1
|
Donthamsetti PC, Winter N, Schönberger M, Levitz J, Stanley C, Javitch JA, Isacoff EY, Trauner D. Optical Control of Dopamine Receptors Using a Photoswitchable Tethered Inverse Agonist. J Am Chem Soc 2017; 139:18522-18535. [PMID: 29166564 PMCID: PMC5942546 DOI: 10.1021/jacs.7b07659] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Family A G protein-coupled receptors (GPCRs) control diverse biological processes and are of great clinical relevance. Their archetype rhodopsin becomes naturally light sensitive by binding covalently to the photoswitchable tethered ligand (PTL) retinal. Other GPCRs, however, neither bind covalently to ligands nor are light sensitive. We sought to impart the logic of rhodopsin to light-insensitive Family A GPCRs in order to enable their remote control in a receptor-specific, cell-type-specific, and spatiotemporally precise manner. Dopamine receptors (DARs) are of particular interest for their roles in motor coordination, appetitive, and aversive behavior, as well as neuropsychiatric disorders such as Parkinson's disease, schizophrenia, mood disorders, and addiction. Using an azobenzene derivative of the well-known DAR ligand 2-(N-phenethyl-N-propyl)amino-5-hydroxytetralin (PPHT), we were able to rapidly, reversibly, and selectively block dopamine D1 and D2 receptors (D1R and D2R) when the PTL was conjugated to an engineered cysteine near the dopamine binding site. Depending on the site of tethering, the ligand behaved as either a photoswitchable tethered neutral antagonist or inverse agonist. Our results indicate that DARs can be chemically engineered for selective remote control by light and provide a template for precision control of Family A GPCRs.
Collapse
Affiliation(s)
- Prashant C. Donthamsetti
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Nils Winter
- Department of Chemistry and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstraβe 5-13, Munich 81377, Germany
| | - Matthias Schönberger
- Department of Chemistry and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstraβe 5-13, Munich 81377, Germany
| | - Joshua Levitz
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Cherise Stanley
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Jonathan A. Javitch
- Departments of Psychiatry and Pharmacology, Columbia University, New York, New York 10027, United States
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
- Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dirk Trauner
- Department of Chemistry and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstraβe 5-13, Munich 81377, Germany
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
3
|
Horn AS, Tepper P, Van der Weide J, Watanabe M, Grigoriadis D, Seeman P. Synthesis and radioreceptor binding activity of N-0437, a new, extremely potent and selective D2 dopamine receptor agonist. PHARMACEUTISCH WEEKBLAD. SCIENTIFIC EDITION 1985; 7:208-11. [PMID: 2933633 DOI: 10.1007/bf02307578] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The synthesis of a new, potent and selective D2 dopamine receptor agonist, N-0437, of the 2-aminotetralin group is described. The results of a radioreceptor binding assay using a homogenate of porcine anterior pituitary as a tissue source for D2 dopamine receptors and 3H-spiperone as radioligand demonstrate that this compound is one of the most potent compounds so far evaluated in this test system.
Collapse
|
5
|
Beaulieu M, Itoh Y, Tepper P, Horn AS, Kebabian JW. N,N-disubstituted 2-aminotetralins are potent D-2 dopamine receptor agonists. Eur J Pharmacol 1984; 105:15-21. [PMID: 6237927 DOI: 10.1016/0014-2999(84)90644-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mono- and di-N-substituted 2-amino-5-hydroxytetralins stimulate the D-2 dopamine receptor, 2-(N-n-propyl-N-phenylethylamino)-5-hydroxytetralin being the most potent D-2 agonist encountered to date. In contrast, 2-amino-5-hydroxytetralins only marginally stimulate the D-1 receptor; however, 2-(di-N-n-propylamino)-5, 6-dihydroxytetralin is equipotent with dopamine as a D-1 agonist. The results are discussed within the context of the two dopamine receptor hypothesis.
Collapse
|