1
|
Fender J, Klöcker J, Boivin-Jahns V, Ravens U, Jahns R, Lorenz K. "Cardiac glycosides"-quo vaditis?-past, present, and future? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9521-9531. [PMID: 39007928 PMCID: PMC11582269 DOI: 10.1007/s00210-024-03285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Up to date, digitalis glycosides, also known as "cardiac glycosides", are inhibitors of the Na+/K+-ATPase. They have a long-standing history as drugs used in patients suffering from heart failure and atrial fibrillation despite their well-known narrow therapeutic range and the intensive discussions on their raison d'être for these indications. This article will review the history and key findings in basic and clinical research as well as potentially overseen pros and cons of these drugs.
Collapse
Affiliation(s)
- Julia Fender
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Johanna Klöcker
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Valérie Boivin-Jahns
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Ursula Ravens
- Institute of Experimental Cardiovascular Medicine, Faculty of Medicine, University of Freiburg, Elsässer Straße 2Q, 79110, Freiburg, Germany
| | - Roland Jahns
- Interdisciplinary Bank of Biological Materials and Data Würzburg (ibdw), University Hospital Würzburg, Straubmühlweg 2a, 97078, Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany.
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V., Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany.
| |
Collapse
|
2
|
Staehr C, Aalkjaer C, Matchkov V. The vascular Na,K-ATPase: clinical implications in stroke, migraine, and hypertension. Clin Sci (Lond) 2023; 137:1595-1618. [PMID: 37877226 PMCID: PMC10600256 DOI: 10.1042/cs20220796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
In the vascular wall, the Na,K-ATPase plays an important role in the control of arterial tone. Through cSrc signaling, it contributes to the modulation of Ca2+ sensitivity in vascular smooth muscle cells. This review focuses on the potential implication of Na,K-ATPase-dependent intracellular signaling pathways in severe vascular disorders; ischemic stroke, familial migraine, and arterial hypertension. We propose similarity in the detrimental Na,K-ATPase-dependent signaling seen in these pathological conditions. The review includes a retrospective proteomics analysis investigating temporal changes after ischemic stroke. The analysis revealed that the expression of Na,K-ATPase α isoforms is down-regulated in the days and weeks following reperfusion, while downstream Na,K-ATPase-dependent cSrc kinase is up-regulated. These results are important since previous studies have linked the Na,K-ATPase-dependent cSrc signaling to futile recanalization and vasospasm after stroke. The review also explores a link between the Na,K-ATPase and migraine with aura, as reduced expression or pharmacological inhibition of the Na,K-ATPase leads to cSrc kinase signaling up-regulation and cerebral hypoperfusion. The review discusses the role of an endogenous cardiotonic steroid-like compound, ouabain, which binds to the Na,K-ATPase and initiates the intracellular cSrc signaling, in the pathophysiology of arterial hypertension. Currently, our understanding of the precise control mechanisms governing the Na,K-ATPase/cSrc kinase regulation in the vascular wall is limited. Understanding the role of vascular Na,K-ATPase signaling is essential for developing targeted treatments for cerebrovascular disorders and hypertension, as the Na,K-ATPase is implicated in the pathogenesis of these conditions and may contribute to their comorbidity.
Collapse
Affiliation(s)
- Christian Staehr
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, Aarhus, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Danish Cardiovascular Academy, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| | - Vladimir V. Matchkov
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| |
Collapse
|
3
|
Takada Y, Kaneko K. Automated machine learning approach for developing a quantitative structure-activity relationship model for cardiac steroid inhibition of Na +/K +-ATPase. Pharmacol Rep 2023:10.1007/s43440-023-00508-x. [PMID: 37354314 DOI: 10.1007/s43440-023-00508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Quantitative structure-activity relationship (QSAR) modeling is a method of characterizing the relationship between chemical structures and biological activity. Automated machine learning enables computers to learn from large datasets and can be used for chemoinformatics. Cardiac steroids (CSs) inhibit the activity of Na+/K+-ATPase (NKA) in several species, including humans, since the binding pocket in which NKA binds to CSs is highly conserved. CSs are used to treat heart disease and have been developed into anticancer drugs for use in clinical trials. Novel CSs are, therefore, frequently synthesized and their activities evaluated. The purpose of this study is to develop a QSAR model via automated machine learning to predict the potential inhibitory activity of compounds without performing experiments. METHODS The chemical structures and inhibitory activities of 215 CS derivatives were obtained from the scientific literature. Predictive QSAR models were constructed using molecular descriptors, fingerprints, and biological activities. RESULTS The best predictive QSAR models were selected based on the LogLoss value. Using these models, the Matthews correlation coefficient, F1 score, and area under the curve of the test dataset were 0.6729, 0.8813, and 0.8812, respectively. Next, we showed automated construction of the predictive models for CS derivatives, which may be useful for identifying novel CSs suitable for candidate drug development. CONCLUSION The automated machine learning-based QSAR method developed here should be applicable for the time-efficient construction of predictive models using only a small number of compounds.
Collapse
Affiliation(s)
- Yohei Takada
- Corporate Planning Department, Otsuka Holdings Co., Ltd, Shinagawa Grand Central Tower 2-16-4 Konan, Minato-ku, Tokyo, 108-8241, Japan.
| | - Kazuhiro Kaneko
- Headquarters of Clinical Development, Otsuka Pharmaceutical Co., Ltd, Shinagawa Grand Central Tower 2-16-4 Konan, Minato-ku, Tokyo, 108-8241, Japan
| |
Collapse
|
4
|
Bharathi G.S S, Sundaram S S, S P, V L, Sherief S H, R D, S S. Congestive Heart Failure: Insight on Pharmacotherapy. ADVANCEMENTS IN CARDIOVASCULAR RESEARCH AND THERAPEUTICS: MOLECULAR AND NUTRACEUTICAL PERSPECTIVES 2022:25-37. [DOI: 10.2174/9789815050837122010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Congestive Heart Failure (CHF) is the inability of the heart to supply blood to other organs and tissues to meet its need for metabolism. Over 64.3 million people around the world live with heart failure. Some of the common causes of CHF include myocardial infarction, increase in blood pressure, atrial fibrillation and cardiomyopathy. The complete etiology of CHF is complex. Patients with HF often experience fatigue, dyspnea, and pain, lack of energy, cognitive impairment and depression. Left ventricular ejection fraction (LVEF) is a measure of the amount of blood pumped from the heart's left ventricle during each contraction. It is used as a phenotypic marker in the indication of the pathophysiological mechanism and sensitivity to therapy. The pathogenesis of HF with low ejection fraction is that of a progressive state. The various classes of drugs used clinically for the treatment of congestive heart failure are diuretics, beta blockers, ACE inhibitors and vasopressin receptor antagonists. The management of Heart failure includes acute decompensation, chronic management and palliative care. Cardiac glycosides are a varied group of naturally obtained compounds used in the treatment of CHF. They exhibit their action by binding to and inhibiting Na+/K+-ATPase. Then, they consequently increase the force of myocardial contraction. The primary structure of these drugs is a steroidal framework, which is the pharmacophoric component that is responsible for their activity. The most familiar cardiac glycosides are digitoxin, digoxin, oleandrin, bufalin, ouabain, marinobufagenin, telocinobufagin and aerobufagenin. Among other cardiac glycosides, digoxin has been proven to improve symptom alleviation, functional capacity, quality of life and exercise tolerance in patients with mild to moderate HF in clinical trials. Early detection and prevention interventions, as well as lifestyle changes, are essential.
Collapse
Affiliation(s)
- Sri Bharathi G.S
- Nandha College of Pharmacy,Department of Pharmacology,Erode, Tamilnadu,India
| | - Sakthi Sundaram S
- Nandha College of Pharmacy,Department of Pharmacology,Erode, Tamilnadu,India
| | - Prabhakaran S
- Nandha College of Pharmacy,Department of Pharmacology,Erode, Tamilnadu,India
| | - Lalitha V
- Nandha College of Pharmacy,Department of Pharmacology,Erode, Tamilnadu,India
| | - Haja Sherief S
- Nandha College of Pharmacy,Department of Pharmacology,Erode, Tamilnadu,India
| | - Duraisami R
- Nandha College of Pharmacy,Department of Pharmacognosy,Erode Tamilnadu,India
| | - Sengottuvelu S
- Nandha College of Pharmacy,Department of Pharmacology,Erode, Tamilnadu,India
| |
Collapse
|
5
|
Cai J, Zhang BD, Li YQ, Zhu WF, Akihisa T, Kikuchi T, Xu J, Liu WY, Feng F, Zhang J. Cardiac glycosides from the roots of Streblus asper Lour. with activity against Epstein-Barr virus lytic replication. Bioorg Chem 2022; 127:106004. [PMID: 35843015 DOI: 10.1016/j.bioorg.2022.106004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
Abstract
Cardiac glycosides (CGs) show potential broad-spectrum antiviral activity by targeting cellular host proteins. Herein are reported the isolation of five new (1-5) and eight known (7-13) CGs from the roots of Streblus asper Lour. Of these compounds 1 and 7 exhibited inhibitory action against EBV early antigen (EA) expression, with half-maximal effective concentration values (EC50) being less than 60 nM, and they also showed selectivity, with selectivity index (SI) values being 56.80 and 103.17, respectively. Preliminary structure activity relationships indicated that the C-10 substituent, C-5 hydroxy groups, and C-3 sugar unit play essential roles in the mediation of the inhibitory activity of CGs against EBV. Further enzyme experiments demonstrated that these compounds might inhibit ion pump function and thereby change the intracellular signal transduction pathway by binding to Na+/K+-ATPase, as validated by simulated molecular docking. This study is the first report that CGs can effectively limit EBV lytic replication, and the observations made in this study may be of value for lead compound development.
