1
|
Sukkasam N, Kaewbai-Ngam J, Leksingto J, In-Na P, Nootong K, Incharoensakdi A, Hallam SJ, Monshupanee T. Disrupted H 2 synthesis combined with methyl viologen treatment inhibits photosynthetic electron flow to synergistically enhance glycogen accumulation in the cyanobacterium Synechocystis sp. PCC 6803. PLANT MOLECULAR BIOLOGY 2024; 114:87. [PMID: 39023834 DOI: 10.1007/s11103-024-01484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Under nitrogen deprivation (-N), cyanobacterium Synechocystis sp. PCC 6803 exhibits growth arrest, reduced protein content, and remarkably increased glycogen accumulation. However, producing glycogen under this condition requires a two-step process with cell transfer from normal to -N medium. Metabolic engineering and chemical treatment for rapid glycogen accumulation can bypass the need for two-step cultivation. For example, recent studies indicate that individually disrupting hydrogen (H2) or poly(3-hydroxybutyrate) (PHB) synthesis, or treatment with methyl viologen (MV), effectively increases glycogen accumulation in Synechocystis. Here we explore the effects of disrupted H2 or poly(3-hydroxybutyrate) synthesis, together with MV treatment to on enhanced glycogen accumulation in Synechocystis grown in normal medium. Wild-type cells without MV treatment exhibited low glycogen content of less than 6% w/w dry weight (DW). Compared with wild type, disrupting PHB synthesis combined with MV treatment did not increase glycogen content. Disrupted H₂ production without MV treatment yielded up to 11% w/w DW glycogen content. Interestingly, when combined, disrupted H2 production with MV treatment synergistically enhanced glycogen accumulation to 51% and 59% w/w DW within 3 and 7 days, respectively. Metabolomic analysis suggests that MV treatment mediated the conversion of proteins into glycogen. Metabolomic and transcriptional-expression analysis suggests that disrupted H2 synthesis under MV treatment positively influenced glycogen synthesis. Disrupted H₂ synthesis under MV treatment significantly increased NADPH levels. This increased NADPH content potentially contributed to the observed enhancements in antioxidant activity against MV-induced oxidants, O2 evolution, and metabolite substrates levels for glycogen synthesis in normal medium, ultimately leading to enhanced glycogen accumulation in Synechocystis. KEY MESSAGE: Combining disrupted hydrogen-gas synthesis and the treatment by photosynthesis electron-transport inhibitor significantly enhance glycogen production in cyanobacteria.
Collapse
Affiliation(s)
- Nannaphat Sukkasam
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Janine Kaewbai-Ngam
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jidapa Leksingto
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kasidit Nootong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Utharn S, Jantaro S. The adc1 knockout with proC overexpression in Synechocystis sp. PCC 6803 induces a diversion of acetyl-CoA to produce more polyhydroxybutyrate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:6. [PMID: 38218963 PMCID: PMC10788017 DOI: 10.1186/s13068-024-02458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Lack of nutrients, in particular nitrogen and phosphorus, has been known in the field to sense glutamate production via 2-oxoglutarate and subsequently accelerate carbon storage, including glycogen and polyhydroxybutyrate (PHB), in cyanobacteria, but a few studies have focused on arginine catabolism. In this study, we first time demonstrated that gene manipulation on proC and adc1, related to proline and polyamine syntheses in arginine catabolism, had a significant impact on enhanced PHB production during late growth phase and nutrient-modified conditions. We constructed Synechocystis sp. PCC 6803 with an overexpressing proC gene, encoding Δ1pyrroline-5-carboxylate reductase in proline production, and adc1 disruption resulted in lower polyamine synthesis. RESULTS Three engineered Synechocystis sp. PCC 6803 strains, including a ProC-overexpressing strain (OXP), adc1 mutant, and an OXP strain lacking the adc1 gene (OXP/Δadc1), certainly increased the PHB accumulation under nitrogen and phosphorus deficiency. The possible advantages of single proC overexpression include improved PHB and glycogen storage in late phase of growth and long-term stress situations. However, on day 7 of treatment, the synergistic impact created by OXP/Δadc1 increased PHB synthesis by approximately 48.9% of dry cell weight, resulting in a shorter response to nutrient stress than the OXP strain. Notably, changes in proline and glutamate contents in engineered strains, in particular OXP and OXP/Δadc1, not only partially balanced the intracellular C/N metabolism but also helped cells acclimate under nitrogen (N) and phosphorus (P) stress with higher chlorophyll a content in comparison with wild-type control. CONCLUSIONS In Synechocystis sp. PCC 6803, overexpression of proC resulted in a striking signal to PHB and glycogen accumulation after prolonged nutrient deprivation. When combined with the adc1 disruption, there was a notable increase in PHB production, particularly in situations where there was a strong C supply and a lack of N and P.
Collapse
Affiliation(s)
- Suthira Utharn
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Tharasirivat V, Jantaro S. Increased Biomass and Polyhydroxybutyrate Production by Synechocystis sp. PCC 6803 Overexpressing RuBisCO Genes. Int J Mol Sci 2023; 24:ijms24076415. [PMID: 37047389 PMCID: PMC10094337 DOI: 10.3390/ijms24076415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
The overexpression of the RuBisCO (rbc) gene has recently become an achievable strategy for increasing cyanobacterial biomass and overcoming the biocompound production restriction. We successfully constructed two rbc-overexpressing Synechocystis sp. PCC 6803 strains (OX), including a strain overexpressing a large subunit of RuBisCO (OXrbcL) and another strain overexpressing all large, chaperone, and small subunits of RuBisCO (OXrbcLXS), resulting in higher and faster growth than wild type under sodium bicarbonate supplementation. This increased biomass of OX strains significantly contributed to the higher polyhydroxybutyrate (PHB) production induced by nutrient-deprived conditions, in particular nitrogen (N) and phosphorus (P). As a result of higher PHB contents in OX strains occurring at days 7 and 9 of nutrient deprivation, this enhancement was apparently made possible by cells preferentially maintaining their internal lipids while accumulating less glycogen. The OXrbcLXS strain, with the highest level of PHB at about 39 %w/dry cell weight (DCW) during 7 days of BG11-NP treatment, contained a lower glycogen level (31.9 %w/DCW) than wild type control (40 %w/DCW). In contrast, the wild type control strain exposed to N- and NP-stresses tended to retain lipid levels and store more glycogen than PHB. In this model, we, for the first time, implemented a RuBisCO-overexpressing cyanobacterial factory for overproducing PHB, destined for biofuel and biomaterial biotechnology.
Collapse
|
4
|
Sukkasam N, Leksingto J, Incharoensakdi A, Monshupanee T. Chemical Triggering Cyanobacterial Glycogen Accumulation: Methyl Viologen Treatment Increases Synechocystis sp. PCC 6803 Glycogen Storage by Enhancing Levels of Gene Transcript and Substrates in Glycogen Synthesis. PLANT & CELL PHYSIOLOGY 2023; 63:2027-2041. [PMID: 36197756 DOI: 10.1093/pcp/pcac136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Two-stage cultivation is effective for glycogen production by cyanobacteria. Cells were first grown under adequate nitrate supply (BG11) to increase biomass and subsequently transferred to nitrogen deprivation (-N) to stimulate glycogen accumulation. However, the two-stage method is time-consuming and requires extensive energy. Thus, one-stage cultivation that enables both cell growth and glycogen accumulation is advantageous. Such one-stage method could be achieved using a chemical triggering glycogen storage. However, there is a limited study on such chemicals. Here, nine compounds previously reported to affect cyanobacterial cellular functions were examined in Synechocystis sp. PCC 6803. 2-Phenylethanol, phenoxyethanol, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and methyl viologen can stimulate glycogen accumulation. The oxidative stress agent, methyl viologen significantly increased glycogen levels up to 57% and 69% [w/w dry weight (DW)] under BG11 and -N cultivation, respectively. One-stage cultivation where methyl viologen was directly added to the pre-grown culture enhanced glycogen storage to 53% (w/w DW), compared to the 10% (w/w DW) glycogen level of the control cells without methyl viologen. Methyl viologen treatment reduced the contents of total proteins (including phycobiliproteins) but caused increased transcript levels of glycogen synthetic genes and elevated levels of metabolite substrates for glycogen synthesis. Metabolomic results suggested that upon methyl viologen treatment, proteins degraded to amino acids, some of which could be used as a carbon source for glycogen synthesis. Results of oxygen evolution and metabolomic analysis suggested that photosynthesis and carbon fixation were not completely inhibited upon methyl viologen treatment, and these two processes may partially generate upstream metabolites required for glycogen synthesis.
Collapse
Affiliation(s)
- Nannaphat Sukkasam
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jidapa Leksingto
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Chinchusak N, Incharoensakdi A, Phunpruch S. Dark fermentative hydrogen production and transcriptional analysis of genes involved in the unicellular halotolerant cyanobacterium Aphanothece halophytica under nitrogen and potassium deprivation. Front Bioeng Biotechnol 2023; 10:1028151. [PMID: 36686224 PMCID: PMC9852855 DOI: 10.3389/fbioe.2022.1028151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
The unicellular halotolerant cyanobacterium Aphanothece halophytica is known as a potential hydrogen (H2) producer. This study aimed to investigate the enhancement of H2 production under nutrient deprivation. The results showed that nitrogen and potassium deprivation induced dark fermentative H2 production by A. halophytica, while no differences in H2 production were found under sulfur and phosphorus deprivation. In addition, deprivation of nitrogen and potassium resulted in the highest H2 production in A. halophytica due to the stimulation of hydrogenase activity. The effect of adaptation time under nitrogen and potassium deprivation on H2 production was investigated. The results showed that the highest H2 accumulation of 1,261.96 ± 96.99 µmol H2 g dry wt-1 and maximum hydrogenase activity of 179.39 ± 8.18 µmol H2 g dry wt-1 min-1 were obtained from A. halophytica cells adapted in the nitrogen- and potassium-deprived BG11 medium supplemented with Turk Island salt solution (BG110-K) for 48 h. An increase in hydrogenase activity was attributed to the decreased O2 concentration in the system, due to a reduction of photosynthetic O2 evolution rate and a promotion of dark respiration rate. Moreover, nitrogen and potassium deprivation stimulated glycogen accumulation and decreased specific activity of pyruvate kinase. Transcriptional analysis of genes involved in H2 metabolism using RNA-seq confirmed the above results. Several genes involved in glycogen biosynthesis (glgA, glgB, and glgP) were upregulated under both nitrogen and potassium deprivation, but genes regulating enzymes in the glycolytic pathway were downregulated, especially pyk encoding pyruvate kinase. Interestingly, genes involved in the oxidative pentose phosphate pathway (OPP) were upregulated. Thus, OPP became the favored pathway for glycogen catabolism and the generation of reduced nicotinamide adenine dinucleotide phosphate (NADPH), which resulted in an increase in H2 production under dark anaerobic condition in both nitrogen- and potassium-deprived cells.
