1
|
Wu PZ, Liberman MC. Age-related stereocilia pathology in the human cochlea. Hear Res 2022; 422:108551. [PMID: 35716423 PMCID: PMC11170281 DOI: 10.1016/j.heares.2022.108551] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Age-related hearing loss in humans is characterized by progressive loss of threshold sensitivity, especially at high frequencies. A multivariable regression of histopathological metrics from normal-aging human cochleae (Wu et al., 2020) showed that hair cell loss better predicts the audiometric shifts than either neural loss or strial atrophy, however considerable variability in age-related threshold elevation remained unexplained. Here, we develop and apply an algorithm to quantify stereocilia pathology in high-power confocal images of inner and outer hair cells in normal aging human cochleae, aged 21 - 71 yrs. Microdissected epithelial wholemounts of the cochleae were immunostained for myosin VIIa and espin to show cuticular plates and stereocilia, respectively, and each cochlea was imaged at 10 log-spaced locations along the cochlear spiral. An approach based on Fourier transforms was used to quantify the regularity of each stereocilia bundle, and the outcome was compared to a parallel analysis by a human observer. Results show a significant age-related decline in stereocilia regularity and increase in stereocilia loss and fusion. Stereocilia pathology was especially severe on the outer hair cells and in the basal half of the cochlea, and may represent a key contributor to age-related threshold elevations. For the one case with an associated pre-mortem audiogram, the threshold shifts are better predicted from the pattern of stereocilia damage than from the pattern of hair cell loss alone.
Collapse
Affiliation(s)
- Pei-Zhe Wu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA 02114, USA; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA 02114, USA; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Brosel S, Laub C, Averdam A, Bender A, Elstner M. Molecular aging of the mammalian vestibular system. Ageing Res Rev 2016; 26:72-80. [PMID: 26739358 DOI: 10.1016/j.arr.2015.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022]
Abstract
Dizziness and imbalance frequently affect the elderly and contribute to falls and frailty. In many geriatric patients, clinical testing uncovers a dysfunction of the vestibular system, but no specific etiology can be identified. Neuropathological studies have demonstrated age-related degeneration of peripheral and central vestibular neurons, but the molecular mechanisms are poorly understood. In contrast, recent studies into age-related hearing loss strongly implicate mitochondrial dysfunction, oxidative stress and apoptotic cell death of cochlear hair cells. While some data suggest that analogous biological pathomechanisms may underlie vestibular dysfunction, actual proof is missing. In this review, we summarize the available data on the molecular causes of vestibular dysfunction.
Collapse
Affiliation(s)
- Sonja Brosel
- German Center for Vertigo and Balance Disorders, Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany.
| | - Christoph Laub
- Department of Neurology with Friedrich-Baur-Institute, Klinikum Grosshadern, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany
| | - Anne Averdam
- Department of Neurology with Friedrich-Baur-Institute, Klinikum Grosshadern, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany
| | - Andreas Bender
- Department of Neurology, Therapiezentrum Burgau, Kapuzinerstr.34, 89331 Burgau, Germany
| | - Matthias Elstner
- Department of Neurology with Friedrich-Baur-Institute, Klinikum Grosshadern, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany; Department of Neurology and Clinical Neurophysiology, Academic Hospital Munich-Bogenhausen, Technical University of Munich, Englschalkingerstr. 77, 81925 Munich, Germany
| |
Collapse
|
3
|
Liu W, Rui G, Helge RA. Morphological Study of Surgically Obtained Human Cochlear Specimens - Technical Aspects. J Otol 2014. [DOI: 10.1016/s1672-2930(14)50010-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Rask-Andersen H, Liu W, Erixon E, Kinnefors A, Pfaller K, Schrott-Fischer A, Glueckert R. Human cochlea: anatomical characteristics and their relevance for cochlear implantation. Anat Rec (Hoboken) 2012; 295:1791-811. [PMID: 23044521 DOI: 10.1002/ar.22599] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 01/08/2023]
Abstract
This is a review of the anatomical characteristics of human cochlea and the importance of variations in this anatomy to the process of cochlear implantation (CI). Studies of the human cochlea are essential to better comprehend the physiology and pathology of man's hearing. The human cochlea is difficult to explore due to its vulnerability and bordering capsule. Inner ear tissue undergoes quick autolytic changes making investigations of autopsy material difficult, even though excellent results have been presented over time. Important issues today are novel inner ear therapies including CI and new approaches for inner ear pharmacological treatments. Inner ear surgery is now a reality, and technical advancements in the design of electrode arrays and surgical approaches allow preservation of remaining structure/function in most cases. Surgeons should aim to conserve cochlear structures for future potential stem cell and gene therapies. Renewal interest of round window approaches necessitates further acquaintance of this complex anatomy and its variations. Rough cochleostomy drilling at the intricate "hook" region can generate intracochlear bone-dust-inducing fibrosis and new bone formation, which could negatively influence auditory nerve responses at a later time point. Here, we present macro- and microanatomic investigations of the human cochlea viewing the extensive anatomic variations that influence electrode insertion. In addition, electron microscopic (TEM and SEM) and immunohistochemical results, based on specimens removed at surgeries for life-threatening petroclival meningioma and some well-preserved postmortal tissues, are displayed. These give us new information about structure as well as protein and molecular expression in man. Our aim was not to formulate a complete description of the complex human anatomy but to focus on aspects clinically relevant for electric stimulation, predominantly, the sensory targets, and how surgical atraumaticity best could be reached.
Collapse
Affiliation(s)
- Helge Rask-Andersen
- Department of Otolaryngology, Uppsala University Hospital, 75185 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Nelson EG, Hinojosa R. Presbycusis: a human temporal bone study of individuals with downward sloping audiometric patterns of hearing loss and review of the literature. Laryngoscope 2006; 116:1-12. [PMID: 16946668 DOI: 10.1097/01.mlg.0000236089.44566.62] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The purpose of this retrospective case review was to identify patterns of cochlear element degeneration in individuals with presbycusis exhibiting downward sloping audiometric patterns of hearing loss and to correlate these findings with those reported in the literature to clarify conflicting concepts regarding the association between hearing loss and morphologic abnormalities. METHODS Archival human temporal bones from individuals with presbycusis were selected on the basis of strict audiometric criteria for downward-sloping audiometric thresholds. Twenty-one temporal bones that met these criteria were identified and compared with 10 temporal bones from individuals with normal hearing. The stria vascularis volumes, spiral ganglion cell populations, inner hair cells, and outer hair cells were quantitatively evaluated. The relationship between the severity of hearing loss and the degeneration of cochlear elements was analyzed using univariate linear regression models. RESULTS Outer hair cell loss and ganglion cell loss was observed in all individuals with presbycusis. Inner hair cell loss was observed in 18 of the 21 individuals with presbycusis and stria vascularis loss was observed in 10 of the 21 individuals with presbycusis. The extent of degeneration of all four of the cochlear elements evaluated was highly associated with the severity of hearing loss based on audiometric thresholds at 8,000 Hz and the pure-tone average at 500, 1,000, and 2,000 Hz. The extent of ganglion cell degeneration was associated with the slope of the audiogram. CONCLUSIONS Individuals with downward-sloping audiometric patterns of presbycusis exhibit degeneration of the stria vascularis, spiral ganglion cells, inner hair cells, and outer hair cells that is associated with the severity of hearing loss. This association has not been previously reported in studies that did not use quantitative methodologies for evaluating the cochlear elements and strict audiometric criteria for selecting cases.
Collapse
Affiliation(s)
- Erik G Nelson
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
7
|
Glueckert R, Pfaller K, Kinnefors A, Schrott-Fischer A, Rask-Andersen H. High resolution scanning electron microscopy of the human organ of Corti. Hear Res 2005; 199:40-56. [PMID: 15574299 DOI: 10.1016/j.heares.2004.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 05/25/2004] [Indexed: 11/17/2022]
Abstract
Scanning electron microscopy on immediately fixed human cochleae obtained during surgery for life-threatening petro-clival meningioma showed excellently preserved morphology. We compared the morphological findings with those from transmission electron microscopic sections of well preserved human and animal tissue. The characteristics of neural innervation, the pathways of the nerves through the organ of Corti and the intimate relation of nerves to supporting cells along their route could be studied in detail. The lateral membranes of Hensen and Claudius cells were folded creating a surface enlargement. Marginal pillars extended the distal end of the tectorial membrane and correspond to the marginal net or "randfasernetz" described earlier. Stereocilia imprints at the undersurface of the tectorial membrane go as far as to the distal end of the marginal pillars. The presence of an irregularly distributed fourth row of outer hair cell, attached to the marginal pillars, raises questions about differences in the excitation of the last row of outer hair cells. The complex nature of many supporting cells, stria vascularis and Reissner's membrane, intracellular complexities as well as surface features are described. Supernumerary inner hair cells were observed and the different arrangement of outer spiral fibres in contrast to findings in animals and variations of nerve fibres within the organ of Corti between apex and base are discussed.
Collapse
Affiliation(s)
- Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
8
|
Scholtz AW, Kammen-Jolly K, Felder E, Hussl B, Rask-Andersen H, Schrott-Fischer A. Selective aspects of human pathology in high-tone hearing loss of the aging inner ear. Hear Res 2001; 157:77-86. [PMID: 11470187 DOI: 10.1016/s0378-5955(01)00279-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Accompanied with aging, the thresholds for high frequency sounds may elevate and result in a progressive hearing loss described as presbycusis. Based on correlations between audiometric measures of aged patients and histologic findings garnered from postmortem examinations, four types of presbycusis have been characterized: sensory-neural, neural, strial, and conductive [Schuknecht, H.F., Gacek, M.R., 1993. Ann. Otol. Rhinol. Laryngol. 102, 1--16]. Otopathologic changes to the inner ear as a direct function of age, however, remain controversial. The focus of this investigation involves the pathological impact on remaining sensory structures in patients having sensory--neural degeneration. The current study presents seven human temporal bones extracted from patients aged 53--67 years with high-tone hearing loss and with no known history of extraordinary environmental events involving head or noise trauma, acoustic overstimulation, or ototoxicity. In previously published findings of these specimens, all but one temporal bone failed to demonstrate a meaningful correlation between audiometric measurements and loss of functional hair cell populations with secondary retrograde degeneration of nerve fibers. Using the block surface method, electron microscopic micrographs demonstrate ultrastructural changes in the cuticular plate, stereocilia, pillar cells, stria vascularis, and the spiral ligament. In all pathological specimens, the greatest incidence of degeneration was seen at the cuticular plate. Conclusively, our findings present three implications in the aging human cochlea: firstly, audiometric measures that represent a high-tone hearing loss may take various forms with respect to ultrastructural patterns of degeneration and surviving structures; secondly, the incidence of lipofuscin and lysosome granules does not correlate with the degree of hearing loss and; thirdly, as shown only in guinea pigs [Anniko, M., 1988. Scanning Microsc. 2, 1035--1041], high-tone hearing loss can be associated with deformation of the cuticular plate.
Collapse
Affiliation(s)
- A W Scholtz
- Department of Otolarynology, University of Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
9
|
Sakaguchi N, Spicer SS, Thomopoulos GN, Schulte BA. Immunoglobulin deposition in thickened basement membranes of aging strial capillaries. Hear Res 1997; 109:83-91. [PMID: 9259238 DOI: 10.1016/s0378-5955(97)00048-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The presence of immunoglobulins in the thickened basement membrane (BM) of aging strial capillaries was investigated as a possible indicator of autoimmunity in the genesis of atypical BM. Cochleas from young and old Mongolian gerbils raised in quiet were examined by immunostaining at the light microscopic level for IgG and IgM and for the BM components laminin (La) and type IV collagen (IV-C). Another age-graded series of cochleas was stained for IgG at the ultrastructural level. No immunoreactive IgG was detected in specimens from animals less than 6 months old. In contrast, 2 of 12 cochleas from 20- to 28-month-old gerbils and 11 of 20 cochleas from gerbils 30 months or older showed positive staining for IgG in strial capillary BM. IgM was not detected at any age. At the electron microscope level, no immunoreactive IgG was detected in the stria of cochleas younger than 30 months. However, labeling demonstrative of IgG was observed in the thickened BM of some strial capillaries in all six cochleas from gerbils older than 33 months. Lysosome-like granules in endothelial cells and the superiormost marginal cells also stained for content of IgG as did fibrillar material in edematous regions in the intrastrial space. In addition to showing accumulation of IgG, the findings confirm our prior demonstration of increased La deposition in the thickened strial capillary BM of all cochleas from old gerbils. The BM alterations appear confined to strial capillaries in old gerbils, since morphological observations and immunostaining for La and IgG failed to detect changes in BMs at any other site in a wide survey of aged gerbil organs including vessels in other regions of the affected cochleas. The results point more towards the development of an age-dependent permeability to IgG selectively in strial capillaries than to autoimmunity as an explanation of the IgG in BM.
Collapse
Affiliation(s)
- N Sakaguchi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | |
Collapse
|
10
|
Abstract
A survey of the temporal bone collection at the Massachusetts Eye and Ear Infirmary reveals 21 cases that meet the criterion for the clinical diagnosis of presbycusis. It is evident that the previously advanced concept of four predominant pathologic types of presbycusis is valid, these being sensory, neural, strial, and cochlear conductive. An abrupt high-tone loss signals sensory presbycusis, a flat threshold pattern is indicative of strial presbycusis, and loss of word discrimination is characteristic of neural presbycusis. When the increments of threshold loss present a gradually decreasing linear distribution pattern on the audiometric scale and have no pathologic correlate, it is speculated that the hearing loss is caused by alterations in the physical characteristics of the cochlear duct, and the loss is identified as cochlear conductive presbycusis. It is clear that many individual cases do not separate into a specific type but have mixtures of these pathologic types and are termed mixed presbycusis. About 25% of all cases of presbycusis show none of the above characteristics and are classified as indeterminate presbycusis.
Collapse
Affiliation(s)
- H F Schuknecht
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
11
|
Abstract
Preservation of the fine structures of the human cochlea has been achieved by perfusing the cochlea with fixative shortly after death. Following the dissection of the temporal bone the surface of the organ of Corti and stria vascularis has been examined in the scanning electron microscope. The surfaces of the inner and outer hair cells can be seen and the stereocilia projecting from their surfaces closely examined. The number and length of the stereocilia of the outer hair cells changes linearly with distance along the cochlear duct. The surface of the stria vascularis is similar to that seen in other animals.
Collapse
|
12
|
Wright A. Scanning electron microscopy of the human cochlea--the organ of Corti. ARCHIVES OF OTO-RHINO-LARYNGOLOGY 1981; 230:11-9. [PMID: 7213191 DOI: 10.1007/bf00665375] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The surface of the organ of Corti from normally hearing adult humans has been examined with the scanning electron microscope. It is possible to construct cytocochleograms and to derive a regression line with confidence limits to represent the distribution of the sensory hair cells. Examining individual hair cells more closely, the number of cilia on each hair cell, decreased linearly with distance, from the base of the cochlea. However, the length of the longest cilia on each outer hair cell increased linearly with distance.
Collapse
|
13
|
Wright A. Scanning electron microscopy of the human cochlea--postmortem autolysis artefacts. ARCHIVES OF OTO-RHINO-LARYNGOLOGY 1980; 228:1-6. [PMID: 6781458 DOI: 10.1007/bf00455888] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Changes in the ultrastructure of the cochlea due to postmortem autolysis make the assessment of the normal or damaged anatomy difficult. Three methods of preserving the human cochlea were compared on the basis of the state of preservation of the sensory cell hairs of the organ of Corti as seen in the scanning electron microscope. Perfusion of the perilymphatic space with a glutaraldehyde-formaldehyde fixative within 40 min of death gave preservation as good as that seen in animal studies. Injecting formalin into the middle ear within 40 min of death allowed artefacts to develop when compared with the control ear which had been perfused with fixative. Refrigeration and early removal of the temporal bone gave poor preservation of surface structures.
Collapse
|