Collapse
Affiliation(s)
- Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Bo-Dou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yu-Qi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wan-Fang Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wen-Yuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China.
| |
Collapse
|
6
|
Ren J, Gao X, Guo X, Wang N, Wang X. Research Progress in Pharmacological Activities and Applications of Cardiotonic Steroids. Front Pharmacol 2022; 13:902459. [PMID: 35721110 PMCID: PMC9205219 DOI: 10.3389/fphar.2022.902459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/11/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiotonic steroids (CTS) are a group of compounds existing in animals and plants. CTS are commonly referred to cardiac glycosides (CGs) which are composed of sugar residues, unsaturated lactone rings and steroid cores. Their traditional mechanism of action is to inhibit sodium-potassium ATPase to strengthen the heart and regulate heart rate, so it is currently widely used in the treatment of cardiovascular diseases such as heart failure and tachyarrhythmia. It is worth noticing that recent studies have found an avalanche of inestimable values of CTS applications in many fields such as anti-tumor, anti-virus, neuroprotection, and immune regulation through multi-molecular mechanisms. Thus, the pharmacological activities and applications of CTS have extensive prospects, which would provide a direction for new drug research and development. Here, we review the potential applications of CTS in cardiovascular system and other systems. We also provide suggestions for new clinical practical strategies of CTS, for many diseases. Four main themes will be discussed, in relation to the impact of CTS, on 1) tumors, 2) viral infections, 3) nervous system diseases and 4) immune-inflammation-related diseases.
Collapse
Affiliation(s)
- Junwei Ren
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xinyuan Gao
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xi Guo
- Thyroid Surgery, Affiliated Cancer Hospital, Harbin Medical University, Harbin, China
| | - Ning Wang
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Zhai J, Dong X, Yan F, Guo H, Yang J. Oleandrin: A Systematic Review of its Natural Sources, Structural Properties, Detection Methods, Pharmacokinetics and Toxicology. Front Pharmacol 2022; 13:822726. [PMID: 35273501 PMCID: PMC8902680 DOI: 10.3389/fphar.2022.822726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Oleandrin is a highly lipid-soluble cardiac glycoside isolated from the plant Nerium oleander (Apocynaceae) and is used as a traditional herbal medicine due to its excellent pharmacological properties. It is widely applied for various disease treatments, such as congestive heart failure. Recently, oleandrin has attracted widespread attention due to its extensive anti-cancer and novel anti-viral effects. However, oleandrin has a narrow therapeutic window and exhibits various toxicities, especially typical cardiotoxicity, which is often fatal. This severe toxicity and low polarity have significantly hindered its application in the clinic. This review describes natural sources, structural properties, and detection methods of oleandrin. Based on reported poisoning cases and sporadic animal experiments, the pharmacokinetic characteristics of oleandrin are summarized, so as to infer some possible phenomena, such as enterohepatic circulation. Moreover, the relevant factors affecting the pharmacokinetics of oleandrin are analyzed, and some research approaches that may ameliorate the pharmacokinetic behavior of oleandrin are proposed. With the toxicology of oleandrin being thoroughly reviewed, the development of safe clinical applications of oleandrin may be possible given potential research strategies to decrease toxicity.
Collapse
Affiliation(s)
- Jinxiao Zhai
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
- *Correspondence: Xiaoru Dong,
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hongsong Guo
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Jinling Yang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
8
|
Krueger AJ, Robinson EA, Weissling TJ, Vélez AM, Anderson TD. Cardenolide, Potassium, and Pyrethroid Insecticide Combinations Reduce Growth and Survival of Monarch Butterfly Caterpillars (Lepidoptera: Nymphalidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2370-2380. [PMID: 34532742 DOI: 10.1093/jee/toab169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 06/13/2023]
Abstract
The monarch butterfly, Danaus plexippus L., has evolved to be insensitive to milkweed cardenolides via genetic modifications of Na+/K+-ATPase. There is concern for insecticide exposures near agriculture, with little information on monarch caterpillar toxicology. It is unclear how cardenolide insensitivity may affect the sensitivity of monarch caterpillars to pyrethroid insecticides. Additionally, potassium fertilizers may affect monarch caterpillar physiology and cardenolide sequestration. Here, we investigated the growth, survival, and development of caterpillars exposed to the cardenolide ouabain, bifenthrin, and potassium chloride (KCl) alone and in combination. Caterpillars were either exposed to 1) ouabain from third- to fifth-instar stage, 2) KCl at fifth-instar stage, 3) KCl and bifenthrin at fifth-instar stage, or 4) combinations of ouabain at third-instar stage + KCl + bifenthrin at fifth-instar stage. Caterpillar weight, diet consumption, frass, and survival were recorded for the duration of the experiments. It was observed that 1-3 mg ouabain/g diet increased body weight and diet consumption, whereas 50 mg KCl/g diet decreased body weight and diet consumption. Caterpillars feeding on KCl and treated with 0.2 µg/µl bifenthrin consumed significantly less diet compared to individuals provided untreated diet. However, there was no effect on survival or body weight. Combinations of KCl + ouabain did not significantly affect caterpillar survival or body weight following treatment with 0.1 µg/µl bifenthrin. At the concentrations tested, there were no effects observed for bifenthrin sensitivity with increasing cardenolide or KCl concentrations. Further studies are warranted to understand how milkweed-specific cardenolides, at increasing concentrations, and agrochemical inputs can affect monarch caterpillar physiology near agricultural landscapes.
Collapse
Affiliation(s)
- Annie J Krueger
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | - Emily A Robinson
- Department of Statistics, University of Nebraska, Lincoln, NE, USA
| | | | - Ana M Vélez
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
9
|
Cardiac Glycosides as Autophagy Modulators. Cells 2021; 10:cells10123341. [PMID: 34943848 PMCID: PMC8699753 DOI: 10.3390/cells10123341] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022] Open
Abstract
Drug repositioning is one of the leading strategies in modern therapeutic research. Instead of searching for completely novel substances and demanding studies of their biological effects, much attention has been paid to the evaluation of commonly used drugs, which could be utilized for more distinct indications than they have been approved for. Since treatment approaches for cancer, one of the most extensively studied diseases, have still been very limited, great effort has been made to find or repurpose novel anticancer therapeutics. One of these are cardiac glycosides, substances commonly used to treat congestive heart failure or various arrhythmias. Recently, the antitumor properties of cardiac glycosides have been discovered and, therefore, these compounds are being considered for anticancer therapy. Their mechanism of antitumor action seems to be rather complex and not fully uncovered yet, however, autophagy has been confirmed to play a key role in this process. In this review article, we report on the up-to-date knowledge of the anticancer activity of cardiac glycosides with special attention paid to autophagy induction, the molecular mechanisms of this process, and the potential employment of this phenomenon in clinical practice.
Collapse
|
10
|
de Oliveira GC, Rocha SC, da Silva Lopes MA, Paixão N, Alves SLG, Pessoa MTC, Noël F, Quintas LEM, Barbosa LA, Villar JAFP, Cortes VF. Implications of Synthetic Modifications of the Cardiotonic Steroid Lactone Ring on Cytotoxicity. J Membr Biol 2021; 254:487-497. [PMID: 34128090 DOI: 10.1007/s00232-021-00186-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/08/2021] [Indexed: 01/24/2023]
Abstract
Na,K-ATPase (NKA) and cardiotonic steroids (CTS) have shown potent cytotoxic and anticancer effects. Here, we have synthesized a series of CTS digoxin derivatives (γ-benzylidene) with substitutions in the lactone ring and evaluated the cytotoxicity caused by digoxin derivatives in tumor and non-tumor cells lines, as well as their effects on NKA. The cytotoxicity assay was determined in HeLa, A549, and WI-26 VA4 after they were treated for 48 h with increased concentrations of CTS. The effects of CTS on NKA activity and immunoblotting of α1 and β1 isoforms were evaluated at IC50 concentrations in A549 cell membrane. NKA activity from mouse brain cortex was also measured. The majority of CTS exhibited low cytotoxicity in tumor and non-tumor cells, presenting IC50 values at micromolar concentrations, while digoxin showed cytotoxicity at nanomolar concentrations. BD-15 presented the lowest IC50 value (8 µM) in A549 and reduced its NKA activity in 28%. In contrast, BD-7 was the compound that most inhibited NKA (56% inhibition) and presented high IC50 value for A549. In mouse cortex, only BD-15 modulated the enzyme activity in a concentration-dependent inhibition curve. These results demonstrate that the cytotoxicity of these compounds is not related to NKA inhibition. The substitutions in the lactone ring of digoxin led to an increase in the cytotoxic concentration in tumor cells, which may not be interesting for cancer, but it has the advantage of increasing the therapeutic margin of these molecules when compared to classic CTS, and can be used safely in research for other diseases.