Collapse
Affiliation(s)
- Nattanon Chinchusak
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand,Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Saranya Phunpruch
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand,Bioenergy Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand,*Correspondence: Saranya Phunpruch,
| |
Collapse
|
6
|
Wang SY, Li X, Wang SG, Xia PF. Base editing for reprogramming cyanobacterium Synechococcus elongatus. Metab Eng 2023; 75:91-99. [PMID: 36403709 DOI: 10.1016/j.ymben.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Cyanobacteria can directly convert carbon dioxide (CO2) at the atmospheric level to biofuels, value-added chemicals and food products, making them ideal candidates to alleviate global climate change. Despite decades-long pioneering successes, the development of genome-editing tools, especially the CRISPR-Cas-based approaches, seems to lag behind other microbial chassis, slowing down the innovations of cyanobacteria. Here, we adapted and tailored base editing for cyanobacteria based on the CRISPR-Cas system and deamination. We achieved precise and efficient genome editing at a single-nucleotide resolution and demonstrated multiplex base editing in the model cyanobacterium Synechococcus elongatus. By using the base-editing tool, we successfully manipulated the glycogen metabolic pathway via the introduction of premature STOP codons in the relevant genes, building engineered strains with elevated potentials to produce chemicals and food from CO2. We present here the first report of base editing in the phylum of cyanobacteria, and a paradigm for applying CRISPR-Cas systems in bacteria. We believe that our work will accelerate the metabolic engineering and synthetic biology of cyanobacteria and drive more innovations to alleviate global climate change.
Collapse
Affiliation(s)
- Shu-Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xin Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, 266237, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
7
|
Pichaiyotinkul P, Ruankaew N, Incharoensakdi A, Monshupanee T. Enhanced polyglucan contents in divergent cyanobacteria under nutrient-deprived photoautotrophy: transcriptional and metabolic changes in response to increased glycogen accumulation in nitrogen-deprived Synechocystis sp. PCC 6803. World J Microbiol Biotechnol 2022; 39:27. [PMID: 36437374 DOI: 10.1007/s11274-022-03476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Cyanobacteria accumulate polyglucan as main carbohydrate storage. Here, the cellular polyglucan content was determined in 27 cyanobacterial strains from 25 genera. The polyglucan contents were significantly enhanced in 20 and 23 strains under nitrogen (-N) and phosphate (-P) deprivation, respectively. High polyglucan accumulation was not associated with particular evolutionary groups but was strain specific. The highest polyglucan accumulations of 46.2% and 52.5% (w/w dry weight; DW) were obtained under -N in Synechocystis sp. PCC 6803 (hereafter Synechocystis) and Chroococcus limneticus, respectively. In Synechocystis, 80-97% (w/w) of the polyglucan was glycogen. Transcriptome and metabolome analyses during glycogen accumulation under -N were determined in Synechocystis. The genes responsible for the supply of the substrates for glycogen synthesis: glycerate-1,3-phosphate and fructose-1,6-phosphate, were significantly up-regulated. The genes encoding the enzymes converting succinate to malate in TCA cycle, were significantly down-regulated. The genes encoding the regulator proteins which inhibits metabolism at lower part of glycolysis pathway, were also significantly up-regulated. The transcript levels of PII protein and the level of 2-oxoglutarate, which form a complex that inhibits lower part of glycolysis pathway, were significantly increased. Thus, the increased Synechocystis glycogen accumulation under -N was likely to be mediated by the increased supply of glycogen synthesis substrates and metabolic inhibitions at lower part of glycolysis pathway and TCA cycle.
Collapse
Affiliation(s)
| | - Nathanich Ruankaew
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 10330, Bangkok, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 10330, Bangkok, Thailand.,Academy of Science, Royal Society of Thailand, 10300, Bangkok, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 10330, Bangkok, Thailand.
| |
Collapse
|
8
|
López-Pacheco IY, Rodas-Zuluaga LI, Cuellar-Bermudez SP, Hidalgo-Vázquez E, Molina-Vazquez A, Araújo RG, Martínez-Ruiz M, Varjani S, Barceló D, Iqbal HMN, Parra-Saldívar R. Revalorization of Microalgae Biomass for Synergistic Interaction and Sustainable Applications: Bioplastic Generation. Mar Drugs 2022; 20:md20100601. [PMID: 36286425 PMCID: PMC9605595 DOI: 10.3390/md20100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Microalgae and cyanobacteria are photosynthetic microorganisms’ sources of renewable biomass that can be used for bioplastic production. These microorganisms have high growth rates, and contrary to other feedstocks, such as land crops, they do not require arable land. In addition, they can be used as feedstock for bioplastic production while not competing with food sources (e.g., corn, wheat, and soy protein). In this study, we review the macromolecules from microalgae and cyanobacteria that can serve for the production of bioplastics, including starch and glycogen, polyhydroxyalkanoates (PHAs), cellulose, polylactic acid (PLA), and triacylglycerols (TAGs). In addition, we focus on the cultivation of microalgae and cyanobacteria for wastewater treatment. This approach would allow reducing nutrient supply for biomass production while treating wastewater. Thus, the combination of wastewater treatment and the production of biomass that can serve as feedstock for bioplastic production is discussed. The comprehensive information provided in this communication would expand the scope of interdisciplinary and translational research.
Collapse
Affiliation(s)
- Itzel Y. López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | | | | | | | - Rafael G. Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
- Correspondence: (D.B.); (H.M.N.I.); (R.P.-S.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (D.B.); (H.M.N.I.); (R.P.-S.)
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (D.B.); (H.M.N.I.); (R.P.-S.)
| |
Collapse
|
9
|
Sukkasam N, Incharoensakdi A, Monshupanee T. Chemicals Affecting Cyanobacterial Poly(3-hydroxybutyrate) Accumulation: 2-Phenylethanol Treatment Combined with Nitrogen Deprivation Synergistically Enhanced Poly(3-hydroxybutyrate) Storage in Synechocystis sp. PCC6803 and Anabaena sp. TISTR8076. PLANT & CELL PHYSIOLOGY 2022; 63:1253-1272. [PMID: 35818829 DOI: 10.1093/pcp/pcac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Various photoautotrophic cyanobacteria increase the accumulation of bioplastic poly(3-hydroxybutyrate) (PHB) under nitrogen deprivation (-N) for energy storage. Several metabolic engineering enhanced cyanobacterial PHB accumulation, but these strategies are not applicable in non-gene-transformable strains. Alternatively, stimulating PHB levels by chemical exposure is desirable because it might be applied to various cyanobacterial strains. However, the study of such chemicals is still limited. Here, 19 compounds previously reported to affect bacterial cellular processes were evaluated for their effect on PHB accumulation in Synechocystis sp. PCC6803, where 3-(3,4-dichlorophenyl)-1,1-dimethylurea, methyl viologen, arsenite, phenoxyethanol and 2-phenylethanol were found to increase PHB accumulation. When cultivated with optimal nitrate supply, Synechocystis contained less than 0.5% [w/w dry weight (DW)] PHB, while cultivation under -N conditions increased the PHB content to 7% (w/w DW). Interestingly, the -N cultivation combined with 2-phenylethanol exposure reduced the Synechocystis protein content by 27% (w/w DW) but significantly increased PHB levels up to 33% (w/w DW), the highest ever reported photoautotrophic cyanobacterial PHB accumulation in a wild-type strain. Results from transcriptomic and metabolomic analysis suggested that under 2-phenylethanol treatment, Synechocystis proteins were degraded to amino acids, which might be subsequently utilized as the source of carbon and energy for PHB biosynthesis. 2-Phenylethanol treatment also increased the levels of metabolites required for Synechocystis PHB synthesis (acetyl-CoA, acetoacetyl-CoA, 3-hydroxybutyryl-CoA and NADPH). Additionally, under -N, the exposure to phenoxyethanol and 2-phenylethanol increased the PHB levels of Anabaena sp. from 0.4% to 4.1% and 6.6% (w/w DW), respectively. The chemicals identified in this study might be applicable for enhancing PHB accumulation in other cyanobacteria.
Collapse
Affiliation(s)
- Nannaphat Sukkasam
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Riaz S, Jiang Y, Xiao M, You D, Klepacz-Smółka A, Rasul F, Daroch M. Generation of miniploid cells and improved natural transformation procedure for a model cyanobacterium Synechococcus elongatus PCC 7942. Front Microbiol 2022; 13:959043. [PMID: 35958137 PMCID: PMC9360974 DOI: 10.3389/fmicb.2022.959043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The biotechnologically important and naturally transformable cyanobacterium, Synechococcus elongatus PCC 7942, possesses multiple genome copies irrespective of its growth rate or condition. Hence, segregating mutations across all genome copies typically takes several weeks. In this study, Synechococcus 7942 cultivation on a solid growth medium was optimised using different concentrations of agar, the addition of antioxidants, and overexpression of the catalase gene to facilitate the rapid acquisition of colonies and fully segregated lines. Synechococcus 7942 was grown at different temperatures and nutritional conditions. The miniploid cells were identified using flow cytometry and fluorimetry. The natural transformation was carried out using miniploid cells and validated with PCR and high performance liquid chromatography (HPLC). We identified that 0.35% agar concentration and 200 IU of catalase could improve the growth of Synechococcus 7942 on a solid growth medium. Furthermore, overexpression of a catalase gene enhanced the growth rate and supported diluted culture to grow on a solid medium. Our results reveal that high temperature and phosphate-depleted cells contain the lowest genome copies (2.4 ± 0.3 and 1.9 ± 0.2) and showed the potential to rapidly produce fully segregated mutants. In addition, higher antibiotic concentrations improve the selection of homozygous transformants while maintaining similar genome copies at a constant temperature. Based on our observation, we have an improved cultivation and natural transformation protocol for Synechococcus 7942 by optimising solid media culturing, generating low-ploidy cells that ultimately reduced the time required for the complete segregation of engineered lines.
