1
|
Kamikawa A, Ichii O, Sakazaki J, Ishikawa T. Ca2+-activated Cl− channel currents in mammary secretory cells from lactating mouse. Am J Physiol Cell Physiol 2016; 311:C808-C819. [DOI: 10.1152/ajpcell.00050.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/19/2016] [Indexed: 11/22/2022]
Abstract
The Cl− secretion via Ca2+-activated Cl− channel (CaCC) is critical for fluid secretion in exocrine glands like the salivary gland. Also in the mammary gland, it has been hypothesized that CaCC plays an important role in the secretion of Cl− and aqueous phase of milk. However, there has been no evidence for the functional expression of CaCC in native mammary secretory (MS) cells of lactating animals. We therefore assessed membrane current in MS cells that were freshly isolated from lactating mice using whole cell patch-clamp techniques. In MS cells, we detected CaCC current that exhibited the following characteristics: 1) Ca2+-dependent activation at the concentrations of submicromolar range; 2) voltage-dependent activation; 3) slow kinetics for activation and deactivation; 4) outward rectification of the steady-state current; 5) anion permeability in the sequence of I− > NO3− > Br− > Cl− >> glutamate; 6) inhibition by Cl− channel blockers (niflumic acid, DIDS, and CaCCinh-A01). These characteristics of native CaCC current were similar to reported characteristics of heterologously expressed TMEM16A. RT-PCR analyses showed the expression of multiple CaCC channels including TMEM16A, Best1, and Best3 in the mammary glands of lactating mice. Immunohistochemical staining revealed the localization of TMEM16A protein at the apical membrane of the MS cells. Collectively, our data strongly suggest that MS cells functionally express CaCC, which is at least partly constituted by TMEM16A. The CaCC such as TMEM16A at the apical membrane of the MS cells may influence the quantity and/or quality of milk.
Collapse
Affiliation(s)
- Akihiro Kamikawa
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan; and
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Junpei Sakazaki
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan; and
| | - Toru Ishikawa
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan; and
| |
Collapse
|
2
|
Kamikawa A, Ishikawa T. Functional expression of a Kir2.1-like inwardly rectifying potassium channel in mouse mammary secretory cells. Am J Physiol Cell Physiol 2013; 306:C230-40. [PMID: 24259419 DOI: 10.1152/ajpcell.00219.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
K(+) channels in mammary secretory (MS) cells are believed to play a role in transcellular electrolyte transport and thus determining ionic composition of the aqueous phase of milk. However, direct evidence for specific K(+) channel activity in native MS cells is lacking at the single-cell level. Here, we show for the first time that an inwardly rectifying K(+) (Kir) channel is functionally expressed in fully differentiated MS cells that were freshly isolated from the mammary gland of lactating mice. Using the standard whole cell patch-clamp technique, we found that mouse MS cells consistently displayed a K(+) current, whose electrophysiological properties are similar to those previously reported for Kir2.x channels, particularly Kir2.1: 1) current-voltage relationship with strong inward rectification, 2) slope conductance approximately proportional to the square root of external K(+) concentration, 3) voltage- and time-dependent and high-affinity block by external Ba(2+), and 4) voltage-dependent inhibition by external Cs(+). Accordingly, RT-PCR analysis revealed the gene expression of Kir2.1, but not Kir2.2, Kir2.3, and Kir2.4, in lactating mouse mammary gland, and immunohistochemical staining showed Kir2.1 protein expression in the secretory cells. Cell-attached patch recordings from MS cells revealed that a 31-pS K(+) channel with strong inward rectification was likely active at the resting membrane potential. Collectively, the present work demonstrates that a functional Kir2.1-like channel is expressed in lactating mouse MS cells. We propose that the channel might be involved, at least in part, in secretion and/or preservation of ionic components of milk stored into the lumen of these cells.
