1
|
Brusini R, Tran NLL, Cailleau C, Domergue V, Nicolas V, Dormont F, Calet S, Cajot C, Jouran A, Lepetre-Mouelhi S, Laloy J, Couvreur P, Varna M. Assessment of Squalene-Adenosine Nanoparticles in Two Rodent Models of Cardiac Ischemia-Reperfusion. Pharmaceutics 2023; 15:1790. [PMID: 37513977 PMCID: PMC10384353 DOI: 10.3390/pharmaceutics15071790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Reperfusion injuries after a period of cardiac ischemia are known to lead to pathological modifications or even death. Among the different therapeutic options proposed, adenosine, a small molecule with platelet anti-aggregate and anti-inflammatory properties, has shown encouraging results in clinical trials. However, its clinical use is severely limited because of its very short half-life in the bloodstream. To overcome this limitation, we have proposed a strategy to encapsulate adenosine in squalene-based nanoparticles (NPs), a biocompatible and biodegradable lipid. Thus, the aim of this study was to assess, whether squalene-based nanoparticles loaded with adenosine (SQAd NPs) were cardioprotective in a preclinical cardiac ischemia/reperfusion model. Obtained SQAd NPs were characterized in depth and further evaluated in vitro. The NPs were formulated with a size of about 90 nm and remained stable up to 14 days at both 4 °C and room temperature. Moreover, these NPs did not show any signs of toxicity, neither on HL-1, H9c2 cardiac cell lines, nor on human PBMC and, further retained their inhibitory platelet aggregation properties. In a mouse model with experimental cardiac ischemia-reperfusion, treatment with SQAd NPs showed a reduction of the area at risk, as well as of the infarct area, although not statistically significant. However, we noted a significant reduction of apoptotic cells on cardiac tissue from animals treated with the NPs. Further studies would be interesting to understand how and through which mechanisms these nanoparticles act on cardiac cells.
Collapse
Affiliation(s)
- Romain Brusini
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Natalie Lan Linh Tran
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Catherine Cailleau
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Valérie Domergue
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, ANIMEX, 17 Avenue des Sciences, 91400 Orsay, France
| | - Valérie Nicolas
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, MIPSIT, 17 Avenue des Sciences, 91400 Orsay, France
| | - Flavio Dormont
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Serge Calet
- Holochem, Rue du Moulin de la Canne, 45300 Pithiviers, France
| | - Caroline Cajot
- Quality Assistance S.A, Technoparc de Thudinie 2, 6536 Thuin, Belgium
| | - Albin Jouran
- Quality Assistance S.A, Technoparc de Thudinie 2, 6536 Thuin, Belgium
| | - Sinda Lepetre-Mouelhi
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Julie Laloy
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Patrick Couvreur
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Mariana Varna
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| |
Collapse
|
2
|
Attenuation Effect of Salvianolic Acid B on Testicular Ischemia-Reperfusion Injury in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7680182. [PMID: 35069978 PMCID: PMC8776430 DOI: 10.1155/2022/7680182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/13/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
During testicular ischemia-reperfusion, overproduction of reactive oxygen species is associated with testicular injury. We injected hydrogen peroxide (a representative of reactive oxygen species) into normal testis via the testicular artery. The experiment demonstrates that reactive oxygen species can cause spermatogenic injury. Salvianolic acid B, the most abundant bioactive component in Salvia miltiorrhiza Bunge, has been reported to possess a potent antioxidant activity. This study was conducted to evaluate the effect of salvianolic acid B on testicular ischemia-reperfusion injury in a rat testicular torsion-detorsion model. Rats were randomly separated into three groups, including 20 rats in each group: control group with sham operation, testicular ischemia-reperfusion group, and testicular ischemia-reperfusion + salvianolic acid B-treated group. In the testicular ischemia-reperfusion group, left testicular torsion of 720° for 2 hours was induced, and then testicular detorsion was carried out. Rats in the salvianolic acid B-treated group additionally had salvianolic acid B administered intravenously at detorsion. At 4 hours after detorsion, testes of 10 rats from each group were collected to analyze the protein expression of xanthine oxidase which catalyzes generation of reactive oxygen species and malondialdehyde concentration (an indirect indicator of reactive oxygen species). At 3 months after detorsion, testes of the remaining 10 rats from each group were collected to analyze spermatogenesis. Compared with the control group, xanthine oxidase protein expression and malondialdehyde concentration in ipsilateral testes of testicular ischemia-reperfusion group increased significantly, while spermatogenesis decreased significantly. In the salvianolic acid B-treated group, xanthine oxidase protein expression and malondialdehyde concentration in ipsilateral testes decreased significantly, while spermatogenesis increased significantly, compared with the testicular ischemia-reperfusion group. These results suggest that salvianolic acid B can attenuate testicular torsion/detorsion-induced ischemia/reperfusion injury by downregulating the xanthine oxidase protein expression to inhibit reactive oxygen species formation.
Collapse
|
3
|
Peri-transplant aminophylline in pediatric kidney transplant recipients of donation after brain death: a double-blinded placebo-controlled randomized clinical trial. Pediatr Nephrol 2020; 35:1729-1736. [PMID: 32418145 DOI: 10.1007/s00467-020-04561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND During kidney transplantation, the transplanted kidney undergoes ischemia reperfusion injury, with adenosine being a major mediator. This study aimed to assess whether aminophylline, an adenosine receptor antagonist, improves early graft function and reduces incidence of delayed graft function (DGF) and slow graft function (SGF). METHODS Single center, double-blinded, placebo-controlled randomized clinical trial. Pediatric patients admitted for renal transplantation from donation after brain death donors were randomized into a treatment arm receiving aminophylline and a placebo arm receiving normal saline infusions. Primary outcome was estimated glomerular filtration rate (eGFR) at 5 days post-transplant. Secondary outcomes were rates of DGF/SGF and urinary neutrophil gelatinase-associated lipocalin (NGAL) levels. RESULTS Twenty-three patients were randomized to aminophylline and 27 to placebo. There was no difference in day 5 eGFR, rate of DGF/SGF, or urine NGAL/Creatinine level between aminophylline vs. placebo arm (eGFR 67.39 ± 38.9 ml/min/1.73m2 vs. 80.48 ± 52.1 ml/min/1.73m2p = 0.32; DGF/SGF 5/23 (21.7%) vs. 3/27 (11.1%) p = 0.31; urine NGAL/creatinine 300.5 ng/mg IQR 105.5-1464.5 ng/mg vs. 425.4 ng/mg IQR 140.3-1126.2 ng/mg, p = 0.95; respectively). At 12 months, there was 100% patient survival and 98% graft survival. eGFR at 12 months was similar between the two arms. CONCLUSIONS There was no benefit in peri-transplant aminophylline administration. Our results are limited by small sample size, since sample calculations were based on primary outcome of day 5 eGFR and low rate of DGF/SGF, which may have precluded us from demonstrating efficacy. Further clinical studies are necessary to determine any benefit of aminophylline in kidney transplant recipients, particularly from high-risk donors.
Collapse
|
4
|
Fujii K, Kubo A, Miyashita K, Sato M, Hagiwara A, Inoue H, Ryuzaki M, Tamaki M, Hishiki T, Hayakawa N, Kabe Y, Itoh H, Suematsu M. Xanthine oxidase inhibitor ameliorates postischemic renal injury in mice by promoting resynthesis of adenine nucleotides. JCI Insight 2019; 4:124816. [PMID: 31723053 PMCID: PMC6948864 DOI: 10.1172/jci.insight.124816] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/10/2019] [Indexed: 01/09/2023] Open
Abstract
Although oxidative stress plays central roles in postischemic renal injury, region-specific alterations in energy and redox metabolism caused by short-duration ischemia remain unknown. Imaging mass spectrometry enabled us to reveal spatial heterogeneity of energy and redox metabolites in the postischemic murine kidney. After 10-minute ischemia and 24-hour reperfusion (10mIR), in the cortex and outer stripes of the outer medulla, ATP substantially decreased, but not in the inner stripes of the outer medulla and inner medulla. 10mIR caused renal injury with elevation of fractional excretion of sodium, although histological damage by oxidative stress was limited. Ischemia-induced NADH elevation in the cortex indicated prolonged production of reactive oxygen species by xanthine oxidase (XOD). However, consumption of reduced glutathione after reperfusion suggested the amelioration of oxidative stress. An XOD inhibitor, febuxostat, which blocks the degradation pathway of adenine nucleotides, promoted ATP recovery and exerted renoprotective effects in the postischemic kidney. Because effects of febuxostat were canceled by silencing of the hypoxanthine phosphoribosyl transferase 1 gene in cultured tubular cells, mechanisms for the renoprotective effects appear to involve the purine salvage pathway, which uses hypoxanthine to resynthesize adenine nucleotides, including ATP. These findings suggest a novel therapeutic approach for acute ischemia/reperfusion renal injury with febuxostat through salvaging high-energy adenine nucleotides.
Collapse
Affiliation(s)
- Kentaro Fujii
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Akiko Kubo
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazutoshi Miyashita
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Masaaki Sato
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Aika Hagiwara
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Hiroyuki Inoue
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Masaki Ryuzaki
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Masanori Tamaki
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
- Department of Nephrology, Graduate School of Medical Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Takako Hishiki
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Noriyo Hayakawa
- Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
5
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
6
|
LaRosa DA, Ellery SJ, Walker DW, Dickinson H. Understanding the Full Spectrum of Organ Injury Following Intrapartum Asphyxia. Front Pediatr 2017; 5:16. [PMID: 28261573 PMCID: PMC5313537 DOI: 10.3389/fped.2017.00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/23/2017] [Indexed: 11/13/2022] Open
Abstract
Birth asphyxia is a significant global health problem, responsible for ~1.2 million neonatal deaths each year worldwide. Those who survive often suffer from a range of health issues including brain damage-manifesting as cerebral palsy (CP)-respiratory insufficiency, cardiovascular collapse, and renal dysfunction, to name a few. Although the majority of research is directed toward reducing the brain injury that results from intrapartum birth asphyxia, the multi-organ injury observed in surviving neonates is of equal importance. Despite the advent of hypothermia therapy for the treatment of hypoxic-ischemic encephalopathy (HIE), treatment options following asphyxia at birth remain limited, particularly in low-resource settings where the incidence of birth asphyxia is highest. Furthermore, although cooling of the neonate results in improved neurological outcomes for a small proportion of treated infants, it does not provide any benefit to the other organ systems affected by asphyxia at birth. The aim of this review is to summarize the current knowledge of the multi-organ effects of intrapartum asphyxia, with particular reference to the findings from our laboratory using the precocial spiny mouse to model birth asphyxia. Furthermore, we reviewed the current treatments available for neonates who have undergone intrapartum asphyxia, and highlight the emergence of maternal dietary creatine supplementation as a preventative therapy, which has been shown to provide multi-organ protection from birth asphyxia-induced injury in our preclinical studies. This cheap and effective nutritional supplement may be the key to reducing birth asphyxia-induced death and disability, particularly in low-resource settings where current treatments are unavailable.