Collapse
Affiliation(s)
- Sadaf Riaz
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, United States
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Meng Xiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Dawei You
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Anna Klepacz-Smółka
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, University of Technology, Łódź, Poland
| | - Faiz Rasul
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
11
|
Sukkasam N, Incharoensakdi A, Monshupanee T. Disruption of Hydrogen Gas Synthesis Enhances the Cellular Levels of NAD(P)H, Glycogen, Poly(3-hydroxybutyrate) and Photosynthetic Pigments Under Specific Nutrient Condition(s) in Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2022; 63:135-147. [PMID: 34698867 DOI: 10.1093/pcp/pcab156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
In photoautotrophic Synechocystis sp. PCC 6803, NADPH is generated from photosynthesis and utilized in various metabolism, including the biosynthesis of glyceraldehyde 3-phosphate (the upstream substrate for carbon metabolism), poly(3-hydroxybutyrate) (PHB), photosynthetic pigments, and hydrogen gas (H2). Redirecting NADPH flow from one biosynthesis pathway to another has yet to be studied. Synechocystis's H2 synthesis, one of the pathways consuming NAD(P)H, was disrupted by the inactivation of hoxY and hoxH genes encoding the two catalytic subunits of hydrogenase. Such inactivation with a complete disruption of H2 synthesis led to 1.4-, 1.9-, and 2.1-fold increased cellular NAD(P)H levels when cells were cultured in normal medium (BG11), the medium without nitrate (-N), and the medium without phosphate (-P), respectively. After 49-52 d of cultivation in BG11 (when the nitrogen source in the media was depleted), the cells with disrupted H2 synthesis had 1.3-fold increased glycogen level compared to wild type of 83-85% (w/w dry weight), the highest level reported for cyanobacterial glycogen. The increased glycogen content observed by transmission electron microscopy was correlated with the increased levels of glucose 6-phosphate and glucose 1-phosphate, the two substrates in glycogen synthesis. Disrupted H2 synthesis also enhanced PHB accumulation up to 1.4-fold under -P and 1.6-fold under -N and increased levels of photosynthetic pigments (chlorophyll a, phycocyanin, and allophycocyanin) by 1.3- to 1.5-fold under BG11. Thus, disrupted H2 synthesis increased levels of NAD(P)H, which may be utilized for the biosynthesis of glycogen, PHB, and pigments. This strategy might be applicable for enhancing other biosynthetic pathways that utilize NAD(P)H.
Collapse
Affiliation(s)
- Nannaphat Sukkasam
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Ferreira EA, Pacheco CC, Rodrigues JS, Pinto F, Lamosa P, Fuente D, Urchueguía J, Tamagnini P. Heterologous Production of Glycine Betaine Using Synechocystis sp. PCC 6803-Based Chassis Lacking Native Compatible Solutes. Front Bioeng Biotechnol 2022; 9:821075. [PMID: 35071221 PMCID: PMC8777070 DOI: 10.3389/fbioe.2021.821075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022] Open
Abstract
Among compatible solutes, glycine betaine has various applications in the fields of nutrition, pharmaceuticals, and cosmetics. Currently, this compound can be extracted from sugar beet plants or obtained by chemical synthesis, resulting in low yields or high carbon footprint, respectively. Hence, in this work we aimed at exploring the production of glycine betaine using the unicellular cyanobacterium Synechocystis sp. PCC 6803 as a photoautotrophic chassis. Synechocystis mutants lacking the native compatible solutes sucrose or/and glucosylglycerol-∆sps, ∆ggpS, and ∆sps∆ggpS-were generated and characterized. Under salt stress conditions, the growth was impaired and accumulation of glycogen decreased by ∼50% whereas the production of compatible solutes and extracellular polymeric substances (capsular and released ones) increased with salinity. These mutants were used as chassis for the implementation of a synthetic device based on the metabolic pathway described for the halophilic cyanobacterium Aphanothece halophytica for the production of the compatible solute glycine betaine. Transcription of ORFs comprising the device was shown to be stable and insulated from Synechocystis' native regulatory network. Production of glycine betaine was achieved in all chassis tested, and was shown to increase with salinity. The introduction of the glycine betaine synthetic device into the ∆ggpS background improved its growth and enabled survival under 5% NaCl, which was not observed in the absence of the device. The maximum glycine betaine production [64.29 µmol/gDW (1.89 µmol/mg protein)] was reached in the ∆ggpS chassis grown under 3% NaCl. Taking into consideration this production under seawater-like salinity, and the identification of main key players involved in the carbon fluxes, this work paves the way for a feasible production of this, or other compatible solutes, using optimized Synechocystis chassis in a pilot-scale.
Collapse
Affiliation(s)
- Eunice A. Ferreira
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Catarina C. Pacheco
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - João S. Rodrigues
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Filipe Pinto
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Pedro Lamosa
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Oeiras, Portugal
| | - David Fuente
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas, Universitat Politècnica de València, València, Spain
| | - Javier Urchueguía
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas, Universitat Politècnica de València, València, Spain
| | - Paula Tamagnini
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Santos M, Pereira SB, Flores C, Príncipe C, Couto N, Karunakaran E, Cravo SM, Oliveira P, Tamagnini P. Absence of KpsM (Slr0977) Impairs the Secretion of Extracellular Polymeric Substances (EPS) and Impacts Carbon Fluxes in Synechocystis sp. PCC 6803. mSphere 2021; 6:e00003-21. [PMID: 33504656 PMCID: PMC7885315 DOI: 10.1128/msphere.00003-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/02/2022] Open
Abstract
Many cyanobacteria produce extracellular polymeric substances (EPS), composed mainly of heteropolysaccharides, that play a variety of physiological roles, being crucial for cell protection, motility, and biofilm formation. However, due to their complexity, the EPS biosynthetic pathways as well as their assembly and export mechanisms are still far from being fully understood. Here, we show that the absence of a putative EPS-related protein, KpsM (Slr0977), has a pleiotropic effect on Synechocystis sp. strain PCC 6803 physiology, with a strong impact on the export of EPS and carbon fluxes. The kpsM mutant exhibits a significant reduction of released polysaccharides and a smaller decrease of capsular polysaccharides, but it accumulates more polyhydroxybutyrate (PHB) than the wild type. In addition, this strain shows a light/cell density-dependent clumping phenotype and exhibits an altered protein secretion capacity. Furthermore, the most important structural component of pili, the protein PilA, was found to have a modified glycosylation pattern in the mutant compared to the wild type. Proteomic and transcriptomic analyses revealed significant changes in the mechanisms of energy production and conversion, namely, photosynthesis, oxidative phosphorylation, and carbon metabolism, in response to the inactivation of slr0977 Overall, this work shows for the first time that cells with impaired EPS secretion undergo transcriptomic and proteomic adjustments, highlighting the importance of EPS as a major carbon sink in cyanobacteria. The accumulation of PHB in cells of the mutant, without affecting significantly its fitness/growth rate, points to its possible use as a chassis for the production of compounds of interest.IMPORTANCE Most cyanobacteria produce extracellular polymeric substances (EPS) that fulfill different biological roles depending on the strain/environmental conditions. The interest in the cyanobacterial EPS synthesis/export pathways has been increasing, not only to optimize EPS production but also to efficiently redirect carbon flux toward the production of other compounds, allowing the implementation of industrial systems based on cyanobacterial cell factories. Here, we show that a Synechocystis kpsM (slr0977) mutant secretes less EPS than the wild type, accumulating more carbon intracellularly, as polyhydroxybutyrate. Further characterization showed a light/cell density-dependent clumping phenotype, altered protein secretion, and modified glycosylation of PilA. The proteome and transcriptome of the mutant revealed significant changes, namely, in photosynthesis and carbon metabolism. Altogether, this work provides a comprehensive overview of the impact of kpsM disruption on Synechocystis physiology, highlighting the importance of EPS as a carbon sink and showing how cells adapt when their secretion is impaired, and the redirection of the carbon fluxes.
Collapse
Affiliation(s)
- Marina Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Sara B Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Carlos Flores
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Catarina Príncipe
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Narciso Couto
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Sara M Cravo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
- Laboratório de Química Orgânica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paulo Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Tamagnini
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Malek Shahkouhi A, Motamedian E. Reconstruction of a regulated two-cell metabolic model to study biohydrogen production in a diazotrophic cyanobacterium Anabaena variabilis ATCC 29413. PLoS One 2020; 15:e0227977. [PMID: 31978122 PMCID: PMC6980584 DOI: 10.1371/journal.pone.0227977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
Anabaena variabilis is a diazotrophic filamentous cyanobacterium that differentiates to heterocysts and produces hydrogen as a byproduct. Study on metabolic interactions of the two differentiated cells provides a better understanding of its metabolism especially for improving hydrogen production. To this end, a genome-scale metabolic model for Anabaena variabilis ATCC 29413, iAM957, was reconstructed and evaluated in this research. Then, the model and transcriptomic data of the vegetative and heterocyst cells were applied to construct a regulated two-cell metabolic model. The regulated model improved prediction for biomass in high radiation levels. The regulated model predicts that heterocysts provide an oxygen-free environment and then, this model was used to find strategies for improving hydrogen production in heterocysts. The predictions indicate that the removal of uptake hydrogenase improves hydrogen production which is consistent with previous empirical research. Furthermore, the regulated model proposed activation of some reactions to provide redox cofactors which are required for improving hydrogen production up to 60% by bidirectional hydrogenase.
Collapse
Affiliation(s)
- Ali Malek Shahkouhi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Simple, fast and accurate method for the determination of glycogen in the model unicellular cyanobacterium Synechocystis sp. PCC 6803. J Microbiol Methods 2019; 164:105686. [PMID: 31400361 DOI: 10.1016/j.mimet.2019.105686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
Glycogen is a highly soluble branched polymer composed of glucose monomers linked by glycosidic bonds that represents, together with starch, one of the main energy storage compounds in living organisms. While starch is present in plant cells, glycogen is present in bacteria, protozoa, fungi and animal cells. Due to its essential function, it has been the subject of intense research for almost two centuries. Different procedures for the isolation and quantification of glycogen, according to the origin of the sample and/or the purpose of the study, have been reported in the literature. The objective of this study is to optimize the methodology for the determination of glycogen in cyanobacteria, as the interest in cyanobacterial glycogen has increased in recent years due to the biotechnological application of these microorganisms. In the present work, the methodology reported for the quantification of glycogen in cyanobacteria has been reviewed and an extensive empirical analysis has been performed showing how this methodology can be optimized significantly to reduce time and improve reliability and reproducibility. Based on these results, a simple and fast protocol for quantification of glycogen in the model unicellular cyanobacterium Synechocystis sp. PCC 6803 is presented, which could also be successfully adapted to other cyanobacteria.
