiliation(s)
- W Langseth
- National Veterinary Institute, Department of Feed and Food Hygiene-Toxicology, Chemistry, and Microbiology, Oslo, Norway
| | | | | | | | | |
Collapse
|
47
|
NIJS M, EGMOND H, ROMBOUTS F, NOTERMANS S. IDENTIFICATION OF HAZARDOUS FUSARIUM SECONDARY METABOLITES OCCURRING IN FOOD RAW MATERIALS. J Food Saf 1997. [DOI: 10.1111/j.1745-4565.1997.tb00185.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|