1
|
Mougkogiannis P, Adamatzky A. Low frequency electrical waves in ensembles of proteinoid microspheres. Sci Rep 2023; 13:1992. [PMID: 36737467 PMCID: PMC9898556 DOI: 10.1038/s41598-023-29067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Proteinoids (thermal proteins) are produced by heating amino acids to their melting point and initiation of polymerisation to produce polymeric chains. Amino acid-like molecules, or proteinoids, can condense at high temperatures to create aggregation structures called proteinoid microspheres, which have been reported to exhibit strong electrical oscillations. When the amino acids L-glutamic acid (L-Glu) and L-aspartic acid (L-Asp) were combined with electric fields of varying frequencies and intensities, electrical activity resulted. We recorded electrical activity of the proteinoid microspheres' ensembles via a pair of differential electrodes. This is analogous to extracellular recording in physiology or EEG in neuroscience but at micro-level. We discovered that the ensembles produce spikes of electrical potential, an average duration of each spike is 26 min and average amplitude is 1 mV. The spikes are typically grouped in trains of two spikes. The electrical activity of the ensembles can be tuned by external stimulation because ensembles of proteinoid microspheres can generate and propagate electrical activity when exposed to electric fields.
Collapse
|
2
|
Adamatzky A. Towards proteinoid computers. Hypothesis paper. Biosystems 2021; 208:104480. [PMID: 34265376 DOI: 10.1016/j.biosystems.2021.104480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Proteinoids - thermal proteins - are produced by heating amino acids to their melting point and initiation of polymerisation to produce polymeric chains. Proteinoids swell in aqueous solution into hollow microspheres. The proteinoid microspheres produce endogenous burst of electrical potential spikes and change patterns of their electrical activity in response to illumination. The microspheres can interconnect by pores and tubes and form networks with a programmable growth. We speculate on how ensembles of the proteinoid microspheres can be developed into unconventional computing devices.
Collapse
|
3
|
Kumar VA. Evolution of specific 3'-5'-linkages in RNA in pre-biotic soup: a new hypothesis. Org Biomol Chem 2018; 14:10123-10133. [PMID: 27714238 DOI: 10.1039/c6ob01796g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This article reviews the different possibilities towards progression of the formation of DNA/RNA in the chemical world, before life, in enzyme-free conditions. The advent of deoxyribo- and ribopentose-sugars, nucleosides, nucleotides and oligonucleotides in the prebiotic soup is briefly discussed. Further, the formation of early single stranded oligomers, base-pairing possibilities and information transfer based on the stability parameters of the derived duplexes is reviewed. Each theory has its own merits and demerits which we have elaborated upon. Lastly, using clues from this literature, a possible explanation for the specific 3'-5'-linkages in RNA is proposed.
Collapse
Affiliation(s)
- Vaijayanti A Kumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
4
|
Genomic and proteomic characterization of the broad-host-range Salmonella phage PVP-SE1: creation of a new phage genus. J Virol 2011; 85:11265-73. [PMID: 21865376 DOI: 10.1128/jvi.01769-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
(Bacterio)phage PVP-SE1, isolated from a German wastewater plant, presents a high potential value as a biocontrol agent and as a diagnostic tool, even compared to the well-studied typing phage Felix 01, due to its broad lytic spectrum against different Salmonella strains. Sequence analysis of its genome (145,964 bp) shows it to be terminally redundant and circularly permuted. Its G+C content, 45.6 mol%, is lower than that of its hosts (50 to 54 mol%). We found a total of 244 open reading frames (ORFs), representing 91.6% of the coding capacity of the genome. Approximately 46% of encoded proteins are unique to this phage, and 22.1% of the proteins could be functionally assigned. This myovirus encodes a large number of tRNAs (n=24), reflecting its lytic capacity and evolution through different hosts. Tandem mass spectrometric analysis using electron spray ionization revealed 25 structural proteins as part of the mature phage particle. The genome sequence was found to share homology with 140 proteins of the Escherichia coli bacteriophage rV5. Both phages are unrelated to any other known virus, which suggests that an "rV5-like virus" genus should be created within the Myoviridae to contain these two phages.
Collapse
|
5
|
Follmann H, Brownson C. Darwin’s warm little pond revisited: from molecules to the origin of life. Naturwissenschaften 2009; 96:1265-92. [PMID: 19760276 DOI: 10.1007/s00114-009-0602-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/05/2009] [Accepted: 08/10/2009] [Indexed: 11/26/2022]
Affiliation(s)
- Hartmut Follmann
- Institute of Biology, University of Kassel, 34109, Kassel, Germany.
| | | |
Collapse
|
6
|
Abbouni B, Oehlmann W, Stolle P, Pierik AJ, Auling G. Electron paramagnetic resonance (EPR) spectroscopy of the stable-free radical in the native metallo-cofactor of the manganese-ribonucleotide reductase (Mn-RNR) ofCorynebacterium glutamicum. Free Radic Res 2009; 43:943-50. [DOI: 10.1080/10715760903140568] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
The ribonucleotide reductases — A unique group of metalloenzymes essential for cell proliferation. STRUCTURE AND BONDING 2007. [DOI: 10.1007/bfb0111318] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Abstract
The historical existence of the RNA world, in which early life used RNA for both genetic information and catalytic ability, is widely accepted. However, there has been little discussion of whether protein synthesis arose before DNA or what preceded the RNA world (i.e. the pre-RNA world). We outline arguments of what route life may have taken out of the RNA world: whether DNA or protein followed. Metabolic arguments favor the possibility that RNA genomes preceded the use of DNA as the informational macromolecule. However, the opposite can also be argued based on the enhanced stability, reactivity, and solubility of 2-deoxyribose as compared to ribose. The possibility that DNA may have come before RNA is discussed, although it is a less parsimonious explanation than DNA following RNA.
Collapse
Affiliation(s)
- Jason P Dworkin
- Laboratory for Extraterrestrial Physics, Code 691, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
| | | | | |
Collapse
|
9
|
Hogenkamp H, Follmann H, Thauer R. Ribonucleotide reductase in cell extracts of Methanobacterium thermoautotrophicum. FEBS Lett 2001. [DOI: 10.1016/0014-5793(87)81215-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Griepenburg U, Blasczyk K, Kappl R, Hüttermann J, Auling G. A divalent metal site in the small subunit of the manganese-dependent ribonucleotide reductase of Corynebacterium ammoniagenes. Biochemistry 1998; 37:7992-6. [PMID: 9609691 DOI: 10.1021/bi972801t] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Based on its metallo-cofactor, the manganese-dependent ribonucleotide reductase (Mn-RRase) responsible for delivery of DNA precursors in the Mn-requiring Gram-positive bacterium Corynebacterium (formerly Brevibacterium) ammoniagenes ATCC 6872 is no longer considered as a simple analogue of the aerobic Fe-RRase of Escherichia coli but as the prototype of the class IV enzymes (1). Deliberate dissociation of the Mn-RRase holoenzyme and an improved sample preparation of the dimeric CA2 protein allowed further characterization of the inherent metallo-cofactor by Q-band electron paramagnetic resonance (EPR) spectroscopy. At 40 K, a distinct hyperfine sextet (I = 5/2,55Mn) pattern with a weak zero-field splitting was detected in the CA2 protein prepared from manganese-sufficient cells displaying high RRase activity as expected. This Q-band Mn(II) signal was absent in the apo-CA2 protein obtained from manganese-depleted cells devoid of this enzymatic activity. The presence of a mixed valence manganese cluster in the C. ammoniagenes RRase is excluded since no complex multiline EPR signals were detected in the CA2 protein even at very low (8 K) temperature. The observed Mn(II) spectrum indicates a protein-bound manganese which was modified in the presence of 5.7 mM p-methoxyphenol, but is insensitive toward 10 mM EDTA. Thus, the manganese appeared to be either strictly bound or buried within a hydrophobic pocket of the CA2 protein, inaccessible for EDTA.
Collapse
Affiliation(s)
- U Griepenburg
- Institut für Mikrobiologie der Universität, Hannover, Germany
| | | | | | | | | |
Collapse
|
11
|
Griepenburg U, Lassmann G, Auling G. Detection of a stable free radical in the B2 subunit of the manganese ribonucleotide reductase (Mn-RRase) of Corynebacterium ammoniagenes. Free Radic Res 1996; 24:473-81. [PMID: 8804990 DOI: 10.3109/10715769609088046] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ribonucleotide reductases catalyze the irreversible reductive formation of 2'-deoxyribonucleotides required for DNA replication and cell proliferation, and a radical mechanism was assumed to be involved in this reaction. In order to search for a radical in the aerobic manganese ribonucleotide reductase (Mn-RRase) by electron paramagnetic resonance (EPR) the native metal-containing 100 kDa B2 subunit was deliberately prepared from the wild type strain Corynebacterium ammoniagenes ATCC 6872. Enrichment by 2'5'-ADP Sepharose 4B affinity chromatography, fast protein liquid chromatography (FPLC) with SuperoseTM12 and concentration by vacuum evaporation allowed for the first time the detection of a stable free radical by EPR spectroscopy at 77 K. The EPR spectrum exhibits an easily saturable doublet of 1.8 mT splitting and a line width of 1.3 mT at g = 2.0040. The EPR signal intensity showed a clear correlation with the enzymatic activity upon long-time storage at ambient temperature (294 K) and inactivation by the specific RRase inhibitor hydroxyurea (HU). This leads to the assumption of a protein-linked radical, with functional significance, in the metal-containing 100 kDa B2 subunit of the MnRRase of Corynebacterium ammoniagenes.
Collapse
Affiliation(s)
- U Griepenburg
- Fachbereich Biologie-Chemie der Universität, Kassel, Germany
| | | | | |
Collapse
|
12
|
Beljanski M. De Novo Synthesis of DNA-Like Molecules by Polynucleotide Phosphorylase In Vitro. J Mol Evol 1996; 42:493-9. [PMID: 8662001 DOI: 10.1007/bf02352279] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the presence of Mg2+ ions, polynucleotide phosphorylase (PNPase, EC 2.7.7.8) is known to synthesize RNA-like polymers using ribonucleoside-5'-diphosphate (NDP) substrates but to be unable to utilize deoxyribonucleoside substrates. Our experiments show that when MgCl2 is replaced by FeCl3, PNPase becomes able to synthesize deoxyheteropolymers using deoxyribonucleoside-5'-diphosphates (dNDPs). The deoxyheteropolymer formed from the four dNDPs is degraded by pancreatic DNase, but not by RNase, and is readily used as a template by DNA-dependent DNA polymerase. Synthesis of this DNA-like polymer is accomplished de novo without the help of any primer or preexisting template. What is more, dA/dG and dC/dT ratios of polymers synthesized by different bacterial PNPases closely match ratios found in DNA of the bacterial species the enzyme came from.
Collapse
Affiliation(s)
- M Beljanski
- Cerbiol Application, Centre de Recherche Biologique, Domaine de la Source, Saint-Prim 38370, France
| |
Collapse
|
13
|
Presence of oxygen-consuming ribonucleotide reductase in corrinoid-deficientPropionibacterium freudenreichii. Arch Microbiol 1995. [DOI: 10.1007/bf02529986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Harder J. Ribonucleotide reductases and their occurrence in microorganisms: a link to the RNA/DNA transition. FEMS Microbiol Rev 1993; 12:273-92. [PMID: 8268003 DOI: 10.1111/j.1574-6976.1993.tb00023.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The evolution of a deoxyribonucleotide synthesizing ribonucleotide reductase might have initiated the transition from the ancient RNA world into the prevailing DNA world. At least five classes of ribonucleotide reductases have evolved. The ancient enzyme has not been identified. A reconstruction of the first ribonucleotide reductase requires knowledge of contemporary enzymes and of microbial evolution. Experimental work on the former focuses on few organisms, whereas the latter is now well understood on the basis of ribosomal RNA sequences. Deoxyribonucleotide formation has not been investigated in many evolutionary important microorganisms. This review covers our knowledge on deoxyribonucleotide synthesis in microorganisms and the distribution of ribonucleotide reductases in nature. Ecological constraints on enzyme evolution and knowledge deficiencies emerge from complete coverage of the phylogenetic groups.
Collapse
Affiliation(s)
- J Harder
- Max-Planck-Institut for Marine Microbiology, Bremen, FRG
| |
Collapse
|
15
|
RNA prior to DNA: The origin of archean cells. ORIGINS LIFE EVOL B 1986. [DOI: 10.1007/bf02422168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Follmann H. Have deoxyribonucleotides and DNA been among the earliest biomolecules? ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1986; 6:33-38. [PMID: 11537241 DOI: 10.1016/0273-1177(86)90272-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Unlike ribose chemistry, the chemistry of 2-deoxyribose precludes its formation or at least its incorporation into nucleotides under accepted "primordial soup" conditions; therefore RNA and DNA could not develop in parallel during the evolution of protocells. However, deoxyribonucleotides might have been formed abiotically by direct reduction of ribonucleotides in a primitive version of the biochemical pathway. This sequence of events, in which DNA lagged behind RNA in the assembly of genetic information for an unknown--probably short--period of time is suggested by the primitive traits (i.e., nucleotide binding, thiol redox chemistry, and metal ion catalysis) of present-day enzyme systems of deoxyribonucleotide biosynthesis. The reaction should be amenable to experimental study.
Collapse
Affiliation(s)
- H Follmann
- Fachbereich Chemie (Biochemie) der Philipps-Universitat, Marburg, FRG
| |
Collapse
|
17
|
Hofmann R, Feller W, Pries M, Follmann H. Deoxyribonucleotide biosynthesis in green algae. Purification and characterization of ribonucleoside-diphosphate reductase from Scenedesmus obliquus. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/0167-4838(85)90178-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
|
19
|
|
20
|
Auling G. The effect of manganese limitation on DNA precursor biosynthesis during nucleotide fermentation with Brevibacterium ammoniagenes and micrococcus luteus. ACTA ACUST UNITED AC 1983. [DOI: 10.1007/bf00501514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
|
22
|
Przybylski AT, Stratten WP, Syren RM, Fox SW. Membrane, action, and oscillatory potentials in simulated protocells. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1982; 69:561-3. [PMID: 7162535 DOI: 10.1007/bf00396351] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrical membrane potentials, oscillations, and action potentials are observed in proteinoid microspheres impaled with (3 M KC1) microelectrodes. Although effects are of greater magnitude when the vesicles contain glycerol and natural or synthetic lecithin, the results in the purely synthetic thermal protein structures are substantial, attaining 20 mV amplitude in some cases. The results add the property of electrical potential to the other known properties of proteinoid microspheres, in their role as models for protocells.
Collapse
|