Collapse
|
16
|
Morsy FM, Elbadry M, El-Sayed WS, El-Hady DA. Dark and photofermentation H2 production from hydrolyzed biomass of the potent extracellular polysaccharides producing cyanobacterium Nostoc commune and intracellular polysaccharide (glycogen) enriched Anabaena variabilis NIES-2095. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2019; 44:16199-16211. [DOI: 10.1016/j.ijhydene.2019.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Phélippé M, Gonçalves O, Thouand G, Cogne G, Laroche C. Characterization of the polysaccharides chemical diversity of the cyanobacteria Arthrospira platensis. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101426] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Velmurugan R, Incharoensakdi A. Disruption of Polyhydroxybutyrate Synthesis Redirects Carbon Flow towards Glycogen Synthesis in Synechocystis sp. PCC 6803 Overexpressing glgC/glgA. PLANT & CELL PHYSIOLOGY 2018; 59:2020-2029. [PMID: 29931091 DOI: 10.1093/pcp/pcy121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 05/24/2023]
Abstract
The photoautotrophic Synechocystis sp. PCC 6803 (hereafter Synechocystis) is known for its α-polyglucan (glycogen) synthesis to serve as a carbon storage compound. In this study, the glgC- and glgA-overexpressing Synechocystis strain with the disruption of polyhydroxybutyrate (PHB) synthesis (▴GCAX-ΔBK) showed an increased glycogen production. This engineered strain had a high glycogen content of 38.3% (g g-1 dry cell weight) as compared with 27.4% in the phaA knockout strain (ΔBK) and 34.8% in the glgC/glgA-overexpressing strain (▴GCAX) after 20 d growth. Under nitrogen-deprived growth conditions for 3 d, the ▴GCAX-ΔBK strain showed a further increase in glycogen content from 27.0% to 36.0%. Furthermore, the engineered strains grown under ionic, osmotic or oxidative stress conditions had an increase of glycogen accumulation, whereas no increase was observed in the wild type. The maximum glycogen content was 54.0% in the ▴GCAX-ΔBK strain treated with 3 mM H2O2. The overall results indicated that in the absence of PHB synthesis, Synechocystis cells redirected the carbon flow towards the synthesis of glycogen as an alternative physiological responsive compound especially under stress conditions.
Collapse
Affiliation(s)
- Rajendran Velmurugan
- Department of Biochemistry, Cyanobacterial Biotechnology Laboratory, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Cyanobacterial Biotechnology Laboratory, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Ishigaki M, Nakanishi A, Hasunuma T, Kondo A, Morishima T, Okuno T, Ozaki Y. High-Speed Scanning for the Quantitative Evaluation of Glycogen Concentration in Bioethanol Feedstock Synechocystis sp. PCC6803 Using a Near-Infrared Hyperspectral Imaging System with a New Near-Infrared Spectral Camera. APPLIED SPECTROSCOPY 2017; 71:463-471. [PMID: 27852874 DOI: 10.1177/0003702816667514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the present study, the high-speed quantitative evaluation of glycogen concentration accumulated in bioethanol feedstock Synechocystis sp. PCC6803 was performed using a near-infrared (NIR) imaging system with a hyperspectral NIR spectral camera named Compovision. The NIR imaging system has a feature for high-speed and wide area monitoring and the two-dimensional scanning speed is almost 100 times faster than the general NIR imaging systems for the same pixel size. For the quantitative analysis of glycogen concentration, partial least squares regression (PLSR) and moving window PLSR (MWPLSR) were performed with the information of glycogen concentration measured by high performance liquid chromatography (HPLC) and the calibration curves for the concentration within the Synechocystis sp. PCC6803 cell were constructed. The results had high accuracy for the quantitative estimation of glycogen concentration as the best squared correlation coefficient R2 was bigger than 0.99 and a root mean square error (RMSE) was less than 2.9%. The present results proved not only the potential for the applicability of NIR spectroscopy to the high-speed quantitative evaluation of glycogen concentration in the bioethanol feedstock but also the expansivity of the NIR imaging instrument to in-line or on-line product evaluation on a factory production line of bioethanol in the future.
Collapse
Affiliation(s)
- Mika Ishigaki
- 1 School of Science and Technology, Kwansei Gakuin University, Hyogo, Japan
| | - Akihito Nakanishi
- 2 Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
| | - Tomohisa Hasunuma
- 2 Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- 3 Graduate School of Engineering, Kobe University, Kobe, Japan
| | | | | | - Yukihiro Ozaki
- 1 School of Science and Technology, Kwansei Gakuin University, Hyogo, Japan
| |
Collapse
|
20
|
Barbeyron T, Thomas F, Barbe V, Teeling H, Schenowitz C, Dossat C, Goesmann A, Leblanc C, Oliver Glöckner F, Czjzek M, Amann R, Michel G. Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algae-associated bacterium Zobellia galactanivorans Dsij T. Environ Microbiol 2016; 18:4610-4627. [PMID: 27768819 DOI: 10.1111/1462-2920.13584] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 11/30/2022]
Abstract
The marine flavobacterium Zobellia galactanivorans DsijT was isolated from a red alga and by now constitutes a model for studying algal polysaccharide bioconversions. We present an in-depth analysis of its complete genome and link it to physiological traits. Z. galactanivorans exhibited the highest gene numbers for glycoside hydrolases, polysaccharide lyases and carbohydrate esterases and the second highest sulfatase gene number in a comparison to 125 other marine heterotrophic bacteria (MHB) genomes. Its genome contains 50 polysaccharide utilization loci, 22 of which contain sulfatase genes. Catabolic profiling confirmed a pronounced capacity for using algal polysaccharides and degradation of most polysaccharides could be linked to dedicated genes. Physiological and biochemical tests revealed that Z. galactanivorans stores and recycles glycogen, despite loss of several classic glycogen-related genes. Similar gene losses were observed in most Flavobacteriia, suggesting presence of an atypical glycogen metabolism in this class. Z. galactanivorans features numerous adaptive traits for algae-associated life, such as consumption of seaweed exudates, iodine metabolism and methylotrophy, indicating that this bacterium is well equipped to form profitable, stable interactions with macroalgae. Finally, using statistical and clustering analyses of the MHB genomes we show that their carbohydrate catabolism correlates with both taxonomy and habitat.
Collapse
Affiliation(s)
- Tristan Barbeyron
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, CS 90074, France
| | - François Thomas
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, CS 90074, France
| | - Valérie Barbe
- Commissariat à l'énergie atomique (CEA), institut de génomique (IG), Génoscope, 2, rue Gaston Crémieux, BP5706, 91057, Évry, France
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen, Germany
| | - Chantal Schenowitz
- Commissariat à l'énergie atomique (CEA), institut de génomique (IG), Génoscope, 2, rue Gaston Crémieux, BP5706, 91057, Évry, France
| | - Carole Dossat
- Commissariat à l'énergie atomique (CEA), institut de génomique (IG), Génoscope, 2, rue Gaston Crémieux, BP5706, 91057, Évry, France
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, Gießen, Germany
| | - Catherine Leblanc
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, CS 90074, France
| | - Frank Oliver Glöckner
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen, Germany.,Jacobs University Bremen gGmbH, Campusring 1, Bremen, Germany
| | - Mirjam Czjzek
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, CS 90074, France
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen, Germany
| | - Gurvan Michel
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, CS 90074, France
| |
Collapse
|
21
|
Velmurugan R, Incharoensakdi A. Potential of metal oxides in fractionation of Synechocystis sp. PCC 6803 biomass for biofuel production. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Namakoshi K, Nakajima T, Yoshikawa K, Toya Y, Shimizu H. Combinatorial deletions of glgC and phaCE enhance ethanol production in Synechocystis sp. PCC 6803. J Biotechnol 2016; 239:13-19. [PMID: 27693092 DOI: 10.1016/j.jbiotec.2016.09.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 11/28/2022]
Abstract
Synechocystis sp. PCC 6803 is an attractive host for bio-ethanol production. In the present study, a nitrogen starvation approach was applied on an ethanol producing strain for inhibiting the growth, since ethanol production competes with the cell growth. The effect of gene deletions in the glycogen and polyhydroxybutyrate (PHB) synthesis pathways was investigated. Measurements of intracellular glycogen and PHB revealed that the glycogen was accumulated under the nitrogen starvation condition and the gene deletion of glycogen synthesis pathway caused the accumulation of PHB. The ethanol producing strain harboring deletions for both the glycogen and the PHB synthesis pathways (ΔglgCΔphaCE/EtOH) produced ethanol at the specific rate of 240mgg (dry cell weight)-1 day-1 under the nitrogen starvation condition. In a high cell density culture (OD730=50) using this ΔglgCΔphaCE/EtOH strain, the ethanol production rates were 1.08 and 2.01gL-1 day-1 under light conditions of 40 and 80μmolm-2s-1, respectively.
Collapse
Affiliation(s)
- Katsunori Namakoshi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tubasa Nakajima
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Katsunori Yoshikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
23
|
Antal T, Kurkela J, Parikainen M, Kårlund A, Hakkila K, Tyystjärvi E, Tyystjärvi T. Roles of Group 2 Sigma Factors in Acclimation of the Cyanobacterium Synechocystis sp. PCC 6803 to Nitrogen Deficiency. PLANT & CELL PHYSIOLOGY 2016; 57:1309-1318. [PMID: 27095737 DOI: 10.1093/pcp/pcw079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Acclimation of cyanobacteria to environmental conditions is mainly controlled at the transcriptional level, and σ factors of the RNA polymerase have a central role in this process. The model cyanobacterium Synechocystis sp. PCC 6803 has four non-essential group 2 σ factors (SigB, SigC, SigD and SigE) that regulate global metabolic responses to various adverse environmental conditions. Here we show that although none of the group 2 σ factors is essential for the major metabolic realignments induced by a short period of nitrogen starvation, the quadruple mutant without any group 2 σ factors and triple mutants missing both SigB and SigD grow slowly in BG-11 medium containing only 5% of the nitrate present in standard BG-11. These ΔsigBCDE, ΔsigBCD and ΔsigBDE strains lost PSII activity rapidly in low nitrogen and accumulated less glycogen than the control strain. An abnormally high glycogen content was detected in ΔsigBCE (SigD is active), while the carotenoid content became high in ΔsigCDE (SigB is active), indicating that SigB and SigD regulate the partitioning of carbon skeletons in low nitrogen. Long-term survival and recovery of the cells after nitrogen deficiency was strongly dependent on group 2 σ factors. The quadruple mutant and the ΔsigBDE strain (only SigC is active) recovered more slowly from nitrogen deficiency than the control strain, and ΔsigBCDE in particular lost viability during nitrogen starvation. Nitrogen deficiency-induced changes in the pigment content of the control strain recovered essentially in 1 d in nitrogen-replete medium, but little recovery occurred in ΔsigBCDE and ΔsigBDE.