Collapse
Affiliation(s)
- Akihiro Kamikawa
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | |
Collapse
|
3
|
Pan Z, Capó-Aponte JE, Zhang F, Wang Z, Pokorny KS, Reinach PS. Differential dependence of regulatory volume decrease behavior in rabbit corneal epithelial cells on MAPK superfamily activation. Exp Eye Res 2007; 84:978-90. [PMID: 17397832 PMCID: PMC2747597 DOI: 10.1016/j.exer.2007.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 01/31/2007] [Accepted: 02/02/2007] [Indexed: 12/18/2022]
Abstract
We characterized the dependence of hypotonicity-induced regulatory volume decrease (RVD) responses on mitogen-activated protein kinase (MAPK) pathway signaling in SV40-immortalized rabbit corneal epithelial cells (RCEC). Following calcein-AM loading, RVD was monitored using a microplate fluorescence reader. Western blot analysis determined MAPK activation. After 30 min, the RVD response restored the relative cell volume to nearly isotonic values, whereas it was inhibited when cells were bathed either in a Cl- -free solution or with the Cl- -channel inhibitors: 5-nitro-2-(3-phenylpropylamino)benzoic acid or niflumic acid. Similar declines occurred with either a high-K+ (20 mM) supplemented solution or the K+ channel inhibitor 4-aminopyridine. Activation of extracellular signal-regulated kinase (ERK), p38, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) was time and tonicity-dependent. Stimulation of ERK and SAPK/JNK was maximized earlier than that of p38. Activation of ERK and SAPK/JNK was insensitive to Cl- and K+ channel inhibitors, whereas inhibition with either PD98059 or SP600125, respectively, blocked RVD. However, inhibition of p38 with SB203580had no effect on RVD. Suppression of RVD instead blocked p38 activation. Differences in the dependence of RVD activation on Erk1/2 and p38 signaling were validated in dominant negative (d/n)-Erk1 and d/n-p38 cells. Volume-sensitive Cl- and K+ channel activation contributes, in concert, to RVD in RCEC. Therefore, swelling-induced ERK and SAPK/JNK stimulation precedes Cl- and K+ channel activation, whereas p38 activation occurs as a consequence of RVD.
Collapse
Affiliation(s)
- Zan Pan
- Department of Biological Sciences, State College of Optometry, State University of New York, New York, NY 10036, USA
| | - José E. Capó-Aponte
- Department of Biological Sciences, State College of Optometry, State University of New York, New York, NY 10036, USA
| | - Fan Zhang
- Department of Biological Sciences, State College of Optometry, State University of New York, New York, NY 10036, USA
| | - Zheng Wang
- Department of Biological Sciences, State College of Optometry, State University of New York, New York, NY 10036, USA
| | - Kathryn S. Pokorny
- The Institute of Ophthalmology and Visual Science, University of Medicine & Dentistry, New Jersey Medical School, Newark. NJ 07101
| | - Peter S. Reinach
- Department of Biological Sciences, State College of Optometry, State University of New York, New York, NY 10036, USA
- Corresponding Author. Peter S. Reinach, 33 West 42nd Street, New York, NY 10036, USA. Telephone: 1 212 938 5785, Fax: 1 212 938 5794, (P.S. Reinach)
| |
Collapse
|
4
|
Shennan DB, Grant ACG, Gow IF. The effect of hyposmotic and isosmotic cell swelling on the intracellular [Ca2+] in lactating rat mammary acinar cells. Mol Cell Biochem 2002; 233:91-7. [PMID: 12083385 DOI: 10.1023/a:1015539026031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of hyposmotic and isosmotic cell swelling on the free intracellular calcium concentration ([Ca2+]i) in rat mammary acinar cells has been examined using the fura-2 dye technique. Ahyposmotic shock (40% reduction) increased the [Ca2+]i in rat mammary acinar cells in a fashion which was transient; the [Ca2+]i returned to a value similar to that found under isomotic conditions within 180 sec. The increase in the [Ca2+]i was dependent upon the extent of the osmotic shock. The hyposmotically-activated increase in the [Ca2+]i could not be attributed to a reduction in extracellular Na+ or a change in the ionic strength of the incubation medium. Thapsigargin (1 microM) enhanced the hyposmotically-activated increase in the [Ca2+]i. Isosmotic swelling of rat mammary acinar cells, using urea, had no significant effect on the [Ca2+]i. Similarly, a hyperosmotic shock did not affect the [Ca2+]i in rat mammary acinar cells. It appears that the effect of cell swelling on the [Ca2+]i in rat mammary acinar cells depends on how the cells are swollen (hyposmotic vs. isosmotic). This finding may have important physiological implications given that it is predicted that mammary cell volume will change in vivo under isomotic conditions.