Collapse
Affiliation(s)
- Gisele Capanema de Oliveira
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil
| | - Sayonarah Carvalho Rocha
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil
| | - Miliane Alves da Silva Lopes
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Av Carlos Chagas, 373, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Natasha Paixão
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Av Carlos Chagas, 373, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Silmara Lúcia Grego Alves
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del Rei, Campus Centro Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil
| | - Marco Túlio Corrêa Pessoa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil.,Marshall Institute for Interdisciplinary Research, Huntington, WV, USA
| | - François Noël
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Av Carlos Chagas, 373, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luis Eduardo M Quintas
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Av Carlos Chagas, 373, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Leandro Augusto Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil
| | - José Augusto Ferreira Perez Villar
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del Rei, Campus Centro Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil.
| | - Vanessa Faria Cortes
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
11
|
Antiproliferative and antimetastatic characterization of an exo-heterocyclic androstane derivative against human breast cancer cell lines. Biomed Pharmacother 2021; 140:111728. [PMID: 34020244 DOI: 10.1016/j.biopha.2021.111728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer in general, and specifically gynaecological neoplasms, represents a major public health issue worldwide. Based on the effect of sex hormones on breast tumorigenesis and prognosis, as well as on the development of breast cancer metastases, modification of the steroid skeleton is a hotspot of research for novel anticancer agents. Numerous recent studies support that minor modifications of the androstane skeleton yield potent antiproliferative and antimetastatic drug candidates. The aim of the present study was to assess the antitumor and antimetastatic properties, as well as the mechanism of action of a D-ring-modified exo-heterocyclic androstadiene derivative named 17APAD. The test compound was found to be highly selective towards human breast cancer-derived cell lines (MCF-7, T47D, MDA-MB-361, MDA-MB-231) compared to non-cancerous fibroblast cells (NIH/3T3), and exerted superior effect compared to the clinically applied reference drug cisplatin. Changes in MCF-7- and MDA-MB-231 cell morphology and membrane integrity induced by the test substance were assessed by fluorescent double staining. Cell cycle disturbances were analyzed by flow cytometry, and concentration-dependent alterations were detected on breast cancer cell lines. Mitochondrial apoptosis induced by the test compound was demonstrated by JC-1 staining. Inhibitory effects on metastasis formation, including the inhibition of migration, invasion and intravasation were investigated in 2D and 3D models. Significant anti-migratory and anti-invasive effects on MCF-7 and MDA-MB-231 cells were detected after 24 h exposure in 2D wound healing and Boyden-chamber assays. The anti-intravasative properties of 17APAD were evident after 4 h of incubation in a co-culture 3D circular chemorepellent-induced defects (CCID) assay, and the level of inhibition at concentrations ≥2 µM was comparable to that exerted by the focal adhesion kinase inhibitor defactinib. Single cell mass cytometry revealed that chemosensitive subpopulations of MDA-MB-231 cells engaged to apoptosis were less positive for EGFR, CD274, and CD326, while the percentage of cells positive for GLUT1, MCT4, Pan-Keratin, CD66(a,c,e), Galectin-3 and TMEM45A increased in response to 17APAD treatment. Finally, the novel androstane analogue 17APAD had an outstanding inhibitory effect on tumour growth in the 4T1 orthotopic murine breast cancer model in vivo after 2 weeks of intraperitoneal administration. These findings support that substitution of the androsta-5,16-diene framework with a N-containing heterocyclic moiety at C17 position yields a molecular entity rational to be considered for design and synthesis of novel, effective antitumor agents, and 17APAD is worth further investigation as a promising anticancer drug candidate.
Collapse
|
12
|
Singh Y, Nimoriya R, Rawat P, Mishra DK, Kanojiya S. Structural Analysis of Diastereomeric Cardiac Glycosides and Their Genins Using Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1205-1214. [PMID: 33818079 DOI: 10.1021/jasms.1c00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultraperformance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) is an economical and indispensable tool in natural product research to investigate novel metabolites, biomarker discovery, chemical diversity exploration, and structure elucidation. In this study, the structural analysis of 38 naturally occurring cardiac glycosides (CGs) in various tissues of Nerium oleander was achieved by the extensive use of mass spectrometry. The chemical diversity of CGs was described on the basis of characteristic MS/MS fragmentation patterns, accurate mass measurement, and published scientific information on CGs from Nerium oleander. It was observed that only six genins, viz., Δ16anhydrogitoxigenin, Δ16adynerigenin, gitoxigenin, oleandrigenin, digitoxigenin, and adynerigenine, produce 38 diverse chemical structures of CGs. Among them, 20 were identified as diastereomers having a difference in a sugar (l-oleandrose, β-d-diginose, and β-d-sarmentose) unit. However, the differentiation of diastereomeric CGs was not possible by only MS/MS fragments. Thus, the diastereomer's chromatographic elution order was assigned on the basis of the relative retention time (RRt) of two reference standards (odoroside A and oleandrin) among their diastereomers. Besides this, the in-source fragmentation of CGs and the MS/MS of m/z 325 and 323 disaccharide daughter ions also exposed the intrinsic structure information on the sugar units. The daughter ions m/z 162, 145, 113, 95, and 85 in MS/MS spectra indicated the abundance of l-oleandrose, β-d-diginose, and β-d-sarmentose sugars. At the same time, m/z 161, 143, 129, and 87 product ions confirmed the presence of a β-d-digitalose unit. As a result, the UPLC-ESI/TQD system was successfully utilized for the structure characterization of CGs in Nerium oleander tissues.
Collapse
Affiliation(s)
| | | | - Priyanka Rawat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | | | - Sanjeev Kanojiya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
13
|
Souza E Souza KFC, Moraes BPT, Paixão ICNDP, Burth P, Silva AR, Gonçalves-de-Albuquerque CF. Na +/K +-ATPase as a Target of Cardiac Glycosides for the Treatment of SARS-CoV-2 Infection. Front Pharmacol 2021; 12:624704. [PMID: 33935717 PMCID: PMC8085498 DOI: 10.3389/fphar.2021.624704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), identified for the first time in Wuhan, China, causes coronavirus disease 2019 (COVID-19), which moved from epidemic status to becoming a pandemic. Since its discovery in December 2019, there have been countless cases of mortality and morbidity due to this virus. Several compounds such as chloroquine, hydroxychloroquine, lopinavir-ritonavir, and remdesivir have been tested as potential therapies; however, no effective treatment is currently recommended by regulatory agencies. Some studies on respiratory non-enveloped viruses such as adenoviruses and rhinovirus and some respiratory enveloped viruses including human respiratory syncytial viruses, influenza A, parainfluenza, SARS-CoV, and SARS-CoV-2 have shown the antiviral activity of cardiac glycosides, correlating their effect with Na+/K+-ATPase (NKA) modulation. Cardiac glycosides are secondary metabolites used to treat patients with cardiac insufficiency because they are the most potent inotropic agents. The effects of cardiac glycosides on NKA are dependent on cell type, exposure time, and drug concentration. They may also cause blockage of Na+ and K+ ionic transport or trigger signaling pathways. The antiviral activity of cardiac glycosides is related to cell signaling activation through NKA inhibition. Nuclear factor kappa B (NFκB) seems to be an essential transcription factor for SARS-CoV-2 infection. NFκB inhibition by cardiac glycosides interferes directly with SARS-CoV-2 yield and inflammatory cytokine production. Interestingly, the antiviral effect of cardiac glycosides is associated with tyrosine kinase (Src) activation, and NFκB appears to be regulated by Src. Src is one of the main signaling targets of the NKA α-subunit, modulating other signaling factors that may also impair viral infection. These data suggest that Src-NFκB signaling modulated by NKA plays a crucial role in the inhibition of SARS-CoV-2 infection. Herein, we discuss the antiviral effects of cardiac glycosides on different respiratory viruses, SARS-CoV-2 pathology, cell signaling pathways, and NKA as a possible molecular target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Kauê Francisco Corrêa Souza E Souza
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Neûrologia/Neurociências, Hospital Antônio Pedro Universidade Federal Fluminense, Niterói, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Biologia Celular e Molecular (PPGBMC), Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Steroid Glycosides Hyrcanoside and Deglucohyrcanoside: On Isolation, Structural Identification, and Anticancer Activity. Foods 2021; 10:foods10010136. [PMID: 33440629 PMCID: PMC7827417 DOI: 10.3390/foods10010136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiac glycosides (CGs) represent a group of sundry compounds of natural origin. Most CGs are potent inhibitors of Na+/K+-ATPase, and some are routinely utilized in the treatment of various cardiac conditions. Biological activities of other lesser known CGs have not been fully explored yet. Interestingly, the anticancer potential of some CGs was revealed and thereby, some of these compounds are now being evaluated for drug repositioning. However, high systemic toxicity and low cancer cell selectivity of the clinically used CGs have severely limited their utilization in cancer treatment so far. Therefore, in this study, we have focused on two poorly described CGs: hyrcanoside and deglucohyrcanoside. We elaborated on their isolation, structural identification, and cytotoxicity evaluation in a panel of cancerous and noncancerous cell lines, and on their potential to induce cell cycle arrest in the G2/M phase. The activity of hyrcanoside and deglucohyrcanoside was compared to three other CGs: ouabain, digitoxin, and cymarin. Furthermore, by in silico modeling, interaction of these CGs with Na+/K+-ATPase was also studied. Hopefully, these compounds could serve not only as a research tool for Na+/K+-ATPase inhibition, but also as novel cancer therapeutics.
