1
|
Muacevic A, Adler JR, Litra F. A Rare Case of Pontocerebellar Hypoplasia Type 1B With Literature Review. Cureus 2022; 14:e27098. [PMID: 36004024 PMCID: PMC9392422 DOI: 10.7759/cureus.27098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
A full-term female newborn was transferred to our neonatal intensive care unit (NICU) on day two of life for hypotonia. Physical examination was significant for overriding sutures, displaced small anterior fontanelle, axial hypotonia, extremity hypertonia, and slow deep tendon reflexes. She was also noted to have stridor with crying but had unlabored breathing without oxygen requirements and a normal heart examination. A brain magnetic resonance imaging (MRI) showed a large cisterna magna and cerebellar hypoplasia with the majority of the cerebellar vermis present, suggesting a possible Dandy-Walker variant (cerebellar vermis hypoplasia). Head computed tomography showed areas of close approximation of coronal sutures and no synostosis. During the NICU stay, our patient was evaluated by Pediatric Neurology who recommended a chromosomal microarray which returned normal. The patient also had some difficulty feeding initially, but she was able to feed efficiently and gain weight by the time of discharge. After discharge from NICU, her neurological status steadily declined, resulting in poor motor function and poor suck despite regular physical therapy, occupational therapy, and speech therapy. By three months of age, she developed failure to thrive and was admitted to the hospital for evaluation of the cause. Her neurological examination showed worsening of her axial hypotonia with very little movement in the upper extremities and hypertonia in the lower extremities. She had a weak suck with the inability to form a good seal on the nipple. A new heart murmur was noted and an echocardiogram showed a moderate-to-large atrial septal defect. A modified barium swallow study showed severe dysphagia for which she required gastrostomy tube placement for feeding. At follow-up with Neurology, she was noted to have progressive microcephaly, profound hypotonia, areflexia, and nystagmus. A second MRI showed worsening atrophy and increasing ventriculomegaly. By nine months of age, she developed respiratory failure, required a tracheostomy, and remained ventilator-dependent. Genetics was then consulted and recommended a brain malformation genetic panel. The patient was found to be heterozygous for two pathogenic variants in the EXOSC3 gene: c.155delC and D132A, which is consistent with a diagnosis of autosomal recessive pontocerebellar hypoplasia (PCH) type 1B. The mother was found to be a heterozygous carrier of the c.155delC pathogenic variant, while the father was a heterozygous carrier for the D132A variant, which confirms that the two variants are present on opposite alleles. PCH describes a rare group of 11 neurodegenerative disorders that are typically seen prenatally or shortly after birth. PCH1 is characterized as a combination of PCH and spinal muscular atrophy, with patients presenting with muscle weakness and global developmental delay. An increased understanding of PCH1 will lead to better care and counseling for patients and families.
Collapse
|
2
|
The tumor suppressor FOXO3a mediates the response to EGFR inhibition in glioblastoma cells. Cell Oncol (Dordr) 2019; 42:521-536. [PMID: 30980364 DOI: 10.1007/s13402-019-00443-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Although EGFR activation is a hallmark of glioblastoma (GBM), anti-EGFR therapy has so far not yielded the desired effects. Targeting PI3K/Akt has been proposed as a strategy to increase the cellular sensitivity to EGFR inhibitors. Here we evaluated the contribution of FOXO3a, a key Akt target, in the response of GBM cells to EGFR inhibition. METHODS FOXO3a activation was assessed by immunofluorescence and gene reporter assays, and by evaluating target gene expression using Western blotting and qRT-PCR. Cellular effects were evaluated using cell viability and apoptosis assays, i.e., Annexin V/PI staining and caspase 3/7 activity measurements. Drug synergism was evaluated by performing isobolographic analyses. Gene silencing experiments were performed using stable shRNA transfections. RESULTS We found that EGFR inhibition in GBM cells led to FOXO3a activation and to transcriptional modulation of its key targets, including repression of the oncogene FOXM1. In addition, we found that specific FOXO3a activation recapitulated the molecular effects of EGFR inhibition, and that the FOXO3a activator trifluoperazine, a FDA-approved antipsychotic agent, reduced GBM cell growth. Subsequent isobolographic analyses of combination experiments indicated that trifluoperazine and erlotinib cooperated synergistically and that their concomitant treatment induced a robust activation of FOXO3a, leading to apoptosis in GBM cells. Using gene silencing, we found that FOXO3a is essential for the response of GBM cells to EGFR inhibition. CONCLUSIONS Our data indicate that FOXO3a activation is a crucial event in the response of GBM cells to EGFR inhibition, suggesting that FOXO3a may serve as an actionable therapeutic target that can be modulated using FDA-approved drugs.
Collapse
|
3
|
Srinivas N, Maffuid K, Kashuba ADM. Clinical Pharmacokinetics and Pharmacodynamics of Drugs in the Central Nervous System. Clin Pharmacokinet 2018; 57:1059-1074. [PMID: 29464550 PMCID: PMC6062484 DOI: 10.1007/s40262-018-0632-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite contributing significantly to the burden of global disease, the translation of new treatment strategies for diseases of the central nervous system (CNS) from animals to humans remains challenging, with a high attrition rate in the development of CNS drugs. The failure of clinical trials for CNS therapies can be partially explained by factors related to pharmacokinetics/pharmacodynamics (PK/PD), such as lack of efficacy or improper selection of the initial dosage. A focused assessment is needed for CNS-acting drugs in first-in-human studies to identify the differences in PK/PD from animal models, as well as to choose the appropriate dose. In this review, we summarize the available literature from human studies on the PK and PD in brain tissue, cerebrospinal fluid, and interstitial fluid for drugs used in the treatment of psychosis, Alzheimer's disease and neuro-HIV, and address critical questions in the field. We also explore newer methods to characterize PK/PD relationships that may lead to more efficient dose selection in CNS drug development.
Collapse
Affiliation(s)
- Nithya Srinivas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, 1094 Genetic Medicine Building, CB# 7361, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Kaitlyn Maffuid
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, 1094 Genetic Medicine Building, CB# 7361, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, 1094 Genetic Medicine Building, CB# 7361, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Miller R. Mechanisms of action of antipsychotic drugs of different classes, refractoriness to therapeutic effects of classical neuroleptics, and individual variation in sensitivity to their actions: Part II. Curr Neuropharmacol 2011; 7:315-30. [PMID: 20514211 PMCID: PMC2811865 DOI: 10.2174/157015909790031184] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/15/2009] [Accepted: 07/28/2009] [Indexed: 11/22/2022] Open
Abstract
Rapid-onset psychotic rebound is uncommon on discontinuation of most antipsychotic drugs, as might be expected for antipsychotic drugs with (hypothetically) indirect actions at their final target receptors. Rapid-onset psychosis is more common on withdrawal of clozapine, which might be expected if its action is direct. Drugs other than clozapine (notably thioridazine) may have hitherto unrecognised similarities to clozapine (but without danger of agranulocytosis), and may be useful in treatment of refractory psychosis. Quetiapine fulfils only some criteria for a clozapine-like drug. Clinical response to neuroleptics varies widely at any given plasma level. Haase's "neuroleptic threshold" concept suggests that the dose producing the slightest motor side effects produces most or all of the therapeutic benefit, but analyses presented here suggest that antipsychotic actions are not subject to a sharp "all-or-none" threshold but increase over a small dose range. This concept could provide a method for quantitative determination of individualized optimal doses.