Collapse
Affiliation(s)
- D B Shennan
- Hannah Research Institute, Ayr, Scotland, UK.
| | | | | |
Collapse
|
5
|
Abstract
This review deals with the cellular mechanisms that transport milk constituents or the precursors of milk constituents into, out of, and across the mammary secretory cell. The various milk constituents are secreted by different intracellular routes, and these are outlined, including the paracellular pathway between interstitial fluid and milk that is present in some physiological states and in some species throughout lactation. Also considered are the in vivo and in vitro methods used to study mammary transport and secretory mechanisms. The main part of the review addresses the mechanisms responsible for uptake across the basolateral cell membrane and, in some cases, for transport into the Golgi apparatus and for movement across the apical membrane of sodium, potassium, chloride, water, phosphate, calcium, citrate, iodide, choline, carnitine, glucose, amino acids and peptides, and fatty acids. Recent work on the control of these processes, by volume-sensitive mechanisms for example, is emphasized. The review points out where future work is needed to gain an overall view of milk secretion, for example, in marsupials where milk composition changes markedly during development of the young, and particularly on the intracellular coordination of the transport processes that result in the production of milk of relatively constant composition at a particular stage of lactation in both placental and marsupial mammals.
Collapse
|
6
|
Abstract
The secretion of milk depends on the activity of a large number of membrane transport systems located on the apical and basolateral membranes of mammary secretory cells. It follows that a thorough knowledge of individual mammary tissue membrane transport systems is required if we are to fully understand the process of milk secretion. The distribution of the transporters between the apical and basolateral poles of the mammary epithelium must be asymmetrical given that the mammary gland is capable of vectorial transport. This is particularly evident in the case of glucose and amino acid transport systems: the transport mechanisms for these compounds are predominantly situated in the blood-facing aspect of the secretory cells. In addition. it is apparent that there is a polarized distribution of transport systems (carriers and channels) which accept sodium, potassium, chloride, phosphate, and calcium as substrates.
Collapse
Affiliation(s)
- D B Shennan
- Hannah Research Institute, Ayr, Scotland, United Kingdom.
| |
Collapse
|
7
|
Butterfield I, Warhurst G, Jones MN, Sandle GI. Characterization of apical potassium channels induced in rat distal colon during potassium adaptation. J Physiol 1997; 501 ( Pt 3):537-47. [PMID: 9218214 PMCID: PMC1159455 DOI: 10.1111/j.1469-7793.1997.537bm.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. Chronic dietary K+ loading stimulates an active K+ secretory process in rat distal colon, which involves an increase in the macroscopic apical K+ conductance of surface epithelial cells. In the present study, the abundance and characteristics of K+ channels constituting this enhanced apical K+ conductance were evaluated using patch clamp recording techniques. 2. In isolated non-polarized surface cells, K+ channels were seen in 9 of 90 (10%) cell-attached patches in cells from control animals, and in 247 of 437 (57%) cell-attached patches in cells from K(+)-loaded animals, with a significant (P < 0.001) shift in distribution density. Similarly, recordings from cell-attached patches of the apical membrane of surface cells surrounding the openings of distal colonic crypts revealed identical K+ channels in 1 of 11 (9%) patches in control animals, and in 9 of 13 (69%) patches in K(+)-loaded animals. 3. In isolated surface cells and surface cells in situ, K+ channels had mean slope conductances of 209 +/- 6 and 233 +/- 14 pS, respectively, when inside-out patches were bathed symmetrically in K2SO4 solution. The channels were sensitive to 'cytosolic' Ca2+ concentration, were voltage sensitive at 'cytosolic' Ca2+ concentrations encountered in colonic epithelial cells, and were inhibited by 1 mM quinidine, 20 mM TEA or 5 mM Ba2+ ions. 4. The data show that dietary K+ loading increases the abundance of Ca(2+)- and voltage-sensitive large-conductance K+ channels in the apical membrane of surface cells in rat distal colon. These channels constitute the enhanced macroscopic apical K+ conductance previously identified in these cells, and are likely to play a critical role in the active K+ secretory process that typifies this model of colonic K+ adaptation.