Collapse
|
15
|
Mirzaei M, Züst T, Younkin GC, Hastings AP, Alani ML, Agrawal AA, Jander G. Less Is More: a Mutation in the Chemical Defense Pathway of Erysimum cheiranthoides (Brassicaceae) Reduces Total Cardenolide Abundance but Increases Resistance to Insect Herbivores. J Chem Ecol 2020; 46:1131-1143. [PMID: 33180277 DOI: 10.1007/s10886-020-01225-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022]
Abstract
Erysimum cheiranthoides L (Brassicaceae; wormseed wallflower) accumulates not only glucosinolates, which are characteristic of the Brassicaceae, but also abundant and diverse cardenolides. These steroid toxins, primarily glycosylated forms of digitoxigenin, cannogenol, and strophanthidin, inhibit the function of essential Na+/K+-ATPases in animal cells. We screened a population of 659 ethylmethanesulfonate-mutagenized E. cheiranthoides plants to identify isolates with altered cardenolide profiles. One mutant line exhibited 66% lower cardenolide content, resulting from greatly decreased cannogenol and strophanthidin glycosides, partially compensated for by increases in digitoxigenin glycosides. This phenotype was likely caused by a single-locus recessive mutation, as evidenced by a wildtype phenotype of F1 plants from a backcross, a 3:1 wildtype:mutant segregation in the F2 generation, and genetic mapping of the altered cardenolide phenotype to one position in the genome. The mutation created a more even cardenolide distribution, decreased the average cardenolide polarity, but did not impact most glucosinolates. Growth of generalist herbivores from two feeding guilds, Myzus persicae Sulzer (Hemiptera: Aphididae; green peach aphid) and Trichoplusia ni Hübner (Lepidoptera: Noctuidae; cabbage looper), was decreased on the mutant line compared to wildtype. Both herbivores accumulated cardenolides in proportion to the plant content, with T. ni accumulating higher total concentrations than M. persicae. Helveticoside, a relatively abundant cardenolide in E. cheiranthoides, was not detected in M. persicae feeding on these plants. Our results support the hypothesis that increased digitoxigenin glycosides provide improved protection against M. persicae and T. ni, despite an overall decrease in cardenolide content of the mutant line.
Collapse
Affiliation(s)
- Mahdieh Mirzaei
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY, 14853, USA
| | - Tobias Züst
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013, Bern, Switzerland
| | | | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Martin L Alani
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY, 14853, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Ayogu JI, Odoh AS. Prospects and Therapeutic Applications of Cardiac Glycosides in Cancer Remediation. ACS COMBINATORIAL SCIENCE 2020; 22:543-553. [PMID: 32786321 DOI: 10.1021/acscombsci.0c00082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Active metabolites from natural sources are the predominant molecular targets in numerous biological studies owing to their appropriate compatibility with biological systems and desirable selective toxicities. Thus, their potential for therapeutic development could span a broad scope of disease areas, including pathological and neurological dysfunctions. Cardiac glycosides are a unique class of specialized metabolites that have been extensively applied as therapeutic agents for the treatment of numerous heart conditions, and more recently, they have also been explored as probable antitumor agents. They are a class of naturally derived compounds that bind to and inhibit Na+/K+-ATPase. This study presents cardiac glycosides and their analogues with highlights on their applications, challenges, and prospects as lead compounds for cancer treatment.
Collapse
Affiliation(s)
- Jude I. Ayogu
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka 410001, Nigeria
- Department of Chemistry, School of Physical and Chemical Science, University of Canterbury, Christchurch 8041, New Zealand
| | - Amaechi S. Odoh
- Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
17
|
Pederson PJ, Cai S, Carver C, Powell DR, Risinger AL, Grkovic T, O'Keefe BR, Mooberry SL, Cichewicz RH. Triple-Negative Breast Cancer Cells Exhibit Differential Sensitivity to Cardenolides from Calotropis gigantea. JOURNAL OF NATURAL PRODUCTS 2020; 83:2269-2280. [PMID: 32649211 PMCID: PMC7540184 DOI: 10.1021/acs.jnatprod.0c00423] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Triple-negative breast cancers (TNBC) are aggressive and heterogeneous cancers that lack targeted therapies. We implemented a screening program to identify new leads for subgroups of TNBC using diverse cell lines with different molecular drivers. Through this program, we identified an extract from Calotropis gigantea that caused selective cytotoxicity in BT-549 cells as compared to four other TNBC cell lines. Bioassay-guided fractionation of the BT-549 selective extract yielded nine cardenolides responsible for the selective activity. These included eight known cardenolides and a new cardenolide glycoside. Structure-activity relationships among the cardenolides demonstrated a correlation between their relative potencies toward BT-549 cells and Na+/K+ ATPase inhibition. Calotropin, the compound with the highest degree of selectivity for BT-549 cells, increased intracellular Ca2+ in sensitive cells to a greater extent than in the resistant MDA-MB-231 cells. Further studies identified a second TNBC cell line, Hs578T, that is also highly sensitive to the cardenolides, and mechanistic studies were conducted to identify commonalities among the sensitive cell lines. Experiments showed that both cardenolide-sensitive cell lines expressed higher mRNA levels of the Na+/Ca2+ exchanger NCX1 than resistant TNBC cells. This suggests that NCX1 could be a biomarker to identify TNBC patients that might benefit from the clinical administration of a cardiac glycoside for anticancer indications.
Collapse
Affiliation(s)
- Petra J Pederson
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Shengxin Cai
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chase Carver
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Douglas R Powell
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Tanja Grkovic
- Natural Products Support Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Barry R O'Keefe
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Susan L Mooberry
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
18
|
Michalak K, Rárová L, Kubala M, Štenclová T, Strnad M, Wicha J. Synthesis and evaluation of Na +/K +-ATP-ase inhibiting and cytotoxic in vitro activities of oleandrigenin and its selected 17β-(butenolidyl)- and 17β-(3-furyl)- analogues. Eur J Med Chem 2020; 202:112520. [PMID: 32645647 DOI: 10.1016/j.ejmech.2020.112520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Natural cardiac-active principles built upon the 14,16β-dihydroxy-5β,14β-androstane core and bearing a heterocyclic substituent at 17β, in particular, a cardenolide - oleandrin and a bufadienolide - bufotalin, are receiving a great deal of attention as potential anticancer drugs. The densely substituted and sterically shielded ring D is the particular structural feature of these compounds. The first synthesis of oleandrigenin from easily available steroid starting material is reported here. Furthermore, selected 17β-(4-butenolidyl)- and 17β-(3-furyl)-14,16β-dihydroxy-androstane derivatives were en route synthesized and examined for their Na+/K+-ATP-ase inhibitory properties as well as cytotoxic activities in normal and cancer cell lines. It was found that the furyl-analogue of oleandrigenin/bufatalin (7) and some related 17-(3-furyl)- derivatives (19, 21) show remarkably high Na+/K+-ATP-ase inhibitory activity as well as significant cytotoxicity in vitro. In addition, oleandrigenin 2 compared to derivatives 21 and 25 induced strong apoptosis in human cervical carcinoma HeLa cells after 24 h of treatment.
Collapse
Affiliation(s)
- Karol Michalak
- Institute of Organic Chemistry, Polish Academy of Sciences, Ul. Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Lucie Rárová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic; Department of Neurology, University Hospital in Olomouc, I. P. Pavlova 6, CZ-775 20, Olomouc, Czech Republic
| | - Martin Kubala
- Department of Experimental Physics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 41, Olomouc, Czech Republic
| | - Tereza Štenclová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic; Department of Neurology, University Hospital in Olomouc, I. P. Pavlova 6, CZ-775 20, Olomouc, Czech Republic.
| | - Jerzy Wicha
- Institute of Organic Chemistry, Polish Academy of Sciences, Ul. Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
19
|
Badalamenti N, Rosselli S, Zito P, Bruno M. Phytochemical profile and insecticidal activity of Drimia pancration (Asparagaceae) against adults of Stegobium paniceum (Anobiidae). Nat Prod Res 2020; 35:4468-4478. [PMID: 32162536 DOI: 10.1080/14786419.2020.1729154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chemical and spectroscopic investigation of the bulbs of Drimia pancration resulted in the isolation of one known flavonol (1), never isolated from this plant species, and of three previously described steroidal saponins (2-4), but whose configuration at their stereogenic centres was not clearly determined. By mean of 1H NMR, 13C NMR, nuclear overhauser effects (NOE) and two-dimensional NMR spectra the full stereochemical structures of compounds 2-4 were proved and all the 1H and 13C signals were assigned. Furthermore, the methanol and butanol extracts of D. pancration were tested against adults of Stegobium paniceum beetles. Despite the non-significant results regarding the repellent activity and contact toxicity, promising results were obtained from the feeding tests.
Collapse
Affiliation(s)
- Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Sergio Rosselli
- Dipartimento di Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, Palermo, Italy.,Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), Università di Palermo, Palermo, Italy
| | - Pietro Zito
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy.,Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), Università di Palermo, Palermo, Italy
| |
Collapse
|
20
|
Michalak K, Rárová L, Kubala M, Čechová P, Strnad M, Wicha J. Synthesis and evaluation of cytotoxic and Na+/K+-ATP-ase inhibitory activity of selected 5α-oleandrigenin derivatives. Eur J Med Chem 2019; 180:417-429. [DOI: 10.1016/j.ejmech.2019.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
|
21
|
El-Seedi HR, Khalifa SAM, Taher EA, Farag MA, Saeed A, Gamal M, Hegazy MEF, Youssef D, Musharraf SG, Alajlani MM, Xiao J, Efferth T. Cardenolides: Insights from chemical structure and pharmacological utility. Pharmacol Res 2019; 141:123-175. [PMID: 30579976 DOI: 10.1016/j.phrs.2018.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/07/2018] [Accepted: 12/18/2018] [Indexed: 02/08/2023]
Abstract
Cardiac glycosides (CGs) are a class of naturally occurring steroid-like compounds, and members of this class have been in clinical use for more than 1500 years. They have been used in folk medicine as arrow poisons, abortifacients, heart tonics, emetics, and diuretics as well as in other applications. The major use of CGs today is based on their ability to inhibit the membrane-bound Na+/K+-ATPase enzyme, and they are regarded as an effective treatment for congestive heart failure (CHF), cardiac arrhythmia and atrial fibrillation. Furthermore, increasing evidence has indicated the potential cytotoxic effects of CGs against various types of cancer. In this review, we highlight some of the structural features of this class of natural products that are crucial for their efficacy, some methods of isolating these compounds from natural resources, and the structural elucidation tools that have been used. We also describe their physicochemical properties and several modern biotechnological approaches for preparing CGs that do not require plant sources.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-75123, Uppsala, Sweden; Chemistry Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; H. E. J. Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden
| | - Eman A Taher
- National Organization for Drug Control and Research (NODCAR), P.O. Box 29, Cairo, Egypt; Department of Chemistry, Royal Institute of Technology, KTH, Sweden
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., 11562 Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Aamer Saeed
- Chemistry Department, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mohamed Gamal
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Diaa Youssef
- Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Syed G Musharraf
- H. E. J. Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muaaz M Alajlani
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-75123, Uppsala, Sweden
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
22
|
Botelho AFM, Pierezan F, Soto-Blanco B, Melo MM. A review of cardiac glycosides: Structure, toxicokinetics, clinical signs, diagnosis and antineoplastic potential. Toxicon 2018; 158:63-68. [PMID: 30529380 DOI: 10.1016/j.toxicon.2018.11.429] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/22/2018] [Accepted: 11/22/2018] [Indexed: 01/25/2023]
Abstract
Cardiac glycosides (CGs) are secondary compounds found in plants and amphibians and are widely distributed in nature with potential cardiovascular action. Their mechanism is based on the blockage of the heart's sodium potassium ATPase, with a positive inotropic effect. Some of the most well-known CGs are digoxin, ouabain, oleandrin, and bufalin. They have similar chemical structures: a lactone ring, steroid ring, and sugar moiety. Digoxin, ouabain, and oleandrin are classified as cardenolides, consisting of a lactone ring with five carbons, while bufalin is classified as bufodienolides, with a six-carbon ring. Small structural differences determine variations in the toxicokinetics and toxicodynamics of such substances. Most case reports of poisoning caused by CGs are associated with cardiovascular toxicity, causing a variety of arrhythmias and lesions in the heart tissue. Experimental studies also describe important similarities among different CGs, especially regarding species sensitivity. Recent studies furthermore focus on their antineoplastic potential, with controversial results. Data from research studies and case reports were reviewed to identify the main characteristics of the CGs, including toxicokinetics, toxicodynamics, clinical signs, electrocardiographic, pathological findings, antineoplastic potential and the main techniques used for diagnostic purposes.
Collapse
Affiliation(s)
- Ana Flávia M Botelho
- Department of Veterinary Clinic and Surgery, Veterinary College, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 30123-970, Brazil
| | - Felipe Pierezan
- Department of Veterinary Clinic and Surgery, Veterinary College, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 30123-970, Brazil
| | - Benito Soto-Blanco
- Department of Veterinary Clinic and Surgery, Veterinary College, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 30123-970, Brazil.
| | - Marília Martins Melo
- Department of Veterinary Clinic and Surgery, Veterinary College, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 30123-970, Brazil
| |
Collapse
|
23
|
Petschenka G, Fei CS, Araya JJ, Schröder S, Timmermann BN, Agrawal AA. Relative Selectivity of Plant Cardenolides for Na +/K +-ATPases From the Monarch Butterfly and Non-resistant Insects. FRONTIERS IN PLANT SCIENCE 2018; 9:1424. [PMID: 30323822 PMCID: PMC6172315 DOI: 10.3389/fpls.2018.01424] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/07/2018] [Indexed: 05/31/2023]
Abstract
A major prediction of coevolutionary theory is that plants may target particular herbivores with secondary compounds that are selectively defensive. The highly specialized monarch butterfly (Danaus plexippus) copes well with cardiac glycosides (inhibitors of animal Na+/K+-ATPases) from its milkweed host plants, but selective inhibition of its Na+/K+-ATPase by different compounds has not been previously tested. We applied 17 cardiac glycosides to the D. plexippus-Na+/K+-ATPase and to the more susceptible Na+/K+-ATPases of two non-adapted insects (Euploea core and Schistocerca gregaria). Structural features (e.g., sugar residues) predicted in vitro inhibitory activity and comparison of insect Na+/K+-ATPases revealed that the monarch has evolved a highly resistant enzyme overall. Nonetheless, we found evidence for relative selectivity of individual cardiac glycosides reaching from 4- to 94-fold differences of inhibition between non-adapted Na+/K+-ATPase and D. plexippus-Na+/K+-ATPase. This toxin receptor specificity suggests a mechanism how plants could target herbivores selectively and thus provides a strong basis for pairwise coevolutionary interactions between plants and herbivorous insects.
Collapse
Affiliation(s)
- Georg Petschenka
- Institute for Insect Biotechnology, Justus-Liebig-Universität, Giessen, Germany
| | - Colleen S. Fei
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - Juan J. Araya
- Centro de Investigaciones en Productos Naturales, Escuela de Química, Instituto de Investigaciones Farmacéuticas, Facultad de Farmacia, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Susanne Schröder
- Institut für Medizinische Biochemie und Molekularbiologie, Universität Rostock, Rostock, Germany
| | - Barbara N. Timmermann
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
24
|
Lopachev AV, Abaimov DA, Fedorova TN, Lopacheva OM, Akkuratova NV, Akkuratov EE. Cardiotonic Steroids as Potential Endogenous Regulators in the Nervous System. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Nakazaki A, Hashimoto K, Ikeda A, Shibata T, Nishikawa T. De Novo Synthesis of Possible Candidates for the Inagami-Tamura Endogenous Digitalis-like Factor. J Org Chem 2017; 82:9097-9111. [PMID: 28787161 DOI: 10.1021/acs.joc.7b01640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
De novo synthesis of possible candidates for the Inagami-Tamura endogenous digitalis-like factor (EDLF) was achieved to validate a previously proposed structure. Our synthetic approach involves a highly regio- and diastereoselective Mizoroki-Heck reaction and a Friedel-Crafts-type cyclodehydration to construct steroidal tetracycle 14 as a versatile common intermediate leading to seven 2,14β-dihydroxyestradiol analogues 1a-c, 2a-c, and 3 as possible candidates. By comparing the potency of inhibitory activity against Na+/K+-ATPase between the synthesized candidates and the EDLF, it was found that the proposed structure is not likely to be a true structure of the Inagami-Tamura EDLF.
Collapse
Affiliation(s)
- Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Keiko Hashimoto
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Ai Ikeda
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
26
|
Lanatoside C, a cardiac glycoside, acts through protein kinase Cδ to cause apoptosis of human hepatocellular carcinoma cells. Sci Rep 2017; 7:46134. [PMID: 28387249 PMCID: PMC5384006 DOI: 10.1038/srep46134] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/13/2017] [Indexed: 01/21/2023] Open
Abstract
Recent studies have revealed that cardiac glycosides, such as digitalis and digoxin, have anticancer activity and may serve as lead compounds for the development of cancer treatments. The poor prognosis of hepatocellular carcinoma (HCC) patients reflects the development of resistance to current chemotherapeutic agents, highlighting the need for discovering new small-molecule therapeutics. Here, we found that lanatoside C, an anti-arrhythmic agent extracted from Digitalis lanata, inhibited the growth of HCC cells and dramatically decreased tumor volume as well as delayed tumor growth without obvious body weight loss. Moreover, lanatoside C triggered mitochondrial membrane potential (MMP) loss, activation of caspases and translocation of apoptosis-inducing factor (AIF) into the nucleus, which suggests that lanatoside C induced apoptosis through both caspase-dependent and -independent pathways. Furthermore, we discovered that lanatoside C activated protein kinase delta (PKCδ) via Thr505 phosphorylation and subsequent membrane translocation. Inhibition of PKCδ reversed lanatoside C-induced MMP loss and apoptosis, confirming that lanatoside C caused apoptosis through PKCδ activation. We also found that the AKT/mTOR pathway was negatively regulated by lanatoside C through PKCδ activation. In conclusion, we provide the first demonstration that the anticancer effects of lanatoside C are mainly attributable to PKCδ activation.
Collapse
|
27
|
Michalak M, Michalak K, Wicha J. The synthesis of cardenolide and bufadienolide aglycones, and related steroids bearing a heterocyclic subunit. Nat Prod Rep 2017; 34:361-410. [PMID: 28378871 DOI: 10.1039/c6np00107f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: early studies through to March 2016Cardenolides and bufadienolides constitute an attractive class of biologically active steroid derivatives which have been used for the treatment of heart disease in traditional remedies as well as in modern medicinal therapy. Due to their application as therapeutic agents and their unique molecular structures, bearing unsaturated 5- or 6-membered lactones (or other heterocycles) attached to the steroid core, cardio-active steroids have received great attention, which has intensified during the last decade, in the synthetic organic community. Advances in the field of cross-coupling reactions have provided a powerful tool for the attachment of lactone subunits to the steroid core. This current review covers a methodological analysis of synthetic efforts to cardenolide and bufadienolide aglycones. Special emphasis is given to cross-coupling reactions applied for the attachment of lactone subunits at sterically very hindered positions of the steroid core. The carefully selected partial and total syntheses of representative cardio-active steroids will also be presented to exemplify recent achievements (improvements) in the field.
Collapse
Affiliation(s)
- Michał Michalak
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
28
|
Morsy N. Quantitative estimations of the abundant constituents of alotropis procera. MAIN GROUP CHEMISTRY 2017. [DOI: 10.3233/mgc-160218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Nagy Morsy
- Department of Chemistry, Faculty of Sciences and Arts, Khulais, University of Jeddah, Kingdom of Saudi Arabia
- National Research Centre, Department of Chemistry of Natural Compounds, El-bohouth St., Dokki, Cairo, Egypt
| |
Collapse
|
29
|
Liu J, Tang W, Chen R, Dai J. Microbial Transformation of 14-Anhydrodigoxigenin by Alternaria alternata. Chem Biodivers 2016; 12:1871-80. [PMID: 26663840 DOI: 10.1002/cbdv.201500024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 12/17/2022]
Abstract
The microbial transformation of 14-anhydrodigoxigenin (1) by Alternaria alternata CGMCC 3.577 led to the production of seven new metabolites, 2-8. Their structures were determined by extensive spectroscopic (CD, IR, 1D- and 2D-NMR, and HR-ESI-MS) data analyses. The reactions in the bioprocess exhibited diversity, including specific oxidation, hydroxylation, reduction, epoxidation, and dehydration. In addition, a hypothetical biocatalytic pathway is proposed.
Collapse
Affiliation(s)
- Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China, (phone: +86-10-63165195; fax: +86-10-63017757).,Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Wanxia Tang
- Institute of Chemistry and Chemistry Engineering, Qiqihar University, Qiqihar 161006, P. R. China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China, (phone: +86-10-63165195; fax: +86-10-63017757).,Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China, (phone: +86-10-63165195; fax: +86-10-63017757). .,Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| |
Collapse
|
30
|
Gozalpour E, Wilmer MJ, Bilos A, Masereeuw R, Russel FGM, Koenderink JB. Heterogeneous transport of digitalis-like compounds by P-glycoprotein in vesicular and cellular assays. Toxicol In Vitro 2015; 32:138-45. [PMID: 26708294 DOI: 10.1016/j.tiv.2015.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 01/28/2023]
Abstract
Digitalis-like compounds (DLCs), the ancient medication of heart failure and Na,K-ATPase inhibitors, are characterized by their toxicity. Drug-drug interactions (DDIs) at absorption and excretion levels play a key role in their toxicity, hence, knowledge about the transporters involved might prevent these unwanted interactions. In the present study, the transport of fourteen DLCs with human P-glycoprotein (P-gp; ABCB1) was studied using a liquid chromatography-mass spectrometry (LC-MS) quantification method. DLC transport by P-gp overexpressing Madin-Darby canine kidney (MDCK) and immortalized human renal cells (ciPTEC) was compared to vesicular DLC transport. Previously, we identified convallatoxin as a substrate using membrane vesicles overexpressing P-gp; however, we could not measure transport of other DLCs in this assay (Gozalpour et al., 2014a). Here, we showed that lipophilic digitoxin, digoxigenin, strophanthidin and proscillaridin A are P-gp substrates in cellular accumulation assays, whereas the less lipophilic convallatoxin was not. P-gp function in the cellular accumulation assays depends on the entrance of lipophilic compounds by passive diffusion, whereas the vesicular transport assay is more appropriate for hydrophilic substrates. In conclusion, we identified digitoxin, digoxigenin, strophanthidin and proscillaridin A as P-gp substrates using cellular accumulation assays and recognized lipophilicity as an important factor in selecting a suitable transport assay.
Collapse
Affiliation(s)
- Elnaz Gozalpour
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Albert Bilos
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands.
| |
Collapse
|
31
|
Lindemann P. Steroidogenesis in plants--Biosynthesis and conversions of progesterone and other pregnane derivatives. Steroids 2015; 103:145-52. [PMID: 26282543 DOI: 10.1016/j.steroids.2015.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 07/03/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023]
Abstract
In plants androstanes, estranes, pregnanes and corticoids have been described. Sometimes 17β-estradiol, androsterone, testosterone or progesterone were summarized as sex hormones. These steroids influence plant development: cell divisions, root and shoot growth, embryo growth, flowering, pollen tube growth and callus proliferation. First reports on the effect of applicated substances and of their endogenous occurrence date from the early twenties of the last century. This caused later on doubts on the identity of the compounds. Best investigated is the effect of progesterone. Main steps of the progesterone biosynthetic pathway have been analyzed in Digitalis. Cholesterol-side-chain-cleavage, pregnenolone and progesterone formation as well as the stereospecific reduction of progesterone are described and the corresponding enzymes are presented. Biosynthesis of androstanes, estranes and corticoids is discussed. Possible progesterone receptors and physiological reactions on progesterone application are reviewed.
Collapse
Affiliation(s)
- Peter Lindemann
- Institut für Pharmazie, Martin-Luther Universität Halle/Wittenberg, Hoher Weg 8, 06120 Halle, Germany.
| |
Collapse
|
32
|
Magpusao AN, Omolloh G, Johnson J, Gascón J, Peczuh MW, Fenteany G. Cardiac glycoside activities link Na(+)/K(+) ATPase ion-transport to breast cancer cell migration via correlative SAR. ACS Chem Biol 2015; 10:561-9. [PMID: 25334087 PMCID: PMC4340362 DOI: 10.1021/cb500665r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
The cardiac glycosides ouabain and
digitoxin, established Na+/K+ ATPase inhibitors,
were found to inhibit MDA-MB-231
breast cancer cell migration through an unbiased chemical genetics
screen for cell motility. The Na+/K+ ATPase
acts both as an ion-transporter and as a receptor for cardiac glycosides.
To delineate which function is related to breast cancer cell migration,
structure–activity relationship (SAR) profiles of cardiac glycosides
were established at the cellular (cell migration inhibition), molecular
(Na+/K+ ATPase inhibition), and atomic (computational
docking) levels. The SAR of cardiac glycosides and their analogs revealed
a similar profile, a decrease in potency when the parent cardiac glycoside
structure was modified, for each activity investigated. Since assays
were done at the cellular, molecular, and atomic levels, correlation
of SAR profiles across these multiple assays established links between
cellular activity and specific protein–small molecule interactions.
The observed antimigratory effects in breast cancer cells are directly
related to the inhibition of Na+/K+ transport.
Specifically, the orientation of cardiac glycosides at the putative
cation permeation path formed by transmembrane helices αM1–M6
correlates with the Na+ pump activity and cell migration.
Other Na+/K+ ATPase inhibitors that are structurally
distinct from cardiac glycosides also exhibit antimigratory activity,
corroborating the conclusion that the antiport function of Na+/K+ ATPase and not the receptor function is important
for supporting the motility of MDA-MB-231 breast cancer cells. Correlative
SAR can establish new relationships between specific biochemical functions
and higher-level cellular processes, particularly for proteins with
multiple functions and small molecules with unknown or various modes
of action.
Collapse
Affiliation(s)
- Anniefer N. Magpusao
- Department of Chemistry, University of Connecticut, 55 N.
Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| | - George Omolloh
- Department of Chemistry, University of Connecticut, 55 N.
Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| | - Joshua Johnson
- Department of Chemistry, University of Connecticut, 55 N.
Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| | - José Gascón
- Department of Chemistry, University of Connecticut, 55 N.
Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| | - Mark W. Peczuh
- Department of Chemistry, University of Connecticut, 55 N.
Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| | - Gabriel Fenteany
- Department of Chemistry, University of Connecticut, 55 N.
Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| |
Collapse
|
33
|
Structures and characterization of digoxin- and bufalin-bound Na+,K+-ATPase compared with the ouabain-bound complex. Proc Natl Acad Sci U S A 2015; 112:1755-60. [PMID: 25624492 DOI: 10.1073/pnas.1422997112] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cardiotonic steroids (CTSs) are specific and potent inhibitors of the Na(+),K(+)-ATPase, with highest affinity to the phosphoenzyme (E2P) forms. CTSs are comprised of a steroid core, which can be glycosylated, and a varying number of substituents, including a five- or six-membered lactone. These functionalities have specific influence on the binding properties. We report crystal structures of the Na(+),K(+)-ATPase in the E2P form in complex with bufalin (a nonglycosylated CTS with a six-membered lactone) and digoxin (a trisaccharide-conjugated CTS with a five-membered lactone) and compare their characteristics and binding kinetics with the previously described E2P-ouabain complex to derive specific details and the general mechanism of CTS binding and inhibition. CTSs block the extracellular cation exchange pathway, and cation-binding sites I and II are differently occupied: A single Mg(2+) is bound in site II of the digoxin and ouabain complexes, whereas both sites are occupied by K(+) in the E2P-bufalin complex. In all complexes, αM4 adopts a wound form, characteristic for the E2P state and favorable for high-affinity CTS binding. We conclude that the occupants of the cation-binding site and the type of the lactone substituent determine the arrangement of αM4 and hypothesize that winding/unwinding of αM4 represents a trigger for high-affinity CTS binding. We find that the level of glycosylation affects the depth of CTS binding and that the steroid core substituents fine tune the configuration of transmembrane helices αM1-2.
Collapse
|
34
|
Kumar A, De T, Mishra A, Mishra AK. Oleandrin: A cardiac glycosides with potent cytotoxicity. Pharmacogn Rev 2014; 7:131-9. [PMID: 24347921 PMCID: PMC3841991 DOI: 10.4103/0973-7847.120512] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 05/29/2013] [Accepted: 10/25/2013] [Indexed: 11/17/2022] Open
Abstract
Cardiac glycosides are used in the treatment of congestive heart failure and arrhythmia. Current trend shows use of some cardiac glycosides in the treatment of proliferative diseases, which includes cancer. Nerium oleander L. is an important Chinese folk medicine having well proven cardio protective and cytotoxic effect. Oleandrin (a toxic cardiac glycoside of N. oleander L.) inhibits the activity of nuclear factor kappa-light-chain-enhancer of activated B chain (NF-κB) in various cultured cell lines (U937, CaOV3, human epithelial cells and T cells) as well as it induces programmed cell death in PC3 cell line culture. The mechanism of action includes improved cellular export of fibroblast growth factor-2, induction of apoptosis through Fas gene expression in tumor cells, formation of superoxide radicals that cause tumor cell injury through mitochondrial disruption, inhibition of interleukin-8 that mediates tumorigenesis and induction of tumor cell autophagy. The present review focuses the applicability of oleandrin in cancer treatment and concerned future perspective in the area.
Collapse
Affiliation(s)
- Arvind Kumar
- Department of Pharmaceutical Chemistry, Central Facility of Instrumentation, School of Pharmaceutical Sciences, IFTM University, Lodhipur, Rajput, Moradabad, Uttar Pradesh, India
| | - Tanmoy De
- Department of Pharmaceutical Chemistry, Central Facility of Instrumentation, School of Pharmaceutical Sciences, IFTM University, Lodhipur, Rajput, Moradabad, Uttar Pradesh, India
| | - Amrita Mishra
- Department of Pharmaceutical Chemistry, Central Facility of Instrumentation, School of Pharmaceutical Sciences, IFTM University, Lodhipur, Rajput, Moradabad, Uttar Pradesh, India
| | - Arun K Mishra
- Department of Pharmaceutical Chemistry, Central Facility of Instrumentation, School of Pharmaceutical Sciences, IFTM University, Lodhipur, Rajput, Moradabad, Uttar Pradesh, India
| |
Collapse
|
35
|
El-Seedi HR, Burman R, Mansour A, Turki Z, Boulos L, Gullbo J, Göransson U. The traditional medical uses and cytotoxic activities of sixty-one Egyptian plants: discovery of an active cardiac glycoside from Urginea maritima. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:746-57. [PMID: 23228916 DOI: 10.1016/j.jep.2012.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/18/2012] [Accepted: 12/02/2012] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants from the Sinai desert are widely used in traditional Bedouin medicine to treat a range of conditions including, cancers, and may thus be useful sources of novel anti-tumor compounds. Information on plants used in this way was obtained through collaboration with Bedouin herbalists. AIM OF THE STUDY To document the traditional uses of 61 species from 29 families of Egyptian medicinal plants and to investigate their biological activity using a cytotoxicity assay. MATERIAL AND METHODS MeOH extracts of the 61 plant species investigated were dissolved in 10% DMSO and their cytotoxic activity was evaluated. The extracts were tested in duplicate on three separate occasions at three different concentrations (1, 10 and 100μg/ml) against human lymphoma U-937 GTB. The most active extract was subjected to bioassay-guided fractionation using HPLC and LC/ESI-MS to isolate and identify its active components. RESULTS AND DISCUSSION The most potent extracts were those from Asclepias sinaica, Urginea maritima, Nerium oleander and Catharanthus roseus, followed by those from Cichorium endivia, Pulicaria undulate and Melia azedarach. Literature reports indicate that several of these plants produce cardiac glycosides. Bioassay-guided fractionation of alcoholic U. maritima extracts led to the isolation of a bioactive bufadienolide that was subsequently shown to be proscillaridin A, as determined by 1D and 2D NMR spectroscopy. This result demonstrates the value of plants used in traditional medicine as sources of medicinally interesting cytotoxic compounds.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, 751 23 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
36
|
Elbaz HA, Stueckle TA, Tse W, Rojanasakul Y, Dinu CZ. Digitoxin and its analogs as novel cancer therapeutics. Exp Hematol Oncol 2012; 1:4. [PMID: 23210930 PMCID: PMC3506989 DOI: 10.1186/2162-3619-1-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/05/2012] [Indexed: 01/18/2023] Open
Abstract
A growing body of evidence indicates that digitoxin cardiac glycoside is a promising anticancer agent when used at therapeutic concentrations. Digitoxin has a prolonged half-life and a well-established clinical profile. New scientific avenues have shown that manipulating the chemical structure of the saccharide moiety of digitoxin leads to synthetic analogs with increased cytotoxic activity. However, the anticancer mechanism of digitoxin or synthetic analogs is still subject to study while concerns about digitoxin's cardiotoxicity preclude its clinical application in cancer therapeutics. This review focuses on digitoxin and its analogs, and their cytotoxicity against cancer cells. Moreover, a new perspective on the pharmacological aspects of digitoxin and its analogs is provided to emphasize new research directions for developing potent chemotherapeutic drugs.
Collapse
Affiliation(s)
- Hosam A Elbaz
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA.
| | | | | | | | | |
Collapse
|
37
|
Gupta SP. Quantitative structure-activity relationship studies on Na+,K(+)-ATPase inhibitors. Chem Rev 2012; 112:3171-92. [PMID: 22360614 DOI: 10.1021/cr200097p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Satya P Gupta
- Department of Applied Sciences, Meerut Institute of Engineering and Technology, Meerut-250 005, India.
| |
Collapse
|
38
|
Common cardiovascular medications in cancer therapeutics. Pharmacol Ther 2011; 130:177-90. [DOI: 10.1016/j.pharmthera.2011.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 01/13/2011] [Indexed: 12/16/2022]
|
39
|
Active ingredients in Chinese medicines promoting blood circulation as Na+/K+ -ATPase inhibitors. Acta Pharmacol Sin 2011; 32:141-51. [PMID: 21293466 DOI: 10.1038/aps.2010.197] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The positive inotropic effect of cardiac glycosides lies in their reversible inhibition on the membrane-bound Na(+)/K(+)-ATPase in human myocardium. Steroid-like compounds containing a core structure similar to cardiac glycosides are found in many Chinese medicines conventionally used for promoting blood circulation. Some of them are demonstrated to be Na(+)/K(+)-ATPase inhibitors and thus putatively responsible for their therapeutic effects via the same molecular mechanism as cardiac glycosides. On the other hand, magnesium lithospermate B of danshen is also proposed to exert its cardiac therapeutic effect by effectively inhibiting Na(+)/K(+)-ATPase. Theoretical modeling suggests that the number of hydrogen bonds and the strength of hydrophobic interaction between the effective ingredients of various medicines and residues around the binding pocket of Na(+)/K(+)-ATPase are crucial for the inhibitory potency of these active ingredients. Ginsenosides, the active ingredients in ginseng and sanqi, substantially inhibit Na(+)/K(+)-ATPase when sugar moieties are attached only to the C-3 position of their steroid-like structure, equivalent to the sugar position in cardiac glycosides. Their inhibitory potency is abolished, however, when sugar moieties are linked to C-6 or C-20 position of the steroid nucleus; presumably, these sugar attachments lead to steric hindrance for the entrance of ginsenosides into the binding pocket of Na(+)/K(+)-ATPase. Neuroprotective effects of cardiac glycosides, several steroid-like compounds, and magnesium lithospermate B against ischemic stroke have been accordingly observed in a cortical brain slice-based assay model, and cumulative data support that effective inhibitors of Na(+)/K(+)-ATPase in the brain could be potential drugs for the treatment of ischemic stroke.
Collapse
|
40
|
Katz A, Lifshitz Y, Bab-Dinitz E, Kapri-Pardes E, Goldshleger R, Tal DM, Karlish SJD. Selectivity of digitalis glycosides for isoforms of human Na,K-ATPase. J Biol Chem 2010; 285:19582-92. [PMID: 20388710 DOI: 10.1074/jbc.m110.119248] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There are four isoforms of the alpha subunit (alpha1-4) and three isoforms of the beta subunit (beta1-3) of Na,K-ATPase, with distinct tissue-specific distribution and physiological functions. alpha2 is thought to play a key role in cardiac and smooth muscle contraction and be an important target of cardiac glycosides. An alpha2-selective cardiac glycoside could provide important insights into physiological and pharmacological properties of alpha2. The isoform selectivity of a large number of cardiac glycosides has been assessed utilizing alpha1beta1, alpha2beta1, and alpha3beta1 isoforms of human Na,K-ATPase expressed in Pichia pastoris and the purified detergent-soluble isoform proteins. Binding affinities of the digitalis glycosides, digoxin, beta-methyl digoxin, and digitoxin show moderate but highly significant selectivity (up to 4-fold) for alpha2/alpha3 over alpha1 (K(D) alpha1 > alpha2 = alpha3). By contrast, ouabain shows moderate selectivity ( approximately 2.5-fold) for alpha1 over alpha2 (K(D) alpha1 <or= alpha3 < alpha2). Binding affinities for the three isoforms of digoxigenin, digitoxigenin, and all other aglycones tested are indistinguishable (K(D) alpha1 = alpha3 = alpha2), showing that the sugar determines isoform selectivity. Selectivity patterns for inhibition of Na,K-ATPase activity of the purified isoform proteins are consistent with binding selectivities, modified somewhat by different affinities of K(+) ions for antagonizing cardiac glycoside binding on the three isoforms. The mechanistic insight on the role of the sugars is strongly supported by a recent structure of Na,K-ATPase with bound ouabain, which implies that aglycones of cardiac glycosides cannot discriminate between isoforms. In conclusion, several digitalis glycosides, but not ouabain, are moderately alpha2-selective. This supports a major role of alpha2 in cardiac contraction and cardiotonic effects of digitalis glycosides.
Collapse
Affiliation(s)
- Adriana Katz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
41
|
Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain. Proc Natl Acad Sci U S A 2009; 106:13742-7. [PMID: 19666591 DOI: 10.1073/pnas.0907054106] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sodium-potassium pump (Na(+),K(+)-ATPase) is responsible for establishing Na(+) and K(+) concentration gradients across the plasma membrane and therefore plays an essential role in, for instance, generating action potentials. Cardiac glycosides, prescribed for congestive heart failure for more than 2 centuries, are efficient inhibitors of this ATPase. Here we describe a crystal structure of Na(+),K(+)-ATPase with bound ouabain, a representative cardiac glycoside, at 2.8 A resolution in a state analogous to E2.2K(+).Pi. Ouabain is deeply inserted into the transmembrane domain with the lactone ring very close to the bound K(+), in marked contrast to previous models. Due to antagonism between ouabain and K(+), the structure represents a low-affinity ouabain-bound state. Yet, most of the mutagenesis data obtained with the high-affinity state are readily explained by the present crystal structure, indicating that the binding site for ouabain is essentially the same. According to a homology model for the high affinity state, it is a closure of the binding cavity that confers a high affinity.
Collapse
|
42
|
Abstract
Cardiac glycosides are a diverse family of naturally derived compounds that bind to and inhibit Na+/K+-ATPase. Members of this family have been in clinical use for many years for the treatment of heart failure and atrial arrhythmia, and the mechanism of their positive inotropic effect is well characterized. Exciting recent findings have suggested additional signalling modes of action of Na+/K+-ATPase, implicating cardiac glycosides in the regulation of several important cellular processes and highlighting potential new therapeutic roles for these compounds in various diseases. Perhaps most notably, the increased susceptibility of cancer cells to these compounds supports their potential use as cancer therapies, and the first generation of glycoside-based anticancer drugs are currently in clinical trials.
Collapse
|
43
|
Lindig C. Partialsynthesen von Cardenoliden und Cardenolid-Analogen. X. Synthese 22-O-substituierter Cardenolide sowie Untersuchungen über den oxidativen Abbau von Cardenoliden mit Kaliumpermanganat. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/prac.19863280504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
De Munari S, Cerri A, Gobbini M, Almirante N, Banfi L, Carzana G, Ferrari P, Marazzi G, Micheletti R, Schiavone A, Sputore S, Torri M, Zappavigna MP, Melloni P. Structure-based design and synthesis of novel potent Na+,K+ -ATPase inhibitors derived from a 5alpha,14alpha-androstane scaffold as positive inotropic compounds. J Med Chem 2003; 46:3644-54. [PMID: 12904068 DOI: 10.1021/jm030830y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The design, synthesis, and biological properties of novel inhibitors of the Na(+),K(+)-ATPase as potential positive inotropic compounds are reported. Following our model of superposition between cassaine and digitoxigenin, digitalis-like activity has been elicited from a non-digitalis steroidal structure by suitable modifications of the 5alpha,14alpha-androstane skeleton. The strong hydrophobic interaction of the digitalis or cassaine polycyclic cores can be effectively obtained with the androstane skeleton taken in a reversed orientation. Thus, oxidation of C-6 and introduction in the C-3 position of the potent pharmacophoric group recently introduced by us, in the 17 position of the digitalis skeleton, namely, O-(omega-aminoalkyl)oxime, led to a series of substituted androstanes able to inhibit the Na(+),K(+)-ATPase, most of them with an IC(50) in the low micromolar level, and to induce a positive inotropic effect in guinea pig. Within this series, androstane-3,6,17-trione (E,Z)-3-(2-aminoethyl)oxime (22b, PST 2744) induced a strong positive inotropic effect while being less arrhythmogenic than digoxin, when the two compounds were compared at equiinotropic doses.
Collapse
Affiliation(s)
- Sergio De Munari
- Department of Medicinal Chemistry, Prassis Istituto di Ricerche Sigma-Tau, Via Forlanini 3, 20019 Settimo Milanese, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Gupta SP. Quantitative structure-activity relationships of cardiotonic agents. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2001; 55:235-82. [PMID: 11127965 DOI: 10.1007/978-3-0348-8385-6_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Quantitative structure-activity relationships (QSARs) of different cardiotonic agents are presented. A critical analysis of all QSARs provides a very vivid picture of the mechanisms of varying cardiotonic agents. The cardiotonics can be broadly put into 2 categories: cardiac glycosides and nonglycoside cardiotonics, which include phosphodiesterase of type III (PDE III) inhibitors, sympathomimetic (adrenergic) stimulants, A1-selective adenosine antagonists, Ca2+ channel activators and vasopressin antagonists. For cardiac glycosides, QSARs reveal that the position of carbonyl oxygen in their lactone moiety and shifting of the lactone ring from its original position or its replacement by another group would be crucial for their activity. The carbonyl group or its isostere like CN is indicated to be the sole binding entity and the hydrogen bonding through this group is considered to be the most likely binding force. For nonglycoside cardiotonics that include PDE III inhibitors and A1-selective antagonists, a five-point model has been established for their activity, the salient features of which are: (1) the presence of a strong dipole, (2) an adjacent acidic proton, (3) a methyl-sized lipophilic space, (4) a relatively flat overall topography and (5) a basic or hydrogen-bond acceptor site opposite to the dipole. For Ca2+ channel activators, the importance of steric, electrostatic, lipophilic and hydrogen-bonding properties of molecules is indicated, while for vasopressin antagonists the lipophilic and electronic properties are suggested to be the most important.
Collapse
Affiliation(s)
- S P Gupta
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| |
Collapse
|
47
|
Iizuka M, Warashina T, Noro T. Bufadienolides and a new lignan from the bulbs of Urginea maritima. Chem Pharm Bull (Tokyo) 2001; 49:282-6. [PMID: 11253917 DOI: 10.1248/cpb.49.282] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thirty three compounds were obtained from the bulbs of Urginea maritima (Liliaceae). The compounds were identified by means of fast atom bombardment mass spectrometry (FAB-MS), nuclear magnetic resonance (1H-NMR), (13C-NMR), nuclear overhauser effects (NOE) and two dimensional (2D) NMR. Ten of them were new natural compounds. Nine were bufadienolides and only one was lignan in these compounds.
Collapse
Affiliation(s)
- M Iizuka
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Japan
| | | | | |
Collapse
|
48
|
Manunta P, Hamilton BP, Hamlyn JM. Structure-activity relationships for the hypertensinogenic activity of ouabain: role of the sugar and lactone ring. Hypertension 2001; 37:472-7. [PMID: 11230321 DOI: 10.1161/01.hyp.37.2.472] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elevated levels of an endogenous ouabain circulate in many patients with essential hypertension. However, in contrast to ouabain, digoxin does not induce hypertension. This study investigated the hypothesis that within a single cardiac glycoside, the structural elements that induce hypertension differ from those responsible for high potency as a sodium pump inhibitor. Normal male Sprague-Dawley rats received infusions of vehicle (VEH), rhamnose (RHA), ouabain (OUA), ouabagenin (OGN), dihydro-ouabain (DHO), iso-ouabain (ISO), and a lactone ring opened analog (ORO) at 30 microgram. kg(-1). 24 h(-1) for 5 weeks via subcutaneous osmotic pumps. Cuff pressures were taken weekly. At the end of the study, trunk blood was harvested, extracted by C18 column, and subjected to high-performance liquid chromatography. Fractions were analyzed for OUA, OGN, and DHO by immunoassay. In OUA-, OGN-, and DHO-infused rats, 1 main peak of immunoreactivity corresponding to the infused agent was found. No evidence of in vivo conversion to OUA or DHO was found for any analog except ORO. At 5 weeks, systolic blood pressures in VEH, RHA, OUA, OGN, DHO, ISO, and ORO were 132+/-2.5, 133+/-1.5, 159+/-2.6,* 154+/-4,* 167+/-4,* 171+/-2.2,* and 169+/-2.4* mm Hg, respectively (*P<0.01 versus VEH and RHA, P<0.05 versus OUA). The hypertensinogenic activity was greater than OUA in 3 analogs (DHO, ISO, and ORO) in which the lactone was saturated, conformationally restrained by linkage with the oxygen at C14, or opened, respectively. These compounds were weak inhibitors of dog kidney Na,K-ATPase. Thus, RHA and the unsaturated lactone ring are crucial to the high potency of OUA as an inhibitor of the sodium pump but appear to be unrelated to its ability to induce hypertension. The conclusion that this form of hypertension is mediated primarily by the steroid nucleus suggests also that OUA may have a mechanism of action independent of the sodium pump.
Collapse
Affiliation(s)
- P Manunta
- Departments of Physiology and Medicine, School of Medicine, University of Maryland, and the Veterans Administration Medical Center, Baltimore, Md, USA
| | | | | |
Collapse
|
49
|
|
50
|
Weiland J, Megges R, Undeutsch B, Schön R, Büchting H, Repke RH. Partial synthetic derivatization of canrenone and characterization of its impact on the inhibitory effect on Na+/K(+)-ATPase activity in human heart muscle. Steroids 1998; 63:464-9. [PMID: 9727093 DOI: 10.1016/s0039-128x(98)00049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To improve the weak inhibitory effect of 3-oxo-17 alpha-pregna-4,6-diene-21,17-carbolactone (canrenone, II) on Na+/K(+)-ATPase activity in human heart muscle, we have investigated the impact of hydrogenation, reduction, glycosidation, and the introduction of a 3-sulfonamido residue on the inhibitory potency of canrenone. The greatest increase in potency (> 20 times) was found for 3 beta-(alpha-L-rhamnopyranosyloxy)-5 beta, 17 alpha-pregnane-21, 17-carbolactone (IX). The 3-O-glycosides IX-XI are the first representatives of C/D-trans steroids with effector-receptor complex decay half-times longer than those of therapeutically used cardenolides.
Collapse
Affiliation(s)
- J Weiland
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | | | |
Collapse
|