Collapse
Affiliation(s)
- R Miller
- Otago Centre for Theoretical Studies in Psychiatry and Neuroscience (OCTSPAN), Department of Anatomy and Structural Biology, School of Medical Sciences, University of Otago, P.O.Box 913, Dunedin, New Zealand.
| |
Collapse
|
5
|
Thanacoody RHK, Daly AK, Reilly JG, Ferrier IN, Thomas SHL. Factors affecting drug concentrations and QT interval during thioridazine therapy. Clin Pharmacol Ther 2007; 82:555-65. [PMID: 17460606 DOI: 10.1038/sj.clpt.6100195] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this study was to investigate factors affecting steady-state plasma concentrations of thioridazine. A cross-sectional study of patients receiving chronic thioridazine was employed. Common allelic variants of CYP2D6 and CYP2C19, as well as thioridazine and metabolite concentrations and QTc intervals, were determined. In 97 patients, dose-corrected plasma concentrations (C/Ds) of thioridazine and metabolites were correlated with age but not sex or CYP2C19 genotype. Patients with no functional CYP2D6 alleles (n=9) had significantly higher C/D for thioridazine (P=0.017) and the ring sulfoxide metabolite and a significantly higher thioridazine/mesoridazine ratio compared with those with >/=1 functional CYP2D6 allele (n=82). Smokers had significantly lower C/D for thioridazine, mesoridazine, and sulforidazine and significantly lower thioridazine/ring sulfoxide ratios than non-smokers. QTc interval was not significantly affected by CYP2D6 or CYP2C19 genotypes. Plasma concentrations of thioridazine are influenced by age, smoking, and CYP2D6 genotype, but CYP2D6 genotype does not appear to influence on-treatment QTc interval.
Collapse
Affiliation(s)
- R H K Thanacoody
- School of Clinical and Laboratory Sciences, University of Newcastle, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
6
|
Salih ISM, Thanacoody RHK, McKay GA, Thomas SHL. Comparison of the Effects of Thioridazine and Mesoridazine on the QT Interval in Healthy Adults After Single Oral Doses. Clin Pharmacol Ther 2007; 82:548-54. [PMID: 17410120 DOI: 10.1038/sj.clpt.6100194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We compared the effects of single doses of thioridazine and mesoridazine on the heart rate-corrected QT (QTc) interval in healthy adult volunteers. QTc intervals and plasma concentrations of thioridazine, mesoridazine, and metabolites were measured after single oral doses of thioridazine hydrochloride 50 mg, mesoridazine besylate 50 mg, or placebo in a double-blind, crossover study. Mean maximum increases in the QTc interval following thioridazine (37.3+/-4.1 ms, P=0.023) and mesoridazine (46.6+/-7.4 ms, P=0.021) were similar and significantly greater than following placebo (12.9+/-8.1 ms). The area under the effect-time curve over 8 h following drug administration was similar between the two drugs (129.3+/-22.1 vs 148.3+/-43.0 ms h). In conclusion, thioridazine and mesoridazine are associated with similar effects on the QTc interval.
Collapse
Affiliation(s)
- I S M Salih
- School of Clinical and Laboratory Sciences, University of Newcastle, Newcastle-upon-Tyne, Newcastle, UK
| | | | | | | |
Collapse
|
7
|
Rodda KE, Dean B, McIntyre IM, Drummer OH. Brain distribution of selected antipsychotics in schizophrenia. Forensic Sci Int 2006; 157:121-30. [PMID: 15936909 DOI: 10.1016/j.forsciint.2005.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 03/17/2005] [Indexed: 10/25/2022]
Abstract
The brain distribution of phenothiazine antipsychotics in 22 confirmed schizophrenic and 11 control subjects were collected at autopsy. Specimens were homogenized, extracted with n-butyl chloride, and analyzed via liquid chromatography-mass spectrometry, using atmospheric pressure electrospray ionization operating in the positive mode. Drug concentrations normalized for those observed in cerebellum showed three distinct patterns of distribution corresponding to different structural features of each type of phenothiazine. Those drugs with high affinity for dopamine receptors were detected in the highest concentrations in regions with high concentrations of such receptors. However, those associated with relatively lower dopaminergic activity were found in the highest concentration in the occipital cortex, a region with a relatively low concentration of dopamine receptors. The regional brain distribution of thioridazine and its metabolites was concentration dependent. These results have implications for determining the role of these drugs in the sudden and unexpected deaths of schizophrenics.
Collapse
Affiliation(s)
- Kabrena E Rodda
- Victorian Institute of Forensic Medicine, Department of Forensic Medicine, Monash University, 57-83 Kavanagh Street, Southbank, Vic. 3006, Australia
| | | | | | | |
Collapse
|
8
|
Wójcikowski J, Maurel P, Daniel WA. CHARACTERIZATION OF HUMAN CYTOCHROME P450 ENZYMES INVOLVED IN THE METABOLISM OF THE PIPERIDINE-TYPE PHENOTHIAZINE NEUROLEPTIC THIORIDAZINE. Drug Metab Dispos 2005; 34:471-6. [PMID: 16272405 DOI: 10.1124/dmd.105.006445] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to identify human cytochrome P450 enzymes (P450s) involved in mono-2-, di-2-, and 5-sulfoxidation, and N-demethylation of the piperidine-type phenothiazine neuroleptic thioridazine in the human liver. The experiments were performed in vitro using cDNA-expressed human P450s (Supersomes 1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, and 3A4), liver microsomes from different donors, and P450-selective inhibitors. The results indicate that CYP1A2 and CYP3A4 are the main enzymes responsible for 5-sulfoxidation and N-demethylation (34-52%), whereas CYP2D6 is the basic enzyme that catalyzes mono-2- and di-2-sulfoxidation of thioridazine in human liver (49 and 64%, respectively). Besides CYP2D6, CYP3A4 contributes to a noticeable degree to thioridazine mono-2-sulfoxidation (22%). Therefore, the sulforidazine/mesoridazine ratio may be an additional and more specific marker than the mesoridazine/thioridazine ratio for assessing the activity of CYP2D6. In contrast to promazine and perazine, CYP2C19 insignificantly contributes to the N-demethylation of thioridazine. Considering serious side-effects of thioridazine and its 5-sulfoxide (cardiotoxicity), as well as strong dopaminergic D2 and noradrenergic alpha1 receptor-blocking properties of mono-2- and di-2-sulfoxides, the obtained results are of pharmacological and clinical importance, in particular, in a combined therapy. Knowledge of the catalysis of thioridazine metabolism helps to choose optimum conditions (a proper coadministered drug and dosage) to avoid undesirable drug interactions.
Collapse
Affiliation(s)
- Jacek Wójcikowski
- Polish Academy of Sciences, Institute of Pharmacology, Smetna 12, 31-343 Kraków, Poland.
| | | | | |
Collapse
|
9
|
Brown CS, Farmer RG, Soberman JE, Eichner SF. Pharmacokinetic Factors in the Adverse Cardiovascular Effects of Antipsychotic Drugs. Clin Pharmacokinet 2004; 43:33-56. [PMID: 14715050 DOI: 10.2165/00003088-200443010-00003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Antipsychotics may cause serious adverse cardiovascular effects, including prolonged QT interval and sudden death. This review considers antipsychotic-induced cardiovascular events from three perspectives: high-risk drugs, high-risk individuals and high-risk drug interactions. Pharmacokinetic drug interactions involving the cytochrome P450 (CYP) enzymatic pathway and pharmacodynamic interactions leading to direct cardiotoxic effects are discussed. Original reports on antipsychotic-induced drug interactions are reviewed, with consideration of management guidelines. The literature was reviewed from 1 January 1966 to 1 February 2002. The literature search revealed only 12 original articles published on antipsychotic drug interactions leading to cardiovascular adverse events. Only 4 of the 12 reports were prospective studies; the remainder were either retrospective or anecdotal.Although poor study designs preclude a definitive statement, it appears that pharmacokinetic interactions primarily involved the CYP2D6 and CYP3A4 enzymatic pathways. Those involving the CYP2D6 isozyme included interactions with tricyclic antidepressants, selective serotonergic reuptake inhibitors and beta-blockers. Among these drug interactions, tricyclic antidepressants were most likely to reach clinical significance because of their limited therapeutic index. Drug interactions related to the CYP3A4 pathway were generally less severe, and involved high-potency antipsychotics coadministered with inhibitors such as clarithromycin. Strategies are discussed for the management of adverse cardiovascular events related to antipsychotic drug interactions, including the use of an algorithm. Large, randomised, placebo-controlled studies with strict inclusion criteria are needed to determine the role that antipsychotics play in QT prolongation and sudden death.
Collapse
Affiliation(s)
- Candace S Brown
- Departments of Pharmacy and Obstetrics/Gynecology, University of Tennessee Health Sciences Center, Memphis, Tennessee 38002, USA.
| | | | | | | |
Collapse
|
10
|
Abstract
Minor cardiovascular adverse effects from antipsychotic drugs are extremely common. They include effects such as postural hypotension and tachycardia due to anticholinergic or alpha1-adrenoceptor blockade, and may occur in the majority of patients at therapeutic dosages. There are a number of pharmacological effects that are of uncertain clinical significance, such as blockade of calmodulin, sodium and calcium channels and alpha2-adrenoceptors in the central nervous system. The most serious consequences of treatment, arrhythmias and sudden death, are probably uncommon and are most likely to be caused primarily by blockade of cardiac potassium channels such as HERG. Incomplete evidence suggests that arrhythmias and sudden death are a particular problem with certain drugs (thioridazine and droperidol), high risk populations (elderly, pre-existing cardiovascular disease, inherited disorders of cardiac ion channels or of antipsychotic drug metabolism) or people taking interacting drugs (such as drugs that prolong the QT interval, e.g. tricyclic antidepressants, drugs that inhibit antipsychotic drug metabolism, or diuretics). Clozapine may be unique in also causing death from myocarditis and cardiomyopathy. Much further research is required to more clearly identify high risk drugs and the populations that are at risk of sudden death, as well as the mechanisms involved and the extent of the risk.
Collapse
Affiliation(s)
- N A Buckley
- Department of Clinical Pharmacology, Royal Adelaide Hospital, South Australia, Australia.
| | | |
Collapse
|
11
|
Fang J, Gorrod JW. Metabolism, pharmacogenetics, and metabolic drug-drug interactions of antipsychotic drugs. Cell Mol Neurobiol 1999; 19:491-510. [PMID: 10379422 DOI: 10.1023/a:1006938908284] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Antipsychotic drugs are extensively metabolised by cytochrome P450 (CYP) enzymes. 2. Dispositions of a number of antipsychotic drugs have been shown to cosegregate with polymorphism of CYP2D6. 3. Metabolic drug-drug interactions have frequently been observed when antipsychotics are coadministered with other drugs. 4. Many antipsychotic drugs are converted to active metabolites which can contribute to the therapeutic or side effects of the parent drug. 5. Information concerning the individual CYP isoenzymes involved in the metabolism of antipsychotic drugs is important for the safe clinical use of this group of drugs.
Collapse
Affiliation(s)
- J Fang
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
12
|
Abstract
Enantiomers of thioridazine (TRZ) were determined in postmortem tissues obtained from a patient on chronic TRZ therapy by sequential achiral and chiral high pressure liquid chromatography. Tissue concentrations of (+)-TRZ found in liver, brain, bile and blood were: 6.46, 0.40, 0.48 and 0.07 mg/l or mg/kg, respectively. Concentrations of (-)-TRZ in liver, brain, bile and blood were: 12.2, 0.81, 1.07 and 0.20 mg/l or mg/kg, respectively. These data demonstrate the stereoselective disposition of TRZ in human tissues.
Collapse
Affiliation(s)
- S A Jortani
- Department of Pathology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0597
| | | | | |
Collapse
|
13
|
Abstract
Although the sensitivity to light of thioridazine and its metabolites has been described, the problem does not seem to be widely acknowledged. Indeed, a survey of the literature shows that assays of these compounds under light-protected conditions have been performed only in a few of the numerous analytical studies on this drug. In the present study, thioridazine, its metabolites, and 18 other neuroleptics were tested for their sensitivity to light under conditions used for their analysis. The results show that light significantly affects the analysis of thioridazine and its metabolites. It readily causes the racemization of the isomeric pairs of thioridazine 5-sulphoxide and greatly decreases the concentration of thioridazine. This sensitivity to light varied with the medium used (most sensitive in acidic media) and also with the molecule (in order of decreasing sensitivity: thioridazine > mesoridazine > sulforidazine). Degradation in neutral or basic media was slow, with the exception of mesoridazine in a neutral medium. Twelve other phenothiazines tested, as well as chlorprotixene, a thioxanthene drug, were found to be sensitive to light in acidic media, whereas flupenthixol and zuclopenthixol (two thioxanthenes), clozapine, fluperlapine, and haloperidol (a butyrophenone) did not seem to be affected. In addition to being sensitive to light, some compounds may be readily oxidized by peroxide-containing solvents.
Collapse
Affiliation(s)
- C B Eap
- Département Universitaire de Psychiatrie Adulte (DUPA), Prilly-Lausanne, Switzerland
| | | | | |
Collapse
|
14
|
Ellenbroek BA. Treatment of schizophrenia: a clinical and preclinical evaluation of neuroleptic drugs. Pharmacol Ther 1993; 57:1-78. [PMID: 8099741 DOI: 10.1016/0163-7258(93)90036-d] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Forty years after the first clinical report on the effectiveness of chlorpromazine in psychiatric patients, neuroleptic drugs are still the most widely used drugs in the treatment of schizophrenia. Indeed, there are no other drugs which have proven to be as effective in the treatment of this severe psychiatric disorder. Yet, there are still many unresolved problems relating to neuroleptic drugs. The present review gives a comprehensive overview of our knowledge (and our lack of knowledge) with respect to the clinical and preclinical effects of neuroleptic drugs and tries to integrate this knowledge in order to identify the neuronal mechanisms underlying the therapeutic and side effects of neuroleptic drugs.
Collapse
Affiliation(s)
- B A Ellenbroek
- Department of Psycho- and Neuropharmacology, Catholic University of Nijmegen, The Netherlands
| |
Collapse
|
15
|
Tsuneizumi T, Babb SM, Cohen BM. Drug distribution between blood and brain as a determinant of antipsychotic drug effects. Biol Psychiatry 1992; 32:817-24. [PMID: 1360262 DOI: 10.1016/0006-3223(92)90085-e] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Concentrations of the neuroleptics haloperidol, bromperidol, fluphenazine, chlorpromazine and its metabolites nor-1- and nor-2-chlorpromazine, thioridazine and its metabolites mesoridazine, sulforidazine, and northioridazine, and promazine were estimated in serum and brain of rats by high performance liquid chromatography (HPLC) with electrochemical detection following 5 days of chronic administration of drug at typical doses (haloperidol, bromperidol, and fluphenazine 1 mg/kg/day; chlorpromazine, promazine, and thioridazine 25 mg/kg/day). The observed ratio of brain-to-serum concentration of drug varied widely (0.18-62.5) among neuroleptics studied. High potency agents had more favorable brain-to-blood distribution than low potency agents, and a strong correlation (r = 0.734, p < 0.05) was observed between the brain-to-serum ratios of the neuroleptics and standard clinical doses of drug. This finding suggests that drug distribution is a significant determinant of clinical potency. For most neuroleptics, including drugs with high (fluphenazine, haloperidol) and low potency (thioridazine) such as dopamine D2 antagonists, concentration of drug in the brain was similar. If the results are applicable to patients, they suggest that the degree of dopamine D2 blockade achieved during treatment may vary by drug. Chlorpromazine and promazine were notable for producing high concentrations of drug in the brain at typical doses, suggesting that optimal doses might be lower than those in common use. These results may be important in designing and interpreting studies of the effects of neuroleptic drugs in animals and patients.
Collapse
Affiliation(s)
- T Tsuneizumi
- Department of Psychiatry, St. Marianna University, Kanagawa, Japan
| | | | | |
Collapse
|
16
|
Singh SK, Patrick KS. Synthesis of 7-hydroxythioridazine and 7-hydroxysulforidazine. J Heterocycl Chem 1992. [DOI: 10.1002/jhet.5570290455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|