Collapse
|
8
|
Shennan DB. Regulation of water and solute transport across mammalian plasma cell membranes by prolactin. J DAIRY RES 1994; 61:155-66. [PMID: 8188943 DOI: 10.1017/s0022029900028156] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Schwab A, Westphale HJ, Wojnowski L, Wünsch S, Oberleithner H. Spontaneously oscillating K+ channel activity in transformed Madin-Darby canine kidney cells. J Clin Invest 1993; 92:218-23. [PMID: 8325988 PMCID: PMC293572 DOI: 10.1172/jci116553] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Intracellular alkalinization is known to be associated with tumorigenic transformation. Besides phenotypical alterations alkali-transformed Madin-Darby canine kidney (MDCK) cells exhibit a spontaneously oscillating cell membrane potential (PD). Using single-channel patch clamp techniques, it was the aim of this study to identify the ion channel underlying the rhythmic hyperpolarizations of the PD. In the cell-attached patch configuration, we found that channel activity was oscillating. The frequency of channel oscillations is 1.1 +/- 0.1 min-1. At the peak of oscillatory channel activity, single-channel current was -2.7 +/- 0.05 pA, and in the resting state it was -1.95 +/- 0.05 pA. Given the single-channel conductance of 53 +/- 3 pS for inward (and of 27 +/- 5 pS for outward) current the difference of single-channel current amplitude corresponded to a hyperpolarization of approximately 14 mV. The channel is selective for K+ over Na+. Channel kinetics are characterized by one open and by three closed time constants. The channel is Ca2+ sensitive. Half maximal activation in the inside-out patch mode is achieved at a Ca2+ concentration of 10 mumol/liter. In addition, we also found a 13-pS K+ channel that shows no oscillatory activity in the cell-attached patch configuration and that was not Ca2+ sensitive. We conclude that the Ca(2+)-sensitive 53-pS K+ channel is underlying spontaneous oscillations of the PD. It has virtually identical biophysical properties as a Ca(2+)-sensitive K+ channel in nontransformed parent MDCK cells. Hence, alkali-induced transformation of MDCK cells did not affect the channel protein itself but its regulators thereby causing spontaneous fluctuations of the PD.
Collapse
Affiliation(s)
- A Schwab
- Department of Physiology, University of Würzburg, Germany
| | | | | | | | | |
Collapse
|
10
|
Enomoto K, Furuya K, Yamagishi S, Maeno T. Proliferation-associated increase in sensitivity of mammary epithelial cells to inositol-1,4,5-trisphosphate. Cell Biochem Funct 1993; 11:55-62. [PMID: 8453737 DOI: 10.1002/cbf.290110107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Injection of D-myo-inositol-1,4,5-trisphosphate (IP3) was found to induce a transient increase of intracellular Ca2+ concentration in cancerous mammary cells (MMT060562) and in normal mammary cells treated with epidermal growth factor. Responses to injection of either D-myo-inositol-1,4-bisphosphate (IP2) or D-myo-inositol-1,3,4,5-tetrakisphosphate (IP4) were small or absent. Furthermore, normal mammary cells cultivated with low-protein serum replacement alone or in the presence of differentiation-inducing hormones (insulin + cortisol + prolactin) were less sensitive to IP3. Thapsigargin induced a transient increase of Ca2+ due to the release of Ca2+ from an intracellular pool. There was no difference in the peak heights of the thapsigargin-induced Ca2+ increase when mammary cells were cultivated in the presence or absence of epidermal growth factor or insulin + cortisol + prolactin. These findings suggest that the releasable intracellular Ca2+ pool remained unchanged whereas sensitivity to IP3 increases during the proliferation stage. Mechanical stimulus of a mammary cell induces an increase of intracellular Ca2+ in the stimulated cell. A certain stimulating factor is released from the mechanically stimulated cell into the extracellular space, and it induces an increase of Ca2+ in surrounding cells. In contrast, the IP3-induced Ca2+ increase in both cancerous and epidermal growth factor-treated normal mammary cells did not spread to adjacent cells. Therefore, increase of Ca2+ is not sufficient to account for the release of stimulating substances from mammary cells in the mechanically-induced spreading response.