Collapse
Affiliation(s)
- Taras Antal
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland Biological Faculty, Moscow State University, Vorobyevi Gory 119992, Moscow, Russia
| | - Juha Kurkela
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | | | - Anna Kårlund
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Kaisa Hakkila
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Taina Tyystjärvi
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
24
|
Kwak JY, Kim MG, Kim YW, Ban HS, Won MS, Park JT, Park KH. Properties of a glycogen like polysaccharide produced by a mutant of Escherichia coli lacking glycogen synthase and maltodextrin phosphorylase. Carbohydr Polym 2016; 136:649-55. [DOI: 10.1016/j.carbpol.2015.09.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 11/16/2022]
|
25
|
Yoshikawa K, Aikawa S, Kojima Y, Toya Y, Furusawa C, Kondo A, Shimizu H. Construction of a Genome-Scale Metabolic Model of Arthrospira platensis NIES-39 and Metabolic Design for Cyanobacterial Bioproduction. PLoS One 2015; 10:e0144430. [PMID: 26640947 PMCID: PMC4671677 DOI: 10.1371/journal.pone.0144430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/18/2015] [Indexed: 11/18/2022] Open
Abstract
Arthrospira (Spirulina) platensis is a promising feedstock and host strain for bioproduction because of its high accumulation of glycogen and superior characteristics for industrial production. Metabolic simulation using a genome-scale metabolic model and flux balance analysis is a powerful method that can be used to design metabolic engineering strategies for the improvement of target molecule production. In this study, we constructed a genome-scale metabolic model of A. platensis NIES-39 including 746 metabolic reactions and 673 metabolites, and developed novel strategies to improve the production of valuable metabolites, such as glycogen and ethanol. The simulation results obtained using the metabolic model showed high consistency with experimental results for growth rates under several trophic conditions and growth capabilities on various organic substrates. The metabolic model was further applied to design a metabolic network to improve the autotrophic production of glycogen and ethanol. Decreased flux of reactions related to the TCA cycle and phosphoenolpyruvate reaction were found to improve glycogen production. Furthermore, in silico knockout simulation indicated that deletion of genes related to the respiratory chain, such as NAD(P)H dehydrogenase and cytochrome-c oxidase, could enhance ethanol production by using ammonium as a nitrogen source.
Collapse
Affiliation(s)
- Katsunori Yoshikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka 565–0871, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3–5 Sanbancho, Chiyoda-ku, Tokyo 102–0075, Japan
| | - Shimpei Aikawa
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3–5 Sanbancho, Chiyoda-ku, Tokyo 102–0075, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1–1 Rokkodai, Nada-ku, Kobe 657–8501, Japan
| | - Yuta Kojima
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka 565–0871, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3–5 Sanbancho, Chiyoda-ku, Tokyo 102–0075, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Chikara Furusawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka 565–0871, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3–5 Sanbancho, Chiyoda-ku, Tokyo 102–0075, Japan
- Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565–0874, Japan
| | - Akihiko Kondo
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3–5 Sanbancho, Chiyoda-ku, Tokyo 102–0075, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1–1 Rokkodai, Nada-ku, Kobe 657–8501, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka 565–0871, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3–5 Sanbancho, Chiyoda-ku, Tokyo 102–0075, Japan
- * E-mail:
| |
Collapse
|
26
|
Dynamics of Photosynthesis in a Glycogen-Deficient glgC Mutant of Synechococcus sp. Strain PCC 7002. Appl Environ Microbiol 2015; 81:6210-22. [PMID: 26150450 DOI: 10.1128/aem.01751-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/25/2015] [Indexed: 11/20/2022] Open
Abstract
Cyanobacterial glycogen-deficient mutants display impaired degradation of light-harvesting phycobilisomes under nitrogen-limiting growth conditions and secrete a suite of organic acids as a putative reductant-spilling mechanism. This genetic background, therefore, represents an important platform to better understand the complex relationships between light harvesting, photosynthetic electron transport, carbon fixation, and carbon/nitrogen metabolisms. In this study, we conducted a comprehensive analysis of the dynamics of photosynthesis as a function of reductant sink manipulation in a glycogen-deficient glgC mutant of Synechococcus sp. strain PCC 7002. The glgC mutant showed increased susceptibility to photoinhibition during the initial phase of nitrogen deprivation. However, after extended periods of nitrogen deprivation, glgC mutant cells maintained higher levels of photosynthetic activity than the wild type, supporting continuous organic acid secretion in the absence of biomass accumulation. In contrast to the wild type, the glgC mutant maintained efficient energy transfer from phycobilisomes to photosystem II (PSII) reaction centers, had an elevated PSII/PSI ratio as a result of reduced PSII degradation, and retained a nitrogen-replete-type ultrastructure, including an extensive thylakoid membrane network, after prolonged nitrogen deprivation. Together, these results suggest that multiple global signals for nitrogen deprivation are not activated in the glgC mutant, allowing the maintenance of active photosynthetic complexes under conditions where photosynthesis would normally be abolished.
Collapse
|
27
|
The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth. Proc Natl Acad Sci U S A 2015; 112:E1916-25. [PMID: 25825710 DOI: 10.1073/pnas.1504576112] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synechococcus elongatus PCC 7942 is a genetically tractable model cyanobacterium that has been engineered to produce industrially relevant biomolecules and is the best-studied model for a prokaryotic circadian clock. However, the organism is commonly grown in continuous light in the laboratory, and data on metabolic processes under diurnal conditions are lacking. Moreover, the influence of the circadian clock on diurnal metabolism has been investigated only briefly. Here, we demonstrate that the circadian oscillator influences rhythms of metabolism during diurnal growth, even though light-dark cycles can drive metabolic rhythms independently. Moreover, the phenotype associated with loss of the core oscillator protein, KaiC, is distinct from that caused by absence of the circadian output transcriptional regulator, RpaA (regulator of phycobilisome-associated A). Although RpaA activity is important for carbon degradation at night, KaiC is dispensable for those processes. Untargeted metabolomics analysis and glycogen kinetics suggest that functional KaiC is important for metabolite partitioning in the morning. Additionally, output from the oscillator functions to inhibit RpaA activity in the morning, and kaiC-null strains expressing a mutant KaiC phosphomimetic, KaiC-pST, in which the oscillator is locked in the most active output state, phenocopies a ΔrpaA strain. Inhibition of RpaA by the oscillator in the morning suppresses metabolic processes that normally are active at night, and kaiC-null strains show indications of oxidative pentose phosphate pathway activation as well as increased abundance of primary metabolites. Inhibitory clock output may serve to allow secondary metabolite biosynthesis in the morning, and some metabolites resulting from these processes may feed back to reinforce clock timing.
Collapse
|
28
|
Depraetere O, Pierre G, Deschoenmaeker F, Badri H, Foubert I, Leys N, Markou G, Wattiez R, Michaud P, Muylaert K. Harvesting carbohydrate-rich Arthrospira platensis by spontaneous settling. BIORESOURCE TECHNOLOGY 2015; 180:16-21. [PMID: 25585253 DOI: 10.1016/j.biortech.2014.12.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
The filamentous cyanobacterium Arthrospira platensis is an attractive feedstock for carbohydrate-based biofuels because it accumulated up to 74% of carbohydrates when nitrogen stressed. Nitrogen stressed A. platensis also settled spontaneously, and this occurred simultaneously with carbohydrates accumulation, suggesting a link between both phenomena. The increased settling velocity was neither due to production of extracellular carbohydrates, nor due to degradation of gas vacuoles, but was caused by an increase in the specific density of the filaments as a result of accumulation of carbohydrates under the form of glycogen. Settling velocities of carbohydrate-rich A. platensis reached 0.64mh(-1), which allowed the biomass to be harvested using a lamella separator. The biomass could be concentrated at least 15 times, allowing removal of 94% of the water using gravity settling, thus offering a potential application as a low-cost and high-throughput method for primary dewatering of carbohydrate-rich A. platensis.
Collapse
Affiliation(s)
- Orily Depraetere
- KU Leuven Campus Kortrijk, Laboratory Aquatic Biology, E. Sabbelaan 53, 8500 Kortrijk, Belgium.
| | - Guillaume Pierre
- Clermont Université, Université Blaise Pascal, Institut Pascal UMR CNRS 6602, 24 avenue des Landais, BP 206, 63174 Aubière cedex, France
| | - Frédéric Deschoenmaeker
- Department of Proteomic and Microbiology, Research Institute for Biosciences, University 9 of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Hanène Badri
- Expert Group for Molecular and Cellular Biology MCB, Belgian Nuclear Research Center 11 SCK.CEN, B-2400 Mol, Belgium
| | - Imogen Foubert
- KU Leuven Campus Kortrijk, Research Unit Food & Lipids, Department of Molecular and Microbial Systems Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Natalie Leys
- Expert Group for Molecular and Cellular Biology MCB, Belgian Nuclear Research Center 11 SCK.CEN, B-2400 Mol, Belgium
| | - Giorgos Markou
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Ruddy Wattiez
- Department of Proteomic and Microbiology, Research Institute for Biosciences, University 9 of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Philippe Michaud
- Clermont Université, Université Blaise Pascal, Institut Pascal UMR CNRS 6602, 24 avenue des Landais, BP 206, 63174 Aubière cedex, France
| | - Koenraad Muylaert
- KU Leuven Campus Kortrijk, Laboratory Aquatic Biology, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
29
|
Kothari A, Parameswaran P, Garcia-Pichel F. Powerful fermentative hydrogen evolution of photosynthate in the cyanobacterium Lyngbya aestuarii BL J mediated by a bidirectional hydrogenase. Front Microbiol 2014; 5:680. [PMID: 25540642 PMCID: PMC4261827 DOI: 10.3389/fmicb.2014.00680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/20/2014] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are considered good models for biohydrogen production because they are relatively simple organisms with a demonstrable ability to generate H2 under certain physiological conditions. However, most produce only little H2, revert readily to H2 consumption, and suffer from hydrogenase sensitivity to O2. Strains of the cyanobacteria Lyngbya aestuarii and Microcoleus chthonoplastes obtained from marine intertidal cyanobacterial mats were recently found to display much better H2 production potential. Because of their ecological origin in environments that become quickly anoxic in the dark, we hypothesized that this differential ability may have evolved to serve a role in the fermentation of the photosynthate. Here we show that, when forced to ferment internal substrate, these cyanobacteria display desirable characteristics of physiological H2 production. Among them, the strain L. aestuarii BL J had the fastest specific rates and attained the highest H2 concentrations during fermentation of photosynthate, which proceeded via a mixed acid fermentation pathway to yield acetate, ethanol, lactate, H2, CO2, and pyruvate. Contrary to expectations, the H2 yield per mole of glucose was only average compared to that of other cyanobacteria. Thermodynamic analyses point to the use of electron donors more electronegative than NAD(P)H in Lyngbya hydrogenases as the basis for its strong H2 production ability. In any event, the high specific rates and H2 concentrations coupled with the lack of reversibility of the enzyme, at the expense of internal, photosynthetically generated reductants, makes L. aestuarii BL J and/or its enzymes, a potentially feasible platform for large-scale H2 production.