Collapse
Affiliation(s)
- Domenic A LaRosa
- Ritchie Centre, Department of Obstetrics and Gynaecology, Hudson Institute of Medical Research, Monash University, Melbourne, VIC, Australia; Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Stacey J Ellery
- Ritchie Centre, Department of Obstetrics and Gynaecology, Hudson Institute of Medical Research, Monash University , Melbourne, VIC , Australia
| | - David W Walker
- Ritchie Centre, Department of Obstetrics and Gynaecology, Hudson Institute of Medical Research, Monash University , Melbourne, VIC , Australia
| | - Hayley Dickinson
- Ritchie Centre, Department of Obstetrics and Gynaecology, Hudson Institute of Medical Research, Monash University , Melbourne, VIC , Australia
| |
Collapse
|
7
|
Ohri SK, Abel PD. Review article : The pathophysiology of nephrourological complications following cardiopulmonary bypass. Perfusion 2016. [DOI: 10.1177/026765919100600202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- SK Ohri
- Department of Cardiothoracic Surgery, Hammersmith Hospital, Royal Postgraduate Medical School
| | - PD Abel
- Department of Urology, Hammersmith Hospital, Royal Postgraduate Medical School, London
| |
Collapse
|
8
|
Youssef MI, Mahmoud AA, Abdelghany RH. A new combination of sitagliptin and furosemide protects against remote myocardial injury induced by renal ischemia/reperfusion in rats. Biochem Pharmacol 2015; 96:20-9. [DOI: 10.1016/j.bcp.2015.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/16/2015] [Indexed: 01/12/2023]
|
9
|
Nitrotyrosine level was associated with mortality in patients with acute kidney injury. PLoS One 2013; 8:e79962. [PMID: 24278225 PMCID: PMC3835782 DOI: 10.1371/journal.pone.0079962] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/29/2013] [Indexed: 11/30/2022] Open
Abstract
Background To examine the characteristics of oxidative stress in patients with acute kidney injury (AKI) and investigate the association between plasma nitrotyrosine levels and 90-day mortality in patients with AKI. Methodology/Principal Findings 158 patients with hospital-acquired AKI were recruited to this prospective cohort study according to RIFLE (Risk, Injury, Failure, Lost or End Stage Kidney) criteria. Twelve critically ill patients without AKI and 15 age and gender-matched healthy subjects served as control. Plasma 3-nitrotyrosine was analyzed in relation to 90-day all cause mortality of patients with AKI. The patients with AKI were followed up for 90 days and grouped according to median plasma 3-nitrotyrosine concentrations. Highest 3-NT/Tyr was detected in patients with AKI compared with healthy subjects, and critically ill patients without AKI (ANOVA p<0.001). The 90-day survival curves of patients with high 3-NT/Tyr showed significant differences compared with the curves of individuals with low 3-NT/Tyr (p = 0.001 by log rank test). Multivariate analysis (Cox regression) revealed that 3-NT/Tyr (p = 0.025) was independently associated with mortality after adjustment for age, gender, sepsis and Acute Physiology and Chronic Health Evaluation (APACHE) II score. Conclusions/Significance There is excess plasma protein oxidation in patients with AKI, as evidenced by increased nitrotyrosine content. 3-NT/Tyr level was associated with mortality of AKI patients independent of the severity of illness.
Collapse
|
10
|
Prophylactic theophylline for the prevention of severe renal dysfunction in term and post-term neonates with perinatal asphyxia: a systematic review and meta-analysis of randomized controlled trials. J Perinatol 2013; 33:271-7. [PMID: 22836872 DOI: 10.1038/jp.2012.97] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To examine the effect of prophylactic theophylline for the prevention of severe renal dysfunction in post-asphyxiated term and post-term infants. STUDY DESIGN Systematic review and meta-analysis of randomized controlled trials (RCTs) comparing prophylactic theophylline vs placebo in term infants following perinatal asphyxia. RESULT Four RCTs involving 197 infants were included in the meta-analysis. Compared with placebo, prophylactic theophylline was associated with a significant reduction in the incidence of severe renal dysfunction (pooled relative risk) using fixed-effects model was 0.38 (95% confidence interval, 0.25 to 0.57; P<0.001). CONCLUSION The meta-analysis provides evidence that prophylactic theophylline significantly reduce the incidence of severe renal dysfunction. However, because of the lack of information on the long-term renal and neurodevelopmental outcome and measured theophylline levels with relation to adverse effects observed, prudence with the clinical use of prophylactic theophylline is required. Additionally, the included trials were prior to the era of therapeutic hypothermia and thus inference of renal benefit in an infant undergoing hypothermia therapy cannot be made.
Collapse
|
11
|
Saeed A, Herlitz H, Nowakowska-Fortuna E, Nilsson U, Alhadad A, Jensen G, Mattiasson I, Lindblad B, Gottsäter A, Guron G. Oxidative Stress and Endothelin-1 in Atherosclerotic Renal Artery Stenosis and Effects of Renal Angioplasty. Kidney Blood Press Res 2011; 34:396-403. [DOI: 10.1159/000328732] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/13/2011] [Indexed: 11/19/2022] Open
|
12
|
Bauerle JD, Grenz A, Kim JH, Lee HT, Eltzschig HK. Adenosine generation and signaling during acute kidney injury. J Am Soc Nephrol 2011; 22:14-20. [PMID: 21209250 DOI: 10.1681/asn.2009121217] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acute kidney injury (AKI) is among the leading causes of morbidity and mortality in hospitalized patients. Particularly in the perioperative period, the most common cause of AKI is renal ischemia. At present, therapeutic modalities to prevent or treat AKI are extremely limited and the search for novel therapeutic interventions for ischemic AKI is an area of intense investigation. Recent studies implicate the endogenous signaling molecule, adenosine, in kidney protection from ischemia. As such, enzymatic production of adenosine from its precursor molecules ATP and AMP, and signaling events through adenosine receptors, play a critical role in attenuating renal inflammation and preserving kidney function during episodes of renal ischemia. Utilizing genetic mouse models with defects in adenosine generation or signaling provide strong evidence for the key role of extracellular adenosine in adapting renal tissues to limited oxygen availability and attenuating hypoxia-driven inflammation of the kidneys. Moreover, experimental therapeutics targeting individual adenosine receptors demonstrate strong prophylactic or therapeutic effects during murine AKI. If these experimental strategies can be translated into a clinical setting, adenosine receptor therapeutics may become an integral part in the prevention or treatment of AKI from renal ischemia.
Collapse
Affiliation(s)
- Jessica D Bauerle
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado Denver, 12700 E 19 Avenue, Mailstop B112, Research Complex 2, Room 7124, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
13
|
|
14
|
|
15
|
Abstract
This chapter describes the effects of the natural methylxanthines caffeine and theophylline on kidney function. Theophylline in particular was used traditionally to increase urine out put until more potent diuretics became available in the middle of the last century. The mildly diuretic actions of both methylxanthines are mainly the result of inhibition of tubular fluid reabsorption along the renal proximal tubule. Based upon the use of specific adenosine receptor antagonists and the observation of a complete loss of diuresis in mice with targeted deletion of the A1AR gene, transport inhibition by methylxanthines is mediated mainly by antagonism of adenosine A1 receptors (A1AR) in the proximal tubule. Methylxanthines are weak renal vasodilators, and they act as competitive antagonists against adenosine-induced preglomerular vasoconstriction. Caffeine and theophylline stimulate the secretion of renin by inhibition of adenosine receptors and removal of the general inhibitory brake function of endogenous adenosine. Since enhanced intrarenal adenosine levels lead to reduced glomerular filtration rate in several pathological conditions theophylline has been tested for its therapeutic potential in the renal impairment following administration of nephrotoxic substances such as radiocontrast media, cisplatin, calcineurin inhibitors or following ischemia-reperfusion injury. In experimental animals functional improvements have been observed in all of these conditions, but available clinical data in humans are insufficient to affirm a definite therapeutic efficacy of methylxanthines in the prevention of nephrotoxic or postischemic renal injury.
Collapse
Affiliation(s)
- Hartmut Osswald
- Department of Pharmacology and Toxicology, University of Tübingen, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | | |
Collapse
|
16
|
Módis K, Gero D, Nagy N, Szoleczky P, Tóth ZD, Szabó C. Cytoprotective effects of adenosine and inosine in an in vitro model of acute tubular necrosis. Br J Pharmacol 2010; 158:1565-78. [PMID: 19906119 DOI: 10.1111/j.1476-5381.2009.00432.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE We have established an in vitro model of acute tubular necrosis in rat kidney tubular cells, using combined oxygen-glucose deprivation (COGD) and screened a library of 1280 pharmacologically active compounds for cytoprotective effects. EXPERIMENTAL APPROACH We used in vitro cell-based, high throughput, screening, with cells subjected to COGD using hypoxia chambers, followed by re-oxygenation. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the Alamar Blue assay measured mitochondrial respiration and the lactate dehydrogenase assay was used to indicate cell death. ATP levels were measured using a luminometric assay. KEY RESULTS Adenosine markedly reduced cellular injury, with maximal cytoprotective effect at 100 microM and an EC(50) value of 14 microM. Inosine was also found to be cytoprotective. The selective A(3) adenosine receptor antagonist MRS 1523 attenuated the protective effects of adenosine and inosine, while an A(3) adenosine receptor agonist provided a partial protective effect. Adenosine deaminase inhibition attenuated the cytoprotective effect of adenosine but not of inosine during COGD. Inhibition of adenosine kinase reduced the protective effects of both adenosine and inosine during COGD. Pretreatment of the cells with adenosine or inosine markedly protected against the fall in cellular ATP content in the cells subjected to COGD. CONCLUSIONS AND IMPLICATIONS The cytoprotection elicited by adenosine and inosine in a model of renal ischaemia involved both interactions with cell surface adenosine receptors on renal tubular epithelial cells and intracellular metabolism and conversion of adenosine to ATP.
Collapse
Affiliation(s)
- Katalin Módis
- CellScreen Applied Research Center, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
17
|
Bhalodia Y, Sheth N, Vaghasiya J, Jivani N. Hyperlipidemia Enhanced Oxidative Stress and Inflammatory Response Evoked by
Renal Ischemia/Reperfusion Injury. INT J PHARMACOL 2009. [DOI: 10.3923/ijp.2010.25.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Eldaif SM, Deneve JA, Wang NP, Jiang R, Mosunjac M, Mutrie CJ, Guyton RA, Zhao ZQ, Vinten-Johansen J. Attenuation of renal ischemia-reperfusion injury by postconditioning involves adenosine receptor and protein kinase C activation. Transpl Int 2009; 23:217-26. [PMID: 19725910 DOI: 10.1111/j.1432-2277.2009.00949.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SUMMARY Significant organ injury occurs after transplantation and reflow (i.e., reperfusion injury). Postconditioning (PoC), consisting of alternating periods of reperfusion and re-occlusion at onset of reperfusion, attenuates reperfusion injury in organs including heart and brain. We tested whether PoC attenuates renal ischemia-reperfusion (I/R) injury in the kidney by activating adenosine receptors (AR) and protein kinase C (PKC). The single kidney rat I/R model was used. Groups: (1) sham: time-matched surgical protocol only. In all others, the left renal artery (RA) was occluded for 45 min and reperfused for 24 h. (2) CONTROL: I/R with no intervention at R. All antagonists were administered 5 min before reperfusion. (3) PoC: I/R + four cycles of 45 s of R and 45 s of re-occlusion before full R. (4) PoC + ARi: PoC plus the AR antagonist 8-rho-(sulfophenyl) theophylline (8-SPT). (5) PoC + PKCi: PoC plus the PKC antagonist chelerythrine (Che). In shams, plasma blood urea nitrogen (BUN mg/dl) at 24 h averaged 23.2 +/- 5.3 and creatinine (Cr mg/dl) averaged 1.28 +/- 0.2. PoC reduced BUN (87.2 +/- 10 in CONTROL vs. 38.8 +/- 9, P = 0.001) and Cr (4.2 +/- 0.6 in CONTROL vs. 1.5 +/- 0.2, P < 0.001). 8-SPT and Che reversed renal protection indices after PoC. I/R increased apoptosis, which was reduced by PoC, which was reversed by 8-SPT and Che. Postconditioning attenuates renal I/R injury by adenosine receptor activation and PKC signaling.
Collapse
Affiliation(s)
- Shady M Eldaif
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center Cardiothoracic Research Laboratory, Emory Crawford Long Hospital, Atlanta, GA 30308-2225, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schneider H. Tolerance of Human Placental Tissue to Severe Hypoxia and Its Relevance for Dual Ex Vivo Perfusion. Placenta 2009; 30 Suppl A:S71-6. [DOI: 10.1016/j.placenta.2008.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/05/2008] [Accepted: 11/07/2008] [Indexed: 11/26/2022]
|
20
|
Abstract
PURPOSE OF REVIEW Intrarenal adenosine is present in the cytoplasm of renal epithelial cells and in the extracellular space. Adenosine is generated at high levels in response to imbalance between energy demand and supply (e.g. increased tubular sodium chloride transport or hypoxia) and activates cell membrane adenosine receptors to affect renal vascular and tubular functions. Adenosine regulates renal sodium and water excretion via a myriad of effects on renal hemodynamic, glomerular filtration rate, renin secretion and direct effects on the renal tubule epithelium. This review examines the direct effects of adenosine on renal tubular epithelial transport in light of the most recent evidence and discusses some physiologic and pathophysiologic implications. RECENT FINDINGS Intrarenal adenosine affects proximal fluid and solute transport in a biphasic fashion. Under physiological conditions adenosine stimulates proximal tubular re-absorption, thus reducing the load delivered to the distal nephron. A supra-physiologic increase in adenosine such as in ischemia reduces reabsorption in the proximal tubule, thus reducing renal oxygen consumption. SUMMARY Intrarenal adenosine and its receptors have important regulatory functions in the renal epithelium. A complete understanding of this autocrine/paracrine system holds great potential for novel therapeutic strategies, such as the use of nucleoside analogues for reno-protection in renal ischemia.
Collapse
|
21
|
Di Sole F, Cerull R, Babich V, Casavola V, Helmle-Roth C, Burckhardt G. Short- and long-term A3 adenosine receptor activation inhibits the Na+/H+ exchanger NHE3 activity and expression in opossum kidney cells. J Cell Physiol 2008; 216:221-33. [PMID: 18286509 DOI: 10.1002/jcp.21399] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The renal function of the A(3) adenosine receptor (A3AR) is poorly characterized. In this study, we report that the A3AR-selective agonist, 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purine-9-yl]-1-deoxy-N-methyl-b-D-ribofuranuronamide (2-Cl-IBMECA) regulates the Na+/H+ exchanger-3 (NHE3) in a dose- and time-dependent fashion. In opossum kidney (OK) cells, 2-Cl-IBMECA at high (10(-6) M) and low (10(-8) M) dose inhibits NHE3 by a multiphasic time course with an acute phase of NHE3 inhibition from 15 min to 1 h, followed by a chronic phase of NHE3 inhibition from 24 to 48 h. Pre-incubation with either the selective A3AR-antagonist MRS1523 (10(-7) M) or the protein kinase C inhibitor, Calphostin C (10(-8) M) completely blocked 10(-6) M 2-Cl-IBMECA-induced acute (15 min) and chronic (24 h) phases of NHE3 inhibition. In contrast, the acute inhibitory phase (15 min) of 10(-8) M 2-Cl-IBMECA was completely prevented only when Calphostin C (10(-8) M) was added in conjunction with the protein kinase A inhibitor, H89 (10(-7) M). Acute (15 or 30 min depending on the A3AR-agonist concentration) A3AR-dependent inhibition of NHE3 activity was accompanied by decrease in cell surface NHE3 protein with no change in total NHE3 antigen. Chronic (24 h) A3AR-mediated down-regulation of NHE3 was associated with reduction of surface NHE3, decreased total NHE3 protein (70%) and a paradoxical rise of NHE3 RNA (40%). In summary, these results indicate that A3AR directly regulates NHE3 at multiple levels in a complex pattern. A3AR-dependent short- and long-term inhibition of NHE3 may be a fundamental mechanism of net sodium and fluid balance.
Collapse
Affiliation(s)
- Francesca Di Sole
- Department of Physiology and Pathophysiology, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Franco M, Bautista R, Pérez-Méndez O, González L, Pacheco U, Sánchez-Lozada LG, Santamaría J, Tapia E, Monreal R, Martínez F. Renal interstitial adenosine is increased in angiotensin II-induced hypertensive rats. Am J Physiol Renal Physiol 2008; 294:F84-92. [DOI: 10.1152/ajprenal.00123.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since marked renal vasoconstriction is observed in angiotensin II (ANG II)-mediated hypertensive rats, we studied the possible interaction between ANG II and adenosine in this model. ANG II was infused into male Wistar rats through osmotic minipumps (435 ng·kg−1·min−1) for 14 days. In sham and ANG II groups, renal tissue and interstitial adenosine were measured; both increased to a similar twofold extent in the ANG II-treated rats (31.40 ± 4 vs. 62.0 ± 8.4 nM, sham vs. ANG II, interstitial adenosine; P< 0.001). The latter decreased by 47% with the specific blockade of 5′-nucleotidase. Glomerular hemodynamics demonstrated marked renal vasoconstriction in the angiotensin-treated group, which was reverted by an adenosine A1-receptor antagonist (8-cyclopentyl-1,3-dipropylxanthine, 10 μg·kg−1·min−1). 5′-Nucleotidase and adenosine deaminase (ADA) activities were measured in the cytosolic and membrane fractions. Only the membrane ADA activity decreased from 1,202 ± 80 to 900 ± 50 mU/mg protein in the ANG II-treated rats ( P< 0.05), as well as in their protein and mRNA expression. Despite the adenosine elevation, A1and A2breceptor protein did not change; in contrast, downregulation was observed in A2areceptor and upregulation in A3receptor. A similar pattern was found in the cortex and in the medulla; mRNA significantly decreased only in the A3receptor in both segments. These results suggest that the elevation of renal tissue and interstitial adenosine contributes to the renal vasoconstriction observed in the ANG II-induced hypertension and that it is mediated by a decrease in the activity and expression of ADA, increased production of adenosine, and an induced imbalance in adenosine receptors.
Collapse
|
23
|
Grenz A, Zhang H, Weingart J, von Wietersheim S, Eckle T, Schnermann J, Köhle C, Kloor D, Gleiter CH, Vallon V, Eltzschig HK, Osswald H. Lack of effect of extracellular adenosine generation and signaling on renal erythropoietin secretion during hypoxia. Am J Physiol Renal Physiol 2007; 293:F1501-11. [PMID: 17855480 DOI: 10.1152/ajprenal.00243.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have yielded conflicting results as to whether extracellular adenosine generation and signaling contributes to hypoxia-induced increases in renal erythropoietin (EPO) secretion. In this study, we combined pharmacological and genetic approaches to elucidate a potential contribution of extracellular adenosine to renal EPO release in mice. To stimulate EPO secretion, we used murine carbon monoxide exposure (400 and 750 parts per million CO, 4 h), ambient hypoxia (8% oxygen, 4 h), or arterial hemodilution. Because the ecto-5-nucleotidase (CD73, conversion of AMP to adenosine) is considered the pacemaker of extracellular adenosine generation, we first tested the effect of blocking extracellular adenosine generation with the specific CD73-inhibitor adenosine 5'-(alpha,beta-methylene) diphosphate (APCP) or by gene-targeted deletion of cd73. These studies showed that neither APCP-treatment nor targeted deletion of cd73 resulted in changes of stimulated EPO mRNA or serum levels, although the increases of adenosine levels in the kidney following CO exposure were attenuated in mice with APCP treatment or in cd73(-/-) mice. Moreover, pharmacological studies using specific inhibitors of individual adenosine receptors (A1 AR, DPCPX; A 2A AR, DMPX; A 2B AR, PSB 1115; A3AR, MRS 1191) showed no effect on stimulated increases of EPO mRNA or serum levels. Finally, stimulated EPO secretion was not attenuated in gene-targeted mice lacking A1A(-/-, A2A AR-/-, A2BAR(-/-), or A3AR-/-. Together, these studies combine genetic and pharmacological in vivo evidence that increases of EPO secretion during limited oxygen availability are not affected by extracellular adenosine generation or signaling.
Collapse
Affiliation(s)
- Almut Grenz
- Dept. of Pharmacology and Toxicology, Tübingen Univ. Hospital, Wilhelmstr. 56, D-72074 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Colombel M, Timsit M, Badet L. [Conservative treatment of upper urinary tract tumours]. ANNALES D'UROLOGIE 2007; 41:12-22. [PMID: 17338496 DOI: 10.1016/j.anuro.2006.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The conservative management of kidney cancer is widely accepted as a therapeutic option for tumours measuring less than 4 cm or in case of underlying renal disease and solitary kidney. The functional and carcinologic success of this conservative treatment results from a radical resection of the tumour and a careful repair of the collecting system and selective ligature of the vessels. Kidney artery clamping is a key to reach these objectives. The cooling of the kidney preserves from warm ischemia and reperfusion lesions. In this review, we explain the physiological basis of warm ischemia induced kidney lesions due to the kidney artery clamping and the advantage of hypothermia. The surgical technique as described by Novick is detailed. This well standardized technique has the advantage of being reproducible and adaptable to all situations.
Collapse
Affiliation(s)
- M Colombel
- Service d'urologie et chirurgie de la transplantation, Hôpital Edouard Herriot, 5, place d'Arsonval, 69437 Lyon cedex 03, France.
| | | | | |
Collapse
|
25
|
Bhat MA, Shah ZA, Makhdoomi MS, Mufti MH. Theophylline for renal function in term neonates with perinatal asphyxia: a randomized, placebo-controlled trial. J Pediatr 2006; 149:180-4. [PMID: 16887430 DOI: 10.1016/j.jpeds.2006.03.053] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 02/26/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To study whether prophylactic theophylline can reduce the incidence and/or severity of renal failure in term infants with perinatal asphyxia. STUDY DESIGN Term neonates with severe perinatal asphyxia were randomized to receive a single dose of either theophylline (study group, n = 40) or placebo (control group, n = 30) during the first hour of life. Daily weight, output/input ratio, 24-hour fluid intake, and urine volumes were recorded during the first 5 days of life. Those infants with asphyxial renal failure were followed up for 1 year. RESULTS The incidence of severe renal dysfunction was increased in the control group. Creatinine clearance was higher and excretion of beta 2 microglobulin (beta2M) was lower in the theophylline group. Conversely, the glomerular filtration rate was lower in the control group. In infants with renal failure, serum creatinine and creatinine clearance returned to normal in the neonatal period, and the increased beta2M excretion normalized by age 6 weeks. CONCLUSIONS A single dose of theophylline within the first hour of birth in term neonates with perinatal asphyxia results in a significant decrease in serum creatinine level and urinary excretion of beta2M, along with an increase in creatinine clearance.
Collapse
Affiliation(s)
- Mushtaq A Bhat
- Department of Pediatrics, Shere-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Kashmir, India.
| | | | | | | |
Collapse
|
26
|
Abstract
In this review we outline the unique effects of the autacoid adenosine in the kidney. Adenosine is present in the cytosol of renal cells and in the extracellular space of normoxic kidneys. Extracellular adenosine can derive from cellular adenosine release or extracellular breakdown of ATP, AMP, or cAMP. It is generated at enhanced rates when tubular NaCl reabsorption and thus transport work increase or when hypoxia is induced. Extracellular adenosine acts on adenosine receptor subtypes in the cell membranes to affect vascular and tubular functions. Adenosine lowers glomerular filtration rate (GFR) by constricting afferent arterioles, especially in superficial nephrons, and acts as a mediator of the tubuloglomerular feedback, i.e., a mechanism that coordinates GFR and tubular transport. In contrast, it leads to vasodilation in deep cortex and medulla. Moreover, adenosine tonically inhibits the renal release of renin and stimulates NaCl transport in the cortical proximal tubule but inhibits it in medullary segments including the medullary thick ascending limb. These differential effects of adenosine are subsequently analyzed in a more integrative way in the context of intrarenal metabolic regulation of kidney function, and potential pathophysiological consequences are outlined.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California, San Diego, USA
| | | | | |
Collapse
|
27
|
Huber W, Eckel F, Hennig M, Rosenbrock H, Wacker A, Saur D, Sennefelder A, Hennico R, Schenk C, Meining A, Schmelz R, Fritsch R, Weiss W, Hamar P, Heemann U, Schmid RM. Prophylaxis of contrast material-induced nephropathy in patients in intensive care: acetylcysteine, theophylline, or both? A randomized study. Radiology 2006; 239:793-804. [PMID: 16714461 DOI: 10.1148/radiol.2393041456] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To prospectively compare the protective effect of acetylcysteine, theophylline, and both agents combined in patients who are admitted to the intensive care unit with at least one risk factor for contrast material-induced nephropathy and who receive at least 100 mL of iodinated contrast medium. MATERIALS AND METHODS Institutional ethics review board approval and informed consent were obtained. A total of 91 patients (mean age, 58.5 years+/-14.8 [standard deviation]; 31 women, 60 men; 150 examinations) were admitted to the intensive care unit with at least one risk factor for contrast-induced nephropathy and received either (a) 200 mg theophylline 30 minutes before contrast medium administration (group T), (b) 600 mg acetylcysteine twice daily on the day of and (if possible) the day before the examination (group A), or (c) both agents combined (group AT). The primary endpoint for this study was the incidence of contrast-induced nephropathy (chi2 test). RESULTS Groups T, A, and AT were comparable with regard to baseline creatinine levels and the amount of contrast medium administered. The incidence of contrast-induced nephropathy in groups T, A, and AT was 2%, 12%, and 4%, respectively, and was significantly lower in group T than in group A (P=.047). There was no significant difference in the incidence of contrast-induced nephropathy between groups A and AT (P=.148) or between groups T and AT (P=.53). For group A, serum creatinine did not change after 12, 24, or 48 hours compared with baseline. Creatinine levels in group T decreased 12 hours (1.19 mg/dL+/-0.58; P=.008) and 48 hours (1.16 mg/dL+/-0.55; P=.034) after contrast material injection compared with baseline (1.25 mg/dL+/-0.61). In group AT, creatinine significantly decreased 24 hours (1.21 mg/dL+/-0.74; P=.003) and 48 hours (1.17 mg/dL+/-0.69; P<.001) after contrast material injection compared with baseline (1.28 mg/dL+/-0.74). Group A had significantly higher maximal increases in creatinine than groups T and AT (P=.014). CONCLUSION For prophylaxis of contrast-induced nephropathy in patients who are admitted to the intensive care unit and who receive 100 mL or more of contrast medium, theophylline is superior to acetylcysteine.
Collapse
Affiliation(s)
- Wolfgang Huber
- II. Medizinische Klinik, Institut für Medizinische Statistik und Epidemiologie, Universitaetsklinik Tuebingen, Kinderkardiologie, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The increasing number of radiological procedures performed in old patients with high co-morbidity may be one of the problems physicians have to deal with when regarding the increasing number of acute renal failures. A key question when addressing the patients scheduled to receive iodinated contrast media (CM) is which concomitant medications prescribed to the patient are potentially harmful or helpful in terms of the risk of contrast-induced nephropathy. This overview summarizes the knowledge of concomitant medications in the setting of CM application and gives suggestion for prescription. In general, due to the unique (yet not fully understood and of high complexity) mechanism of renal damage proposed for a variety of nephrotoxic drugs including CM, physicians should carefully monitor patients' renal function and hydration status whenever concomitant nephrototoxic drugs are used. Recommendations are to monitor kidney function with more sensitive measurements of glomerular filtration rate (i.e. cystatin C).
Collapse
Affiliation(s)
- C Erley
- St Joseph-Krankenhaus, Medizinische Abt. II, Nephrologie und Dialyse, Berlin, Germany.
| |
Collapse
|
29
|
Nishiyama A, Rahman M, Inscho EW. Role of interstitial ATP and adenosine in the regulation of renal hemodynamics and microvascular function. Hypertens Res 2005; 27:791-804. [PMID: 15824461 DOI: 10.1291/hypres.27.791] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of adenosine in the regulation of renal hemodynamics and function has been studied extensively; however, another purine agent, ATP, is also gaining recognition for its paracrine role in the kidney. Adenosine and ATP bind to specific membrane-bound P1 and P2 purinoceptors, respectively, and initiate a variety of biological effects on renal microvascular tone, mesangial cell function, and renal epithelial transport. The purpose of this review is to summarize the potential roles of interstitial ATP and adenosine as regulators of renal hemodynamics and microcirculation. In vitro blood-perfused juxtamedullary nephron preparation was used to assess the roles of ATP and adenosine in the regulation of renal microvascular tone. This approach mimics the adventitial exposure of renal microvascular smooth muscle to ATP and adenosine synthesized locally and released into the interstitial fluid. ATP selectively vasoconstricts afferent but not efferent arterioles via P2X and P2Y receptors, whereas, adenosine vasoconstricts both vascular segments via activation of adenosine A(1) receptors. Furthermore, selective P2X and P2Y receptor stimulation increases intracellular calcium concentration in vascular smooth muscle cells that are freshly isolated from the preglomerular microvasculature. These data support the hypothesis that interstitial ATP plays a critical role in the control of renal microvascular function through mechanisms that are independent of adenosine receptors. We have recently developed a renal microdialysis method to determine the dynamics of ATP and adenosine levels in the renal cortical interstitium. In this review, we also summarize current knowledge pertaining to the alterations in renal interstitial ATP and adenosine in some pathophysiological conditions.
Collapse
Affiliation(s)
- Akira Nishiyama
- Department of Pharmacology, Kagawa Medical University, Kita-gun, Japan.
| | | | | |
Collapse
|
30
|
Kerendi F, Kin H, Halkos ME, Jiang R, Zatta AJ, Zhao ZQ, Guyton RA, Vinten-Johansen J. Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res Cardiol 2005; 100:404-12. [PMID: 15965583 DOI: 10.1007/s00395-005-0539-2] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/05/2005] [Accepted: 04/25/2005] [Indexed: 02/06/2023]
Abstract
OBJECTIVES A series of brief coronary artery reperfusions and reocclusions applied during the early minutes of coronary artery reflow ("postconditioning") attenuates reperfusion injury. However, it is not known whether brief ischemia-reperfusion applied to a distant organ at the onset of myocardial reperfusion (i.e. "remote postconditioning", remote PostC) reduces infarct size in the reperfused myocardium. In an in vivo anesthetized rat model of myocardial infarction induced by coronary artery occlusion and reperfusion, this study tested the hypothesis that remote postC induced by a single 5 minute episode of renal artery (RA) occlusion and reperfusion applied immediately before the onset of coronary artery reperfusion protects the myocardium from reperfusion injury by mechanisms involving endogenous adenosine receptor activation. METHODS All rats were subjected to a total of 30 minutes of left coronary artery occlusion (LCAO) and 3 hours of reperfusion. The rats were randomized to one of six groups: 1) CONTROL: LCAO and reperfusion only with no other intervention; 2) Remote PostC: after 24 minutes of LCAO the RA was occluded for 5 minutes and released 1 min before coronary artery reperfusion; 3) Permanent RA occlusion: the RA was permanently occluded after 24 minutes LCAO continuing to the end of reperfusion; 4) Delayed Remote PostC: after 26 minutes LCAO the RA was occluded for 5 minutes, and its release was delayed until 1 min after coronary artery reperfusion; 5) CON + SPT: rats with LCAO and reperfusion received 10 mg/kg IV of the non-selective adenosine receptor antagonist 8-sulfophenyl theophylline [SPT] administered 5 minutes before coronary artery reperfusion; and 6) Remote PostC + SPT: after 24 minutes of LCAO the RA was occluded for 5 minutes and released 1 minute before coronary artery reperfusion in the presence of 10 mg/kg SPT given 5 min before coronary artery reperfusion. RESULTS Myocardial infarct size (percentage necrosis/area at risk, mean +/- SEM) was reduced by 50% in Remote PostC (25 +/- 4%) compared to CONTROL (49 +/- 4%, p = 0.003), consistent with a reduction in plasma CK activity (44 +/- 5 vs. 67 +/- 6 U/ml, p = 0.023). In contrast, permanent RA occlusion before LCAO and reperfusion failed to reduce myocardial infarct size (47 +/- 5%) vs CONTROL. Delaying the release of the RA occlusion (delayed Remote PostC) abrogated the myocardial infarct reduction observed with Remote PostC (48 +/- 6%). SPT alone had no effect on infarct size (47 +/- 4% in CON + SPT vs. 49 +/- 4% in CON); however, Remote PostC+SPT abrogated the myocardial infarct size reduction in Remote PostC (50 +/- 3% in Remote PostC + SPT vs. 25 +/- 4% in Remote PostC). CONCLUSIONS Remote renal postconditioning applied immediately before the onset of coronary artery reperfusion provides potent myocardial infarct size reduction likely exerted during the first minutes of coronary artery reperfusion. This inter-organ remote postconditioning phenomenon is likely mediated in part by release of adenosine by the ischemic-reperfused kidney and subsequent activation of adenosine receptors.
Collapse
Affiliation(s)
- F Kerendi
- Cardiothoracic Research Laboratory, Carlyle Fraser Heart Center, 550 Peachtree Street, Atlanta, GA 30308, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Benoehr P, Krueth P, Bokemeyer C, Grenz A, Osswald H, Hartmann JT. Nephroprotection by theophylline in patients with cisplatin chemotherapy: a randomized, single-blinded, placebo-controlled trial. J Am Soc Nephrol 2004; 16:452-8. [PMID: 15590762 DOI: 10.1681/asn.2004030225] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The aim of the present study was to assess the possible prevention of cisplatin-induced impairment of GFR by theophylline in patients with various malignancies. The trial design was parallel, randomized, single blinded, and placebo controlled. Patients received cisplatin at a dosage of 50 mg/m(2) either combined with etoposide, ifosfamide, and epirubicin or with paclitaxel and 5-fluorouracil/folinic acid with the usual precautions, including a standard hydration scheme before application of cisplatin in both arms. In the control arm, placebo was administered; in the verum arm, patients received theophylline in a loading dose of 4 mg/kg intravenously over 30 min before cisplatin, followed by 0.4 mg/kg per min over a minimum of 6 h, and then 350 mg three times daily orally for 4 consecutive days after completion of chemotherapy. GFR of each patient was assessed by renal clearance of inulin within 3 d before and at day 5 after cisplatin chemotherapy. Despite usual precautions, patients in the placebo group had a 21% decrease (range, 11 to 31%) of inulin clearance after a single cycle of cisplatin-containing chemotherapy (92.9 +/- 3.4 versus 71.8 +/- 3.5 ml/min; P < 0.01). Patients who received theophylline had no deterioration of GFR (91.5 +/- 3.7 versus 90.0 +/- 3.8 ml/min; P > 0.05). No adverse effects have been observed during theophylline application. Conventional precautions such as hydration and osmotic diuresis cannot prevent a significant decrease of GFR after a single cycle of cisplatin-containing chemotherapy. The prophylactic application of theophylline as an intravenous loading dose and oral maintenance regimen may preserve kidney function in terms of GFR.
Collapse
Affiliation(s)
- Peter Benoehr
- Department of Nephrology and Rheumatology, Georg-August-University, Robert-Koch Strasse 40, 37075 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Franco M, Galicia O, Quintana A, Martínez F. Experimental hypothyroidism modifies specific binding of A1 and A2A analogues to adenosine receptors in the rat kidney. Br J Pharmacol 2004; 142:461-8. [PMID: 15148254 PMCID: PMC1574968 DOI: 10.1038/sj.bjp.0705799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 Binding kinetic studies with the adenosine analogues [3H]CPA (0.250-50 nm) and [3H]CGS21680 (0.1-100 nm) were performed in renal tissue from control (NL) and thyroidectomised (HTX) rats. We propose that the low renal adenosine content reported in hypothyroid rats may induce changes in the density and/or affinity of adenosine receptor, distributed in the cortex (C), outer medulla (OM), and inner medulla (IM) of the kidney. 2 [3H]CPA and [3H]CGS21680 binding saturation isotherms were fitted by nonlinear regression analysis and evaluated by Furchgott's method. These results revealed high (KH) and low (KL) affinity (KD) sites for both compounds. As expected, a heterogeneous pattern was observed for Bmax and KD values. 3 Bound [3H]CPA and [3H]CGS21680 were displaced by increasing concentrations of nonlabelled DPCPX and NECA, respectively, indicating the presence of A1 and A2A adenosine receptors distributed in the renal segments studied. 4 The relative intrinsic efficacy (epsilon) for [3H]CPA and [3H]CGS21680 showed extreme values (far from 1.0), 0.5 in IM NL and 2.70 in IM HTX for [3H]CGS21680. 5 Our results indicate that A2A adenosine receptor is predominant in IM from HTX, but A1 receptors are expressed preferentially in C in NL. 6 We conclude that the changes observed in number, affinity, and epsilon for the A2A receptor in IM from HTX might be responsible from alterations in medullary function, that is, incapacity for urine concentration as observed in the hypothyroid kidney.
Collapse
Affiliation(s)
- Martha Franco
- Department of Nephrology, Instituto Nacional de Cardiología 'Ignacio Chávez', México City, DF, Mexico.
| | | | | | | |
Collapse
|
33
|
Abstract
Many cell types in the kidney express adenosine receptors, and adenosine has multiple effects on renal function. Although adenosine is produced within the kidney by several biochemical reactions, recent studies support a novel mechanism for renal adenosine production, the extracellular cAMP-adenosine pathway. This extracellular cAMP-adenosine pathway is initiated by efflux of cAMP from cells following activation of adenylyl cyclase. Extracellular cAMP is then converted to adenosine by the serial actions of ecto-phosphodiesterase and ecto-5'-nucleotidase. When extracellular cAMP is converted to adenosine near the biophase of cAMP production and efflux, this local extracellular cAMP-adenosine pathway permits tight coupling of the site of adenosine production to the site of adenosine receptors. cAMP in renal compartments may also be formed by tissues/organs remote from the kidney. For example, stimulation of hepatic adenylyl cyclase by the pancreatic hormone glucagon increases circulating cAMP, which is filtered at the glomerulus and concentrated in the tubular lumen as water is extracted from the ultrafiltrate. Conversion of hepatic-derived cAMP to adenosine in the kidney completes a pancreatohepatorenal cAMP-adenosine pathway that may serve as an endocrine link between the pancreas, liver, and kidney.
Collapse
Affiliation(s)
- Edwin K Jackson
- Center for Clinical Pharmacology, Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA. edj+@pitt.edu
| | | |
Collapse
|
34
|
Lien YHH, Lai LW, Silva AL. Pathogenesis of renal ischemia/reperfusion injury: lessons from knockout mice. Life Sci 2003; 74:543-52. [PMID: 14623025 DOI: 10.1016/j.lfs.2003.08.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ischemia/reperfusion-induced acute renal failure is a common clinical problem associated with a high morbidity and mortality. Upon hypoxic injury, the depletion of ATP causes mitochondrial dysfunction, and accumulation of intracellular sodium, calcium and reactive oxygen species. Subsequently, multiple enzyme systems including proteases, nitric oxide synthases, phospholipases and endonuclease are activated and responsible for cytoskeleton disruption, membrane damage, and DNA degradation, and eventually cell death. Ischemia/reperfusion injury also activates complement, cytokines, and chemokines, which are cytotoxic themselves, but also attract leukocytes into the ischemic area to cause further damage. The vascular endothelial cell injury and dysfunction prolong ischemia and induce vascular congestion, edema, and further infiltration of inflammatory cells. Many players in renal ischemia/reperfusion injury and their mechanisms have been investigated using genetically manipulated mouse models. In this review, we focus on the information gathered from these studies. Deficiency of the Na/Ca exchanger, inducible nitric oxide synthase, Caspase-1, A3 adenosine receptor, C3, C5, C6, Factor B, or midkine protects the kidney against I/R injury. Conversely, deficiency of the interleukin-1 receptor, osteopontin, C4, or recombination activation gene-1 is not protective, while the absence of adrenomedullin or endothelin receptor B delays the recovery of ischemia/reperfusion injury. The knowledge obtained from these studies provides new direction for designing potential therapeutic agents for treating ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yeong-Hau H Lien
- Nephrology Section, Department of Medicine, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|
35
|
Day YJ, Huang L, McDuffie MJ, Rosin DL, Ye H, Chen JF, Schwarzschild MA, Fink JS, Linden J, Okusa MD. Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-derived cells. J Clin Invest 2003; 112:883-91. [PMID: 12975473 PMCID: PMC193661 DOI: 10.1172/jci15483] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Activation of A2A adenosine receptors (A2ARs) protects kidneys from ischemia-reperfusion injury (IRI). A2ARs are expressed on bone marrow-derived (BM-derived) cells and renal smooth muscle, epithelial, and endothelial cells. To measure the contribution of A2ARs on BM-derived cells in suppressing renal IRI, we examined the effects of a selective agonist of A2ARs, ATL146e, in chimeric mice in which BM was ablated by lethal radiation and reconstituted with donor BM cells derived from GFP, A2AR-KO, or WT mice to produce GFP-->WT, A2A-KO-->WT, or WT-->WT mouse chimera. We found little or no repopulation of renal vascular endothelial cells by donor BM with or without renal IRI. ATL146e had no effect on IRI in A2A-KO mice or A2A-KO-->WT chimera, but reduced the rise in plasma creatinine from IRI by 75% in WT mice and by 60% in WT-->WT chimera. ATL146e reduced the induction of IL-6, IL-1beta, IL-1ra, and TGF-alpha mRNA in WT-->WT mice but not in A2A-KO-->WT mice. Plasma creatinine was significantly greater in A2A-KO than in WT mice after IRI, suggesting some renal protection by endogenous adenosine. We conclude that protection from renal IRI by A2AR agonists or endogenous adenosine requires activation of receptors expressed on BM-derived cells.
Collapse
Affiliation(s)
- Yuan-Ji Day
- Department of Molecular Physiology and Biological Physics,University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The tubuloglomerular feedback response, the change in afferent arteriolar tone caused by a change in NaCl concentration at the macula densa, is likely initiated by the generation of a vasoactive mediator within the confines of the juxtaglomerular apparatus. Substantial progress has been made in identifying the nature of this mediator and the factors that modulate its effect on vascular tone. In support of earlier studies using P1 purinergic antagonists, the application of the knockout technique has shown that adenosine 1 receptors are absolutely required for eliciting TGF responses. The background level of angiotensin II appears to be an important cofactor determining the efficiency of A1AR-induced vasoconstriction, probably through a synergistic interaction at the level of the G protein-dependent transduction mechanism. The source of the adenosine is still unclear, but it is conceivable that adenosine is generated extracellularly from released ATP through a cascade of ecto-nucleotidases. There is also evidence that ATP may activate P2 receptors in preglomerular vessels, which may contribute to autoregulation of renal vascular resistance. Nitric oxide (NO), generated by the neuronal isoform of nitric oxide synthase in macula densa cells, reduces the constrictor effect of adenosine, but the regulation of NO release and its exact role in states of TGF-induced hyperfiltration are still unclear.
Collapse
Affiliation(s)
- Jürgen Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1370, USA.
| | | |
Collapse
|
37
|
Abstract
P2 membrane receptors are specifically activated by extracellular nucleotides like ATP, ADP, UTP, and UDP. P2 receptors are subdivided into metabotropic P2Y and ionotropic P2X receptors. They are expressed in all tissues and induce a variety of biological effects. In epithelia, they are found in both the basolateral and the luminal membranes. Their widespread luminal expression in nearly all transporting epithelia and their effect on transport are summarized. The P2Y(2) receptor is a prominent luminal receptor in many epithelia. Other luminal P2 receptors include the P2X(7), P2Y(4), and P2Y(6) receptors. Functionally, luminal P2Y(2) receptor activation elicits differential effects on ion transport. In nearly all secretory epithelia, intracellular Ca(2+) concentration-activated ion conductances are stimulated by luminal nucleotides to induce Cl(-), K(+), or HCO(3)(-) secretion. This encompasses respiratory and various gastrointestinal epithelia or tissues like the conjunctiva of the eye and the epithelium of sweat glands. In the distal nephron, all active transport processes appear to be inhibited by luminal nucleotides. P2Y(2) receptors inhibit Ca(2+) and Na(+) absorption and K(+) secretion. Commonly, in all steroid-sensitive epithelia (lung, distal nephron, and distal colon), luminal ATP/UTP inhibits epithelial Na(+) channel-meditated Na(+) absorption. ATP is readily released from epithelial cells onto their luminal aspect, where ecto-nucleotidases promote their metabolism. Adenosine generated by the action of 5'-nucleotidase may elicit further effects on ion transport, often opposite those of ATP. ATP release from epithelia continues to be poorly understood. Integrated functional concepts for luminal P2 receptors are suggested: 1) luminal P2 receptors are part of an epithelial "secretory" defense mechanism; 2) they may be involved in the regulation of cell volume when transcellular solute transport is out of balance; 3) ATP and adenosine may be important autocrine/paracrine regulators mediating cellular protection and regeneration after ischemic cell damage; and 4) ATP and adenosine have been suggested to mediate renal cyst growth and enlargement in polycystic kidney disease.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Physiology, The Water and Salt Research Center, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
38
|
Leipziger J, Bailey MA, Unwin RJ. Purinergic (P2) Receptors in the Kidney. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Kloor D, Delabar U, Mühlbauer B, Luippold G, Osswald H. Tissue levels of S-adenosylhomocysteine in the rat kidney: effects of ischemia and homocysteine. Biochem Pharmacol 2002; 63:809-15. [PMID: 11992651 DOI: 10.1016/s0006-2952(01)00892-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most S-adenosylmethionine (AdoMet)-dependent methyltransferases are regulated in vivo by the AdoMet/S-adenosylhomocysteine (AdoHcy) ratio, also termed as "methylation potential." Since adenosine inhibits in vitro AdoHcy hydrolysis and since adenosine tissue levels increase during hypoxia, it can be predicted that AdoHcy levels may increase in the rat kidney in parallel of those of adenosine. Therefore, the present investigation was performed to assess changes of renal AdoHcy and AdoMet tissue contents during ischemia and after administration of adenosine and homocysteine or both in the ischemic rat kidney. In anesthetized rats ischemia of the kidney was induced by renal artery occlusion for various time intervals. Adenosine and homocysteine were infused into the renal artery of the ischemic kidney. To induce a hyperhomocysteinemia homocysteine was continuously infused. The kidneys were removed and immediately snap-frozen. Tissue contents of AdoHcy, AdoMet, adenosine and adenine nucleotides were analyzed by means of HPLC. Under normoxic condition the tissue contents of AdoHcy, AdoMet and adenosine were 0.7+/-0.05, 44.1+/-1.0 and 3.8+/-0.1nmol/g wet weight, respectively. Renal ischemia for 30min resulted in an increase of AdoHcy levels from 0.7+/-0.05 to 9.1+/-0.6nmol/g wet weight and in a dramatic decrease of the AdoMet/AdoHcy ratio and energy charge from 65.1+/-5.6 to 2.8+/-0.2 and from 0.87+/-0.01 to 0.25+/-0.01, respectively. Application of exogenous adenosine into the ischemic kidney did not result in further AdoHcy accumulation. However, when homocysteine was infused into the ischemic kidney, AdoHcy increased five-fold above control levels, during 5min ischemia. Systemic infusion of homocysteine leads to a reduction of the methylation potential also in the normoxic kidney. We conclude that (i) the methylation potential in the kidney is markedly reduced during ischemia, mainly due to accumulation of AdoHcy; (ii) elevation of AdoHcy tissue content during ischemia is the result of the inhibition of AdoHcy hydrolysis; (iii) homocysteine is rate limiting for AdoHcy synthesis in the ischemic kidney; (iv) under normoxic conditions hyperhomocysteinemia can affect the methylation potential in the renal tissue.
Collapse
Affiliation(s)
- Doris Kloor
- Department of Pharmacology, Faculty of Medicine, University of Tübingen, Wilhelmstrasse 56, D-72074, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
40
|
Abstract
Ischemic injury to the kidney is associated with high morbidity and mortality. Improving the ability of the kidney to tolerate ischemic injury would have important implications. A significant amount of data now exists to suggest that there may be intrinsic mechanisms brought to bear by the kidney when exposed to a toxic or ischemic insult, which protect it against a subsequent exposure to ischemia. While it is frequently stated that this phenomenon, termed ischemic preconditioning, was first described in the heart, in fact there is almost a century of literature on the kidney that supports the concept that prior injury protects against a second insult. The protective effect of preconditioning is greater than most reported protective effects with pharmacological interventions in animals. There is compelling evidence in other organs that preconditioning occurs in humans. It therefore behooves us to understand the endogenous processes that the kidney has developed to protect itself against an ischemic insult. Armed with this understanding we can then attempt to mimic these processes and thereby prevent and treat ischemic acute renal failure.
Collapse
Affiliation(s)
- Joseph V Bonventre
- Medical Services, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| |
Collapse
|
41
|
Noiri E, Nakao A, Uchida K, Tsukahara H, Ohno M, Fujita T, Brodsky S, Goligorsky MS. Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol 2001. [DOI: 10.1152/ajprenal.0071.2001] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
First Published July 12, 2001; 10.1152/ajprenal.0071.2001.—Generation of reactive oxygen species and nitric oxide in hypoxia-reperfusion injury may form a cytotoxic metabolite, peroxynitrite, which is capable of causing lipid peroxidation and DNA damage. This study was designed to examine the contribution of oxidative and nitrosative stress to the renal damage in ischemic acute renal failure (iARF). iARF was initiated in rats by 45-min renal artery clamping. This resulted in lipid peroxidation, DNA damage, and nitrotyrosine modification confirmed both by Western and immunohistochemical analyses. Three groups of animals were randomly treated with an inhibitor of inducible nitric oxide synthase (NOS),l- N 6-(1-iminoethyl)lysine (l-Nil), cell-permeable lecithinized superoxide dismutase (SOD), or both. Each treatment resulted in amelioration of renal dysfunction, as well as reduced nitrotyrosine formation, lipid peroxidation, and DNA damage, thus suggesting that peroxynitrite rather than superoxide anion is responsible for lipid peroxidation and DNA damage. Therefore, in a separate series of experiments, a scavenger of peroxynitrite, ebselen, was administered before the reperfusion period. This treatment resulted in a comparable degree of amelioration of iARF. In conclusion, the present study provides the first attempt to elucidate the role of peroxynitrite in initiation of the cascade of lipid peroxidation and DNA damage to ischemic kidneys. The results demonstrate that l-Nil , lecithinized SOD, and ebselen treatments improve renal function due to their suppression of peroxynitrite production or its scavenging, consequently preventing lipid peroxidation and oxidative DNA damage.
Collapse
Affiliation(s)
- Eisei Noiri
- Departments of Nephrology and Endocrinology and
- Departments of Medicine and Physiology, State University of New York at Stony Brook, Stony Brook, New York 11794-8152
| | | | - Koji Uchida
- Laboratory of Food and Biodynamics, Nagoya University, Nagoya 464-8601
| | - Hirokazu Tsukahara
- Department of Pediatrics, Fukui Medical University, Fukui, Japan 910-1193; and
- Departments of Medicine and Physiology, State University of New York at Stony Brook, Stony Brook, New York 11794-8152
| | - Minoru Ohno
- Cardiovascular Disease, The University of Tokyo, Tokyo 113 – 8655
| | | | - Sergey Brodsky
- Departments of Medicine and Physiology, State University of New York at Stony Brook, Stony Brook, New York 11794-8152
| | - Michael S. Goligorsky
- Departments of Medicine and Physiology, State University of New York at Stony Brook, Stony Brook, New York 11794-8152
| |
Collapse
|
42
|
Noiri E, Nakao A, Uchida K, Tsukahara H, Ohno M, Fujita T, Brodsky S, Goligorsky MS. Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol 2001; 281:F948-57. [PMID: 11592952 DOI: 10.1152/ajprenal.2001.281.5.f948] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Generation of reactive oxygen species and nitric oxide in hypoxia-reperfusion injury may form a cytotoxic metabolite, peroxynitrite, which is capable of causing lipid peroxidation and DNA damage. This study was designed to examine the contribution of oxidative and nitrosative stress to the renal damage in ischemic acute renal failure (iARF). iARF was initiated in rats by 45-min renal artery clamping. This resulted in lipid peroxidation, DNA damage, and nitrotyrosine modification confirmed both by Western and immunohistochemical analyses. Three groups of animals were randomly treated with an inhibitor of inducible nitric oxide synthase (NOS), L-N(6)-(1-iminoethyl)lysine (L-Nil), cell-permeable lecithinized superoxide dismutase (SOD), or both. Each treatment resulted in amelioration of renal dysfunction, as well as reduced nitrotyrosine formation, lipid peroxidation, and DNA damage, thus suggesting that peroxynitrite rather than superoxide anion is responsible for lipid peroxidation and DNA damage. Therefore, in a separate series of experiments, a scavenger of peroxynitrite, ebselen, was administered before the reperfusion period. This treatment resulted in a comparable degree of amelioration of iARF. In conclusion, the present study provides the first attempt to elucidate the role of peroxynitrite in initiation of the cascade of lipid peroxidation and DNA damage to ischemic kidneys. The results demonstrate that L-Nil, lecithinized SOD, and ebselen treatments improve renal function due to their suppression of peroxynitrite production or its scavenging, consequently preventing lipid peroxidation and oxidative DNA damage.
Collapse
Affiliation(s)
- E Noiri
- Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo 113 - 8655, Japan 910-1193.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Jackson EK, Dubey RK. Role of the extracellular cAMP-adenosine pathway in renal physiology. Am J Physiol Renal Physiol 2001; 281:F597-612. [PMID: 11553506 DOI: 10.1152/ajprenal.2001.281.4.f597] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine exerts physiologically significant receptor-mediated effects on renal function. For example, adenosine participates in the regulation of preglomerular and postglomerular vascular resistances, glomerular filtration rate, renin release, epithelial transport, intrarenal inflammation, and growth of mesangial and vascular smooth muscle cells. It is important, therefore, to understand the mechanisms that generate extracellular adenosine within the kidney. In addition to three "classic" pathways of adenosine biosynthesis, contemporary studies are revealing a novel mechanism for renal adenosine production termed the "extracellular cAMP-adenosine pathway." The extracellular cAMP-adenosine pathway is defined as the egress of cAMP from cells during activation of adenylyl cyclase, followed by the extracellular conversion of cAMP to adenosine by the serial actions of ecto-phosphodiesterase and ecto-5'-nucleotidase. This mechanism of extracellular adenosine production may provide hormonal control of adenosine levels in the cell-surface biophase in which adenosine receptors reside. Tight coupling of the site of adenosine production to the site of adenosine receptors would permit a low-capacity mechanism of adenosine biosynthesis to have a large impact on adenosine receptor activation. The purposes of this review are to summarize the physiological roles of adenosine in the kidney; to describe the classic pathways of renal adenosine biosynthesis; to review the evidence for the existence of the extracellular cAMP-adenosine pathway; and to describe possible physiological roles of the extracellular cAMP-adenosine pathway, with particular emphasis on the kidney.
Collapse
Affiliation(s)
- E K Jackson
- Department of Pharmacology, University of Pittsburgh School of Medicine, 3550 Terrace St., Pittsburgh, PA 15261, USA. edj+@pitt.edu
| | | |
Collapse
|
45
|
Parker MR, Willatts SM. A pilot study to investigate the effects of an infusion of aminophylline on renal function following major abdominal surgery. Anaesthesia 2001; 56:670-5. [PMID: 11437769 DOI: 10.1046/j.1365-2044.2001.01374.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acute renal failure is a frequent complication of critical illness and optimal preventive therapy remains elusive. There is increasing evidence from animal models and some human studies that adenosine receptor antagonism by aminophylline may reduce the severity of renal impairment caused by a variety of aetiologies. We studied the renal effects of intravenous aminophylline in an unblinded, within-patient study of 20 patients admitted to a general intensive care unit following major surgery. We demonstrated that there were no adverse cardiovascular complications related to aminophylline therapy. Renal sodium and osmolar clearance increased with a non-significant trend towards increased diuresis during treatment. Creatinine clearance, however, was unchanged but the study was not designed and did not have the power to test whether aminophylline increased renal blood flow or glomerular filtration rate. We suggest the renal actions of aminophylline in critical illness merit further investigation.
Collapse
Affiliation(s)
- M R Parker
- Department of Anaesthetics, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | | |
Collapse
|
46
|
Nishiyama A, Kimura S, He H, Miura K, Rahman M, Fujisawa Y, Fukui T, Abe Y. Renal interstitial adenosine metabolism during ischemia in dogs. Am J Physiol Renal Physiol 2001; 280:F231-8. [PMID: 11208598 DOI: 10.1152/ajprenal.2001.280.2.f231] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was conducted to determine the metabolism of renal interstitial adenosine under resting conditions and during ischemia. By using a microdialysis method with HPLC-fluorometric analysis, renal interstitial concentrations of adenosine, inosine, and hypoxanthine were assessed in pentobarbital-anesthetized dogs. Average basal renal interstitial concentrations of adenosine, inosine, and hypoxanthine were 0.18 +/- 0.04, 0.31 +/- 0.05, and 0.35 +/- 0.05 micromol/l, respectively. Local inhibition of adenosine kinase with iodotubercidin (10 micromol/l in perfusate) or inhibition of adenosine deaminase with erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA; 100 micromol/l in perfusate) did not change adenosine concentrations in the nonischemic kidneys (0.18 +/- 0.04 and 0.24 +/- 0.05 micromol/l, respectively). On the other hand, treatment with iodotubercidin+EHNA significantly increased adenosine concentration (0.52 +/- 0.07 micromol/l) with significant decreases in inosine and hypoxanthine levels (0.13 +/- 0.03 and 0.19 +/- 0.04 micromol/l, respectively). During 30 min of ischemia, adenosine, inosine, and hypoxanthine were significantly increased to 0.76 +/- 0.29, 2.14 +/- 0.45, and 21.8 +/- 4.7 micromol/l, respectively. The treatment with iodotubercidin did not alter ischemia-induced increase in adenosine (0.84 +/- 0.18 micromol/l); however, EHNA alone markedly enhanced adenosine accumulation (13.54 +/- 2.16 micromol/l), the value of which was not augmented by an addition of iodotubercidin (15.80 +/- 1.24 micromol/l). In contrast, ischemia-induced increases in inosine and hypoxanthine were inversely diminished by the treatment with iodotubercidin+EHNA (0.90 +/- 0.20 and 9.86 +/- 1.96 micromol/l, respectively). These results suggest that both adenosine kinase and adenosine deaminase contribute to the metabolism of renal interstitial adenosine under resting conditions, whereas adenosine produced during ischemia is mainly metabolized by adenosine deaminase and the rephosphorylation of adenosine by adenosine kinase is small.sent
Collapse
Affiliation(s)
- A Nishiyama
- Department of Pharmacology, Kagawa Medical University, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pflueger A, Larson TS, Nath KA, King BF, Gross JM, Knox FG. Role of adenosine in contrast media-induced acute renal failure in diabetes mellitus. Mayo Clin Proc 2000; 75:1275-83. [PMID: 11126837 DOI: 10.4065/75.12.1275] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increased release of renal adenosine and stimulation of renal adenosine receptors have been proposed to be major mechanisms in the development of contrast media-induced acute renal failure (CM-ARF). Patients with diabetes mellitus or preexisting renal disease who have reduced renal function have a markedly increased risk to develop CM-ARF. This increased risk to develop CM-ARF in patients with diabetes mellitus is linked to a higher sensitivity of the renal vasculature to adenosine, since experimental studies have shown increased adenosine-induced vasoconstriction in the kidneys of diabetic animals. Furthermore, recent evidence suggests that administration of adenosine receptor antagonists reduces the risk of development of CM-ARF in both diabetic and nondiabetic patients. The purpose of this review is to discuss the role of adenosine in the development of CM-ARF, particularly in the kidneys of diabetic patients, and to evaluate the therapeutic potential of adenosine receptor antagonists in the prevention of CM-ARF. Selective adenosine A1 receptor antagonists may provide a therapeutic tool to prevent CM-ARF in patients with diabetes mellitus and reduced renal function.
Collapse
Affiliation(s)
- A Pflueger
- Department of Physiology and Biophysics, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
48
|
Jenik AG, Ceriani Cernadas JM, Gorenstein A, Ramirez JA, Vain N, Armadans M, Ferraris JR. A randomized, double-blind, placebo-controlled trial of the effects of prophylactic theophylline on renal function in term neonates with perinatal asphyxia. Pediatrics 2000; 105:E45. [PMID: 10742366 DOI: 10.1542/peds.105.4.e45] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The kidney is the most damaged organ in asphyxiated full-term infants. Experiments in rabbits and rats have shown that renal adenosine acts as a vasoconstrictive metabolite in the kidney after hypoxemia and/or ischemia, contributing to the fall in glomerular filtration rate (GFR) and filtration fraction. Vasoconstriction produced by adenosine can be inhibited by the nonspecific adenosine receptor antagonist, theophylline. Gouyon and Guignard performed studies in newborn and adult rabbits subjected to normocapnic hypoxemia. Their results clearly showed that the hypoxemia-induced drop in GFR could be avoided by the administration of low doses of theophylline. OBJECTIVE This study was designed to determine whether theophylline could prevent and/or ameliorate renal dysfunction in term neonates with perinatal asphyxia. SETTING Buenos Aires, Argentina. STUDY DESIGN We randomized 51 severe asphyxiated term infants to receive intravenously a single dose of either theophylline (8 mg/kg; study group: n = 24) or placebo (control group: n = 27) during the first 60 minutes of life. The 24-hour fluid intake and the urine volumes formed were recorded during the first 5 days of life. Daily volume balances (water output/input ratio and weights) were determined. Severe renal dysfunction was defined as serum creatinine elevated above 1.50 mg/dL, for at least 2 consecutive days after a fluid challenge, or rising levels of serum creatinine (.3 mg/dL/day). The GFR was estimated during the second to third days of life by endogenous creatinine clearance (mL/minute/1.73 m2) and using Schwartz's formula: GFR (mL/minute/1.73 m2) =.45 x length (cm)/plasma creatinine (mg/100 mL) during the first 5 days of life. Tubular performance was assessed as the concentration of beta2-microglobulin (beta2M) determined by enzyme immunoassay, on the first voided urine 12 hours after theophylline administration. The statistical analysis for the evaluation of the differences between the groups was performed with Student's t and chi(2) tests as appropriate. RESULTS During the first day of life, the 24-hour fluid balance was significantly more positive in the infants receiving placebo compared with the infants receiving theophyline. Over the next few days, the change in fluid balance favored the theophyline group. Significantly higher mean plasma values were recorded in the placebo group from the second to the fifth days of life. Severe renal dysfunction was present in 4 of 24 (17%) infants of the theophylline group and in 15 of 27 (55%) infants of the control group (relative risk:.30; 95% confidence interval:.12-.78). Mean endogenous creatinine clearance of the theophylline group was significantly increased compared with the creatinine clearance in infants receiving placebo (21.84 +/- 7.96 vs 6.42 +/- 4.16). The GFR (estimated by Schwartz's formula) was markedly decreased in the placebo group. Urinary beta2M concentrations were significantly reduced in the theophylline group (5.01 +/- 2.3 mg/L vs 11.5 +/- 7.1 mg/L). Moreover, 9 (33%) patients of the theophylline group versus 20 (63%) infants of the control group had urinary beta2M above the normal limit (<.018). There was no difference in the severity of the asphyxia between infants belonging to the theophylline and control groups in regards of Portman's score. Except for renal involvement, a similar frequency of multiorganic dysfunction, including neurologic impairment, was observed in both groups. The theophylline group achieved an average serum level of 12.7 microg/mL (range: 7.5-18.9 microg/mL) at 36 to 48 hours of live versus traces (an average serum level of .87 microg/mg) in the placebo group. CONCLUSIONS Our data suggest that prophylactic theophylline, given early after birth, has beneficial effects on reducing the renal dysfunction in asphyxiated full-term infants. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- A G Jenik
- Department of Pediatrics of the Hospital Italiano, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
49
|
Lee HT, Emala CW. Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A(1) and A(3) receptors. Am J Physiol Renal Physiol 2000; 278:F380-7. [PMID: 10710542 DOI: 10.1152/ajprenal.2000.278.3.f380] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal ischemia and reperfusion during aortic and renal transplant surgery result in ischemic-reperfusion injury. Ischemic preconditioning and adenosine infusion before ischemia protect against ischemic-reperfusion injury in cardiac and skeletal muscle, but these protective phenomena have not been demonstrated in the kidney. Rats were randomized to sham operation, 45-min renal ischemia, ischemic preconditioning with four cycles of 8-min renal ischemia and 5-min reperfusion followed by 45-min renal ischemia, systemic adenosine pretreatment before 45-min renal ischemia, or pretreatments with selective adenosine receptor subtype agonists or antagonists before 45-min renal ischemia. Forty-five minutes of renal ischemia followed by 24 h of reperfusion resulted in marked rises in blood urea nitrogen and creatinine. Ischemic preconditioning and adenosine pretreatment protected renal function and improved renal morphology. A(1) adenosine receptor activation mimics and A(1) adenosine antagonism blocks adenosine-induced protection. In addition, A(3) adenosine receptor activation before renal ischemia worsens renal ischemic-reperfusion injury, and A(3) adenosine receptor antagonism protects renal function. We demonstrate for the first time that rat kidneys can be preconditioned to attenuate ischemic-reperfusion injury and adenosine infusion before ischemic insult protects renal function via A(1) adenosine receptor activation. Our data suggest that an A(1) adenosine agonist and A(3) adenosine antagonist may have clinically beneficial implications where renal ischemia is unavoidable.
Collapse
Affiliation(s)
- H T Lee
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
50
|
Kloor D, Stumvoll W, Schmid H, Kömpf J, Mack A, Osswald H. Localization of S-adenosylhomocysteine hydrolase in the rat kidney. J Histochem Cytochem 2000; 48:211-8. [PMID: 10639487 DOI: 10.1177/002215540004800206] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
S-adenosylhomocysteine (SAH) hydrolase is a cytosolic enzyme present in the kidney. Enzyme activities of SAH hydrolase were measured in the kidney in isolated glomeruli and tubules. SAH hydrolase activity was 0.62 +/- 0.02 mU/mg in the kidney, 0.32 +/- 0.03 mU/mg in the glomeruli, and 0.50 +/- 0.02 mU/mg in isolated tubules. Using immunohistochemical methods, we describe the localization of the enzyme SAH hydrolase in rat kidney with a highly specific antibody raised in rabbits against purified SAH hydrolase from bovine kidney. This antibody crossreacts to almost the same extent with the SAH hydrolase from different species such as rat, pig, and human. Using light microscopy, SAH hydrolase was visualized by the biotin-streptavidin-alkaline phosphatase immunohistochemical procedure. SAH hydrolase immunostaining was observed in glomeruli and in the epithelium of the proximal and distal tubules. The collecting ducts of the cortex and medulla were homogeneously stained. By using double immunofluorescence staining and two-channel immunofluorescence confocal laser scanning microscopy, we differentiated the glomerular cells (endothelium, mesangium, podocytes) and found intensive staining of podocytes. Our results show that the enzyme SAH hydrolase is found ubiquitously in the rat kidney. The prominent staining of SAH hydrolase in the podocytes may reflect high rates of transmethylation. (J Histochem Cytochem 48:211-218, 2000)
Collapse
Affiliation(s)
- D Kloor
- Department of Pharmacology, Faculty of Medicine, University of Tübingen, Germany
| | | | | | | | | | | |
Collapse
|