Collapse
Affiliation(s)
- K Enomoto
- Department of Physiology, Shimane Medical University, Izumo, Japan
| | | | | | | |
Collapse
|
11
|
Huang Y, Rane SG. Single channel study of a Ca(2+)-activated K+ current associated with ras-induced cell transformation. J Physiol 1993; 461:601-18. [PMID: 7688809 PMCID: PMC1175275 DOI: 10.1113/jphysiol.1993.sp019531] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. Ras-transformed fibroblasts have a whole-cell Ca(2+)-activated K+ current which is either absent or unavailable for activation in their non-transformed counterparts. To better understand the physiological significance of this K+ current the single channel basis for the current was characterized in ras-transformed cells. 2. More than 90% of inside-out patches from ras-transformed balb 3T3 cells had a channel type which was Ca(2+)-activated (threshold < 0.2 microM internal Ca2+), K(+)-selective (permeability ratio PNa:PK < 0.02), and inwardly rectifying in symmetric 150 mM KCl solutions (conductances at -60 and 60 mV of 33 +/- 1 and 17 +/- 1 pS respectively). Channel opening probability increased 25-50% between -60 and 60 mV due to an increase in the frequency of opening. Single K+ channels in outside-out patches were blocked by externally applied 10 mM TEA or 100 nM charybdotoxin, as were whole-cell Ca(2+)-activated K+ currents. The properties of this class of K+ channel are sufficient to account for the whole-cell Ca(2+)-activated current in ras-transformed cells. 3. Inside-out patches from C3H10T1/2 and NIH 3T3 fibroblasts transformed by the H-ras oncogene had Ca(2+)-activated K+ channels identical to those observed in K-ras-transformed balb 3T3 cells. 4. As predicted from whole-cell experiments Ca(2+)-activated K+ channels were not observed in inside-out patches from non-transformed balb 3T3 cells. The purpose of the excised patch recordings was, instead, to rule out potential technical complications with the whole-cell experiments. For instance A23187, which evoked whole-cell K+ currents in transformed cells, may not have elevated Ca2+ sufficiently to allow K+ channel activation in non-transformed cells. Another possibility was that trypsin pretreatment used to round-up cells for whole-cell recording may have preferentially disabled channels in non-transformed cells. The first problem was addressed by exposing patches from non-transformed cells to 100-1000 microM Ca2+. Excised patches were also taken from non-transformed cells which had not been exposed to trypsin. K+ channel activity was not observed under either condition. 5. Patches from both ras-transformed and non-transformed cells had a type of non-specific cation channel which was activated at internal Ca2+ concentrations > or = 100 microM. This channel was sensitive to membrane voltage, mean open time increasing from 12 to 72 ms between -90 and 90 mV.
Collapse
Affiliation(s)
- Y Huang
- Purdue University, Department of Biological Sciences, West Lafayette, IN 47907
| | | |
Collapse
|
12
|
Furuya K, Enomoto K, Yamagishi S. Spontaneous calcium oscillations and mechanically and chemically induced calcium responses in mammary epithelial cells. Pflugers Arch 1993; 422:295-304. [PMID: 8437883 DOI: 10.1007/bf00374284] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Changes of intracellular calcium activity (Ca2+i) in mouse mammary epithelial cells in primary culture (normal) and in an established cell line (MMT060562, cancerous) were investigated by microfluorometry and image analysis of fura-2 fluorescence. In both types of cells, some populations exhibited occasional Ca2+i oscillations with a period of 50-160 s. Slight mechanical stimulation of a cell with a fine glass pipette induced a Ca2+i increase, which spread from the stimulated cell to the surrounding cells with a speed of 7-12 microns/s. ATP (> 1 mumol/l) and ADP, but not AMP induced a Ca2+i increase in both cell types. Bradykinin was highly effective (> 10 nmol/l) only in the cancerous mammary epithelial cells. In Ca(2+)-free solution, all these Ca2+i responses remained unchanged at the first application, and decreased abruptly at the second trial. La3+ (> 0.5 mmol/l) suppressed the response to ATP but not the response to bradykinin. Addition of extracellular Mn2+ rapidly quenched the fura-2 fluorescence in the cell even in a non-stimulated state. Influx of Mn2+ did not increase during Ca2+i responses. These results indicate that the sources of Ca2+i responses in mammary epithelial cells are intracellular stores, which exchange Ca2+ with the extracellular medium.