Collapse
Affiliation(s)
- Ankita Kothari
- School of Life Sciences, Arizona State University Tempe, AZ, USA
| | | | | |
Collapse
|
30
|
Increased biomass production and glycogen accumulation in apcE gene deleted Synechocystis sp. PCC 6803. AMB Express 2014; 4:17. [PMID: 24949254 PMCID: PMC4052703 DOI: 10.1186/s13568-014-0017-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 01/14/2023] Open
Abstract
The effect of phycobilisome antenna-truncation in the cyanobacterium Synechocystis sp. PCC 6803 on biomass production and glycogen accumulation have not yet been fully clarified. To investigate these effects here, the apcE gene, which encodes the anchor protein linking the phycobilisome to the thylakoid membrane, was deleted in a glucose tolerant strain of Synechocystis sp. PCC 6803. Biomass production of the apcE-deleted strain under photoautotrophic and atmospheric air conditions was 1.6 times higher than that of strain PCC 6803 (1.32 ± 0.01 versus 0.84 ± 0.07 g cell-dry weight L(-1), respectively) after 15 days of cultivation. In addition, the glycogen content of the apcE-deleted strain (24.2 ± 0.7%) was also higher than that of strain PCC 6803 (11.1 ± 0.3%). Together, these results demonstrate that antenna truncation by deleting the apcE gene was effective for increasing biomass production and glycogen accumulation under photoautotrophic and atmospheric air conditions in Synechocystis sp. PCC 6803.
Collapse
|
31
|
Ernst A, Liu YD, Reich S, Böger P. Diurnal Nitrogenase Modification in the CyanobacteriumAnabaena variabilis*. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1990.tb00146.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Rre37 stimulates accumulation of 2-oxoglutarate and glycogen under nitrogen starvation in Synechocystis sp. PCC 6803. FEBS Lett 2013; 588:466-71. [PMID: 24374346 DOI: 10.1016/j.febslet.2013.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/21/2022]
Abstract
Rre37 (sll1330) in a cyanobacterium Synechocystis sp. PCC 6803 acts as a regulatory protein for sugar catabolic genes during nitrogen starvation. Low glycogen accumulation in Δrre37 was due to low expression of glycogen anabolic genes. In addition to low 2-oxoglutarate accumulation, normal upregulated expression of genes encoding glutamate synthases (gltD and gltB) as well as accumulation of metabolites in glycolysis (fructose-6-phosphate, fructose-1,6-bisphosphate, and glyceraldehyde-3-phosphate) and tricarboxylic acid (TCA) cycle (oxaloacetate, fumarate, succinate, and aconitate) were abolished by rre37 knockout. Rre37 regulates 2-oxoglutarate accumulation, glycogen accumulation through expression of glycogen anabolic genes, and TCA cycle metabolites accumulation.
Collapse
|
33
|
Monshupanee T, Incharoensakdi A. Enhanced accumulation of glycogen, lipids and polyhydroxybutyrate under optimal nutrients and light intensities in the cyanobacterium Synechocystis sp. PCC 6803. J Appl Microbiol 2013; 116:830-8. [PMID: 24299499 DOI: 10.1111/jam.12409] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 12/31/2022]
Abstract
AIMS Glycogen (GL) and lipids (LP) are efficient biofuel substrates, whereas polyhydroxybutyrate (PHB) is a potent biodegradable plastic. This study aimed to increase accumulation of these three compounds in Synechocystis sp. PCC 6803. METHODS AND RESULTS Under autophototrophic growth, co-accumulation of the three compounds reached maximum level in a mid-stationary phase at 39·2% of dry weight (22·7% GL, 14·1% LP and 2·4% PHB). Nitrogen deprivation increased this to 61·5% (36·8% GL, 11·2% LP and 13·5% PHB), higher than that achieved by phosphorus, sulfur, iron or calcium deprivation. Combining nitrogen deprivation with 0·4% (w/v) glucose addition for heterophototrophic growth and optimizing the light intensity (200 μmol photons m(-2) s(-1) ) synergistically enhanced combined accumulation to 71·1% of biomass (41·3% GL, 16·7% LP and 13·1% PHB), a higher level than previously reported in Synechocystis. However, the maximum coproductivity of GL, LP and PHB (at 0·72 g l(-1) ) was obtained in the 12-day heterophototrophic culture without nitrogen deprivation. CONCLUSION Accumulation of GL, LP and PHB was enhanced under both autophototrophic and heterophototrophic conditions by optimizations of nutrient and light supplies. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides a means for increasing co-production of potent bioenergy substrates and useful biomaterials in Synechocystis which may also be applicable to other cyanobacteria.
Collapse
Affiliation(s)
- T Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
34
|
Badalamenti JP, Torres CI, Krajmalnik-Brown R. Coupling dark metabolism to electricity generation using photosynthetic cocultures. Biotechnol Bioeng 2013; 111:223-31. [PMID: 23893620 DOI: 10.1002/bit.25011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/05/2013] [Accepted: 07/17/2013] [Indexed: 11/08/2022]
Abstract
We investigated the role of green sulfur bacteria inlight-responsive electricity generation in microbial electrochemical cells (MXCs). We operated MXCs containing either monocultures or defined cocultures of previously enriched phototrophic Chlorobium and anode-respiring Geobacter under anaerobic conditions in the absence of electron donor. Monoculture control MXCs containing Geobacter or Chlorobium neither responded to light nor produced current, respectively. Instead, light-responsive current generation occurred only in coculture MXCs. Current increased above background levels only in the dark and declined slowly over 96 h. This pattern suggested that Chlorobium exhausted intracellular glycogen reserves via dark fermentation to supply an electron donor, presumably acetate, to Geobacter. With medium containing sulfide as the sole photosynthetic electron donor, current generation had a similar and reproducible negative light response. To investigate whether this metabolic interaction also occurred without an electrode, we performed coculture experiments in batch serum bottles. In this setup, sulfide served as the sole electron donor, whose oxidation by Chlorobium was required to provide S(0) as the electron acceptor to Geobacter. Copies of Geobacter 16S rDNA increased approximately 14-fold in batch bottle cocultures containing sulfide compared to those lacking sulfide, and did not decline after termination of sulfide feeding. These results suggest that products of both photosynthesis and dark fermentation by Chlorobium were sufficient both to yield an electrochemical response by Geobacter biofilms, and to promote Geobacter growthin batch cocultures. Our work expands upon the fusion of MXCs with coculture techniques and reinforces the utility of microbial electrochemistry for sensitive, real-time monitoring of microbial interactions in which a metabolic intermediate can be converted to electrical current.
Collapse
Affiliation(s)
- Jonathan P Badalamenti
- Swette Center for Environmental Biotechnology, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | | | | |
Collapse
|
35
|
Izumi Y, Aikawa S, Matsuda F, Hasunuma T, Kondo A. Aqueous size-exclusion chromatographic method for the quantification of cyanobacterial native glycogen. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 930:90-7. [DOI: 10.1016/j.jchromb.2013.04.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 02/01/2023]
|
36
|
Hasunuma T, Kikuyama F, Matsuda M, Aikawa S, Izumi Y, Kondo A. Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2943-54. [PMID: 23658429 PMCID: PMC3697948 DOI: 10.1093/jxb/ert134] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cyanobacteria represent a globally important biomass because they are responsible for a substantial proportion of primary production in the hydrosphere. Arthrospira platensis is a fast-growing halophilic cyanobacterium capable of accumulating glycogen and has the potential to serve as a feedstock in the fermentative production of third-generation biofuels. Accordingly, enhancing cyanobacterial glycogen production is a promising biofuel production strategy. However, the regulatory mechanism of glycogen metabolism in cyanobacteria is poorly understood. The aim of the present study was to determine the metabolic flux of glycogen biosynthesis using a dynamic metabolomic approach. Time-course profiling of widely targeted cyanobacterial metabolic intermediates demonstrated a global metabolic reprogramming that involves transient increases in the levels of some amino acids during the glycogen production phase induced by nitrate depletion. Also, in vivo labelling with NaH(13)CO3 enabled direct measurement of metabolic intermediate turnover in A. platensis, revealing that under conditions of nitrate depletion glycogen is biosynthesized with carbon derived from amino acids released from proteins via gluconeogenesis. This dynamic metabolic profiling approach provided conclusive evidence of temporal alterations in the metabolic profile in cyanobacterial cells.
Collapse
Affiliation(s)
- Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Guerra LT, Xu Y, Bennette N, McNeely K, Bryant DA, Dismukes GC. Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J Biotechnol 2013; 166:65-75. [PMID: 23608552 DOI: 10.1016/j.jbiotec.2013.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 01/11/2023]
Abstract
ADP-glucose pyrophosphorylase, encoded by glgC, catalyzes the first step of glycogen and glucosylglycer(ol/ate) biosynthesis. Here we report the construction of the first glgC null mutant of a marine cyanobacterium (Synechococcus sp. PCC 7002) and investigate its impact on dark anoxic metabolism (autofermentation). The glgC mutant had 98% lower ADP-glucose, synthesized no glycogen and produced appreciably more soluble sugars (mainly sucrose) than wild type (WT). Some glucosylglycerol was still observed, which suggests that the mutant has another, inefficient ADP-glucose synthesis pathway. In contrast, hypersaline conditions (1M NaCl) were lethal to the mutant strain, indicating that, unlike other strains, the elevated sucrose does not compensate for the reduced GG as osmolyte. In contrast to WT, nitrate limitation did not cause bleaching of N-containing pigments or carbohydrate accumulation in the glgC mutant, indicating impaired recycling of nitrogen stores. Despite the 2-fold increase in osmolytes, both the respiration and autofermentation rates of the glgC mutant were appreciably slower (2-4-fold) and correlated quantitatively with the lower fraction of insoluble carbohydrates relative to WT (85% vs. 12%). However, the remaining insoluble carbohydrates still accounted for a high fraction of the carbohydrate catabolized (38%), indicating that insoluble carbohydrates rather than osmolytes were the preferred substrate for autofermentation.
Collapse
Affiliation(s)
- L Tiago Guerra
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
38
|
Xu Y, Guerra LT, Li Z, Ludwig M, Dismukes GC, Bryant DA. Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: Cell factories for soluble sugars. Metab Eng 2012; 16:56-67. [PMID: 23262095 DOI: 10.1016/j.ymben.2012.12.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/19/2012] [Accepted: 12/04/2012] [Indexed: 02/07/2023]
Abstract
Glycogen and compatible solutes are the major polymeric and soluble carbohydrates in cyanobacteria and function as energy reserves and osmoprotectants, respectively. Glycogen synthase null mutants (glgA-I glgA-II) were constructed in the cyanobacterium Synechococcus sp. strain PCC 7002. Under standard conditions the double mutant produced no glycogen and more soluble sugars. When grown under hypersaline conditions, the glgA-I glgA-II mutant accumulated 1.8-fold more soluble sugars (sucrose and glucosylglycer-(ol/ate)) than WT, and these cells spontaneously excreted soluble sugars into the medium at high levels without the need for additional transporters. An average of 27% more soluble sugars was released from the glgA-I glgA-II mutant than WT by hypo-osmotic shock. Extracellular vesicles budding from the outer membrane were observed by transmission electron microscopy in glgA-I glgA-II cells grown under hypersaline conditions. The glgA-I glgA-II mutant serves as a starting point for developing cell factories for photosynthetic production and excretion of sugars.
Collapse
Affiliation(s)
- Yu Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
39
|
Lanham AB, Ricardo AR, Coma M, Fradinho J, Carvalheira M, Oehmen A, Carvalho G, Reis MAM. Optimisation of glycogen quantification in mixed microbial cultures. BIORESOURCE TECHNOLOGY 2012; 118:518-525. [PMID: 22717572 DOI: 10.1016/j.biortech.2012.05.087] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/16/2012] [Accepted: 05/18/2012] [Indexed: 06/01/2023]
Abstract
This study addressed the key factors affecting the extraction and quantification of glycogen from floccular and granular mixed microbial cultures collected from activated sludge, nutrient removal systems and photosynthetic consortiums: acid concentration, hydrolysis time and concentration of biomass in the hydrolysis. Response surface modelling indicated that 0.9 M HCl and a biomass concentration of 1 mg mL(-1) were optimal conditions for performing acid hydrolysis. Floccular samples only needed a 2-h hydrolysis time whereas granular samples required as much as 5 h. An intermediate 3 h yielded an error of 10% compared to the results obtained with the hydrolysis times specifically tailored to the type of biomass and can thus be recommended as a practical compromise.
Collapse
Affiliation(s)
- Ana B Lanham
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Aikawa S, Izumi Y, Matsuda F, Hasunuma T, Chang JS, Kondo A. Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. BIORESOURCE TECHNOLOGY 2012; 108:211-5. [PMID: 22277210 DOI: 10.1016/j.biortech.2012.01.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/01/2012] [Accepted: 01/02/2012] [Indexed: 05/04/2023]
Abstract
Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as feedstock for fermentative production of biofuels and chemicals. The culture conditions most appropriate for glycogen production were identified. Glycogen production was maximized by the depleting nitrate source under a high light intensity of 700 μmol photons m(-2) s(-1). With optimal control of both light intensity and nitrate supply, glycogen production of A. platensis reached nearly 1.03 g L(-1) (a glycogen productivity of 0.29 g L(-1) d(-1)), which is, to the best of our knowledge, the highest α-polyglucan (glycogen or starch) production performance ever reported in microalgae. The outcome of this work supports A. platensis as a promising carbohydrate source for biorefinery.
Collapse
Affiliation(s)
- Shimpei Aikawa
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Eberly JO, Ely RL. Photosynthetic accumulation of carbon storage compounds under CO₂ enrichment by the thermophilic cyanobacterium Thermosynechococcus elongatus. J Ind Microbiol Biotechnol 2012; 39:843-50. [PMID: 22383176 DOI: 10.1007/s10295-012-1092-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/18/2012] [Indexed: 11/26/2022]
Abstract
The growth characteristics of Thermosynechococcus elongatus on elevated CO₂ were studied in a photobioreactor. Cultures were able to grow on up to 20% CO₂. The maximum productivity and CO₂ fixation rates were 0.09 ± 0.01 and 0.17 ± 0.01 mg ml⁻¹ day⁻¹, respectively, for cultures grown on 20% CO₂. Three major carbon pools--lipids, polyhydroxybutyrates (PHBs), and glycogen--were measured. These carbon stores accounted for 50% of the total biomass carbon in cultures grown on atmospheric CO₂ (no supplemental CO₂), but only accounted for 30% of the total biomass carbon in cultures grown on 5-20% CO₂. Lipid content was approximately 20% (w/w) under all experimental conditions, while PHB content reached 14.5% (w/w) in cultures grown on atmospheric CO₂ and decreased to approximately 2.0% (w/w) at 5-20% CO₂. Glycogen levels did not vary significantly and remained about 1.4% (w/w) under all test conditions. The maximum amount of CO₂ sequestered over the course of the nine-day chemostat experiment was 1.15 g l⁻¹ in cultures grown on 20% CO₂.
Collapse
Affiliation(s)
- Jed O Eberly
- Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331, USA.
| | | |
Collapse
|
42
|
Contribution of a sodium ion gradient to energy conservation during fermentation in the cyanobacterium Arthrospira (Spirulina) maxima CS-328. Appl Environ Microbiol 2011; 77:7185-94. [PMID: 21890670 DOI: 10.1128/aem.00612-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sodium gradients in cyanobacteria play an important role in energy storage under photoautotrophic conditions but have not been well studied during autofermentative metabolism under the dark, anoxic conditions widely used to produce precursors to fuels. Here we demonstrate significant stress-induced acceleration of autofermentation of photosynthetically generated carbohydrates (glycogen and sugars) to form excreted organic acids, alcohols, and hydrogen gas by the halophilic, alkalophilic cyanobacterium Arthrospira (Spirulina) maxima CS-328. When suspended in potassium versus sodium phosphate buffers at the start of autofermentation to remove the sodium ion gradient, photoautotrophically grown cells catabolized more intracellular carbohydrates while producing 67% higher yields of hydrogen, acetate, and ethanol (and significant amounts of lactate) as fermentative products. A comparable acceleration of fermentative carbohydrate catabolism occurred upon dissipating the sodium gradient via addition of the sodium-channel blocker quinidine or the sodium-ionophore monensin but not upon dissipating the proton gradient with the proton-ionophore dinitrophenol (DNP). The data demonstrate that intracellular energy is stored via a sodium gradient during autofermentative metabolism and that, when this gradient is blocked, the blockage is compensated by increased energy conversion via carbohydrate catabolism.
Collapse
|
43
|
Burrows EH, Chaplen FWR, Ely RL. Effects of selected electron transport chain inhibitors on 24-h hydrogen production by Synechocystis sp. PCC 6803. BIORESOURCE TECHNOLOGY 2011; 102:3062-3070. [PMID: 21074421 DOI: 10.1016/j.biortech.2010.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 10/10/2010] [Accepted: 10/11/2010] [Indexed: 05/30/2023]
Abstract
One factor limiting biosolar hydrogen (H(2)) production from cyanobacteria is electron availability to the hydrogenase enzyme. In order to optimize 24-h H(2) production this study used Response Surface Methodology and Q2, an optimization algorithm, to investigate the effects of five inhibitors of the photosynthetic and respiratory electron transport chains of Synechocystis sp. PCC 6803. Over 3 days of diurnal light/dark cycling, with the optimized combination of 9.4 mM KCN (3.1 μmol 10(10) cells(-1)) and 1.5 mM malonate (0.5 μmol 10(10) cells(-1)) the H(2) production was 30-fold higher, in EHB-1 media previously optimized for nitrogen (N), sulfur (S), and carbon (C) concentrations (Burrows et al., 2008). In addition, glycogen concentration was measured over 24 h with two light/dark cycling regimes in both standard BG-11 and EHB-1 media. The results suggest that electron flow as well as glycogen accumulation should be optimized in systems engineered for maximal H(2) output.
Collapse
Affiliation(s)
- Elizabeth H Burrows
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA.
| | | | | |
Collapse
|
44
|
Morsy FM. Acetate versus sulfur deprivation role in creating anaerobiosis in light for hydrogen production by Chlamydomonas reinhardtii and Spirulina platensis: two different organisms and two different mechanisms. Photochem Photobiol 2010; 87:137-42. [PMID: 21073473 DOI: 10.1111/j.1751-1097.2010.00823.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work was devoted to separate acetate role in creating anaerobiosis from that of sulfur deprivation. Chlamydomonas reinhardtii grown in TAP (Tris-acetate-phosphate) medium was resuspended in sulfur-replete or -deprived medium in sealed or nonsealed cultures. Sulfur deprivation was substantial for starch accumulation and hydrogen evolution; however, acetate induced anaerobiosis in the presence or absence of sulfur in only sealed cultures. In nonsealed cultures, Chlamydomonas did not lose its photosynthetic activity; however, it was arrested in anoxia with no photosynthetic activity as long as the culture was sealed. The sealed cultures resumed photosynthesis upon unsealing overnight unless the cells died by anoxia at late stage of the experiment. These results indicate that the enhanced oxygen consumption for the enormous acetate respiration and inhibition of the external oxygen supply in sealed cultures of Chlamydomonas are the main reasons for the steady anaerobic conditions. Although acetate was substantial for creating anaerobiosis in Chlamydomonas, sulfur deprivation alone could create anaerobiosis in Spirulina platensis grown autotrophically. Hydrogen evolution and glycogen accumulation were induced under such conditions. Severely reduced phycocyanin, chlorophyll and photosynthesis, while respiration had increased, induced anaerobiosis in Spirulina. This study reports for the first time anaerobiosis under autotrophic conditions in a cyanobacterium.
Collapse
|
45
|
Boosting autofermentation rates and product yields with sodium stress cycling: application to production of renewable fuels by cyanobacteria. Appl Environ Microbiol 2010; 76:6455-62. [PMID: 20693449 DOI: 10.1128/aem.00975-10] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sodium concentration cycling was examined as a new strategy for redistributing carbon storage products and increasing autofermentative product yields following photosynthetic carbon fixation in the cyanobacterium Arthrospira (Spirulina) maxima. The salt-tolerant hypercarbonate strain CS-328 was grown in a medium containing 0.24 to 1.24 M sodium, resulting in increased biosynthesis of soluble carbohydrates to up to 50% of the dry weight at 1.24 M sodium. Hypoionic stress during dark anaerobic metabolism (autofermentation) was induced by resuspending filaments in low-sodium (bi)carbonate buffer (0.21 M), which resulted in accelerated autofermentation rates. For cells grown in 1.24 M NaCl, the fermentative yields of acetate, ethanol, and formate increase substantially to 1.56, 0.75, and 1.54 mmol/(g [dry weight] of cells·day), respectively (36-, 121-, and 6-fold increases in rates relative to cells grown in 0.24 M NaCl). Catabolism of endogenous carbohydrate increased by approximately 2-fold upon hypoionic stress. For cultures grown at all salt concentrations, hydrogen was produced, but its yield did not correlate with increased catabolism of soluble carbohydrates. Instead, ethanol excretion becomes a preferred route for fermentative NADH reoxidation, together with intracellular accumulation of reduced products of acetyl coenzyme A (acetyl-CoA) formation when cells are hypoionically stressed. In the absence of hypoionic stress, hydrogen production is a major beneficial pathway for NAD(+) regeneration without wasting carbon intermediates such as ethanol derived from acetyl-CoA. This switch presumably improves the overall cellular economy by retaining carbon within the cell until aerobic conditions return and the acetyl unit can be used for biosynthesis or oxidized via respiration for a much greater energy return.
Collapse
|
46
|
Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium "Arthrospira (Spirulina) maxima". Appl Environ Microbiol 2008; 74:6102-13. [PMID: 18676712 DOI: 10.1128/aem.01078-08] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental and nutritional conditions that optimize the yield of hydrogen (H(2)) from water using a two-step photosynthesis/fermentation (P/F) process are reported for the hypercarbonate-requiring cyanobacterium "Arthrospira maxima." Our observations lead to four main conclusions broadly applicable to fermentative H(2) production by bacteria: (i) anaerobic H(2) production in the dark from whole cells catalyzed by a bidirectional [NiFe] hydrogenase is demonstrated to occur in two temporal phases involving two distinct metabolic processes that are linked to prior light-dependent production of NADPH (photosynthetic) and dark/anaerobic production of NADH (fermentative), respectively; (ii) H(2) evolution from these reductants represents a major pathway for energy production (ATP) during fermentation by regenerating NAD(+) essential for glycolysis of glycogen and catabolism of other substrates; (iii) nitrate removal during fermentative H(2) evolution is shown to produce an immediate and large stimulation of H(2), as nitrate is a competing substrate for consumption of NAD(P)H, which is distinct from its slower effect of stimulating glycogen accumulation; (iv) environmental and nutritional conditions that increase anaerobic ATP production, prior glycogen accumulation (in the light), and the intracellular reduction potential (NADH/NAD(+) ratio) are shown to be the key variables for elevating H(2) evolution. Optimization of these conditions and culture age increases the H(2) yield from a single P/F cycle using concentrated cells to 36 ml of H(2)/g (dry weight) and a maximum 18% H(2) in the headspace. H(2) yield was found to be limited by the hydrogenase-mediated H(2) uptake reaction.
Collapse
|
47
|
Moslavac S, Nicolaisen K, Mirus O, Al Dehni F, Pernil R, Flores E, Maldener I, Schleiff E. A TolC-like protein is required for heterocyst development in Anabaena sp. strain PCC 7120. J Bacteriol 2007; 189:7887-95. [PMID: 17720784 PMCID: PMC2168721 DOI: 10.1128/jb.00750-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 forms heterocysts in a semiregular pattern when it is grown on N2 as the sole nitrogen source. The transition from vegetative cells to heterocysts requires marked metabolic and morphological changes. We show that a trimeric pore-forming outer membrane beta-barrel protein belonging to the TolC family, Alr2887, is up-regulated in developing heterocysts and is essential for diazotrophic growth. Mutants defective in Alr2887 did not form the specific glycolipid layer of the heterocyst cell wall, which is necessary to protect nitrogenase from external oxygen. Comparison of the glycolipid contents of wild-type and mutant cells indicated that the protein is not involved in the synthesis of glycolipids but might instead serve as an exporter for the glycolipid moieties or enzymes involved in glycolipid attachment. We propose that Alr2887, together with an ABC transporter like DevBCA, is part of a protein export system essential for assembly of the heterocyst glycolipid layer. We designate the alr2887 gene hgdD (heterocyst glycolipid deposition protein).
Collapse
Affiliation(s)
- Suncana Moslavac
- LMU, Department of Biology I, VW-Research Group, Menzinger Str. 67, 80638 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sakurai H, Masukawa H. Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:128-45. [PMID: 17340220 DOI: 10.1007/s10126-006-6073-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 08/25/2006] [Indexed: 05/14/2023]
Abstract
This review article explores the potential of using mariculture-raised cyanobacteria as solar energy converters of hydrogen (H(2)). The exploitation of the sea surface for large-scale renewable energy production and the reasons for selecting the economical, nitrogenase-based systems of cyanobacteria for H(2) production, are described in terms of societal benefits. Reports of cyanobacterial photobiological H(2) production are summarized with respect to specific activity, efficiency of solar energy conversion, and maximum H(2) concentration attainable. The need for further improvements in biological parameters such as low-light saturation properties, sustainability of H(2) production, and so forth, and the means to overcome these difficulties through the identification of promising wild-type strains followed by optimization of the selected strains using genetic engineering are also discussed. Finally, a possible mechanism for the development of economical large-scale mariculture operations in conjunction with international cooperation and social acceptance is outlined.
Collapse
Affiliation(s)
- Hidehiro Sakurai
- Department of Biology, School of Education, and Major in Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Nishiwaseda 1, Shinjuku, Tokyo, 169-8050, Japan.
| | | |
Collapse
|
49
|
Serebryakova LT, Tsygankov AA. Two-Stage System for Hydrogen Production by Immobilized CyanobacteriumGloeocapsa alpicolaCALU 743. Biotechnol Prog 2007; 23:1106-10. [PMID: 17691817 DOI: 10.1002/bp070168p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous studies showed that cell suspensions of unicellular nondiazotrophic cyanobacterium G. alpicola grown under nitrate-limiting conditions intensively produces H2 via fermentation of endogenous glycogen with hydrogen yield more then 90% of theoretical maximum (3.8 mol H2 per mol glucose). H2 production is realized by a Hox hydrogenase on the stages of NAD(P)H generation. Exploiting this property, the two-stage cyclic system for sustained hydrogen production was developed using a photobioreactor (PhBR) with G. alpicola immobilized on glass fiber TR-0.3. Immobilization of the cells on the matrix occurred during growth directly in PhBR operated in continuous mode; the density of culture immobilized achieved 37 g Chl alpha cm(-2). The first stage of the cycle was the photosynthetic incubations of G. alpicola in the flow of the culture medium, which contained limiting concentrations of nitrate for efficient glycogen accumulation and activation of hydrogenase. The second stage was the fermentation of glycogen, with H2 production realized in darkness with continuous Ar sparging and without medium flow. Standardization of optimal parameters for both stages provided a stable cyclic regime of the system: photosynthesis (24 hours)-fermentation (24 hours). The total amount of H2 evolved in one cycle was 957.6 mL L(-1)(matrix), and the overage rate of H2 production during the cycle (48 hours) was about 20 mL h(-1) L(-1)(matrix). Ten consequent cycles was carried out in this regime with reproducible H2 production, although PhBR with the same sample of immobilized culture was operated over a period of more then three months.
Collapse
|
50
|
Yoshino F, Ikeda H, Masukawa H, Sakurai H. High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:101-12. [PMID: 17131047 DOI: 10.1007/s10126-006-6035-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 08/05/2006] [Indexed: 05/12/2023]
Abstract
We describe a strategy to establish cyanobacterial strains with high levels of H(2) production that involves the identification of promising wild-type strains followed by optimization of the selected strains using genetic engineering. Nostoc sp. PCC 7422 was chosen from 12 other heterocystous strains, because it has the highest nitrogenase activity. We sequenced the uptake hydrogenase (Hup) gene cluster as well as the bidirectional hydrogenase gene cluster from the strain, and constructed a mutant (Delta hupL) by insertional disruption of the hupL gene. The Delta hupL mutant produced H(2) at 100 mumoles mg chlorophyll a (-1) h(-1), a rate three times that of the wild-type. The Delta hupL cells could accumulate H(2) to about 29% (v/v) accompanied by O(2) evolution in 6 days, under a starting gas phase of Ar + 5% CO(2). The presence of 20% O(2) in the initial gas phase inhibited H(2) accumulation of the Delta hupL cells by less than 20% until day 7.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Culture Media
- DNA, Bacterial/chemistry
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Enzymologic/physiology
- Gene Order
- Genes, Homeobox/genetics
- Hydrogen/analysis
- Hydrogen/metabolism
- Hydrogenase/analysis
- Hydrogenase/biosynthesis
- Hydrogenase/genetics
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Nitrogenase/analysis
- Nitrogenase/metabolism
- Nostoc/enzymology
- Nostoc/genetics
- Nostoc/physiology
- Oxygen/pharmacology
- Photobiology
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/biosynthesis
- Time Factors
Collapse
Affiliation(s)
- Fuminori Yoshino
- Major in Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Nishiwaseda 1, Shinjuku, Tokyo 169-8050, Japan
| | | | | | | |
Collapse
|