Collapse
Affiliation(s)
- K Furuya
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | | | |
Collapse
|
13
|
Alekseev NP, Markov AG, Tolkunov YA. Transepithelial potential difference in the goat mammary gland and its change during hand milking, and administration of oxytocin and catecholamines. J DAIRY RES 1992; 59:469-78. [PMID: 1452832 DOI: 10.1017/s0022029900027138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The reaction of secretory epithelium and myoepithelial cells in the alveoli to hand milking and i.v. injection of oxytocin and catecholamines was studied in lactating goats. The reaction of secretory cells was assessed by changes in the transepithelial (blood-milk) potential difference (PD), and the contractile reaction of myoepithelial cells by the growth of intramammary pressure (IP). The initial value of PD was 24.6 +/- 0.6 mV, that of IP 3.32 +/- 0.08 kPa (24.9 +/- 0.6 mmHg). Milking and oxytocin administration caused a rise in PD and an increase in IP. After noradrenaline and adrenaline injections two-phase PD changes and a short-term rise in IP were recorded. Isoproterenol, a beta-agonist, caused a rise in PD but did not affect IP. Phenylephrine, an alpha-agonist, caused two-phase and one-phase changes in PD. Simultaneously, a rise in IP was recorded. The results show that the reaction of the mammary gland to the substances administered is complex. Myoepithelial and secretory cells respond differently to short-term rises in the level of mediators and hormones in the blood.
Collapse
Affiliation(s)
- N P Alekseev
- Laboratory of Physiology of Secretory Processes, St. Petersburg University, Russian Federation
| | | | | |
Collapse
|
14
|
Shennan DB. Salicylate-induced cation fluxes across biological membranes. A study of the underlying mechanism. Biochem Pharmacol 1992; 44:645-50. [PMID: 1510712 DOI: 10.1016/0006-2952(92)90398-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of salicylate on cation transport by lactating rat mammary tissue has been examined. Consistent with previous results, salicylate increased the unidirectional efflux of K+ (Rb+): this increase was dependent on extracellular Ca2+. Lowering the temperature of the incubation medium from 37 degrees to 4 degrees did not attenuate the effect of salicylate on K+ (Rb+). Ca2+ uptake by mammary tissue was stimulated by salicylate, whereas Ca2+ efflux was not greatly affected. Salicylate reduced the ouabain-insensitive uptake of K+ (Rb+). The net K+ content of mammary tissue was reduced by incubating tissue in a medium containing salicylate, whereas net Na+ content was increased. The results are consistent with the hypothesis that salicylate activated a calcium-dependent K+ efflux channel and/or a calcium-dependent non-selective cation channel.
Collapse
|
15
|
Shennan DB. K+ and Cl- transport by mammary secretory cell apical membrane vesicles isolated from milk. J DAIRY RES 1992; 59:339-48. [PMID: 1401356 DOI: 10.1017/s0022029900030612] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The transport of K+ (Rb+) and Cl- by membrane vesicles isolated from bovine milk has been studied using ion-exchange column chromatography. K+ (Rb+) and Cl- accumulation by the vesicles was time-dependent and was almost abolished by 0.1% Triton X-100, suggesting that uptake represents 'real' transport rather than binding. K+ (Rb+) uptake was influenced by the anion in solution in a manner suggesting that influx is sensitive to changes in vesicle membrane potential. Similarly, Cl- uptake was found to be sensitive to vesicle electrical potential: Cl- influx was enhanced by inside positive potentials. Cl- uptake was not saturable with respect to external Cl-. The results suggest that K+ (Rb+) and Cl- cross the apical membrane by way of conductance pathways. The similarity between ion transport by skim milk membrane vesicles and that of the apical aspect of the intact mammary epithelium suggests that the former may be a good model to study solute transport by the apical membrane of mammary secretory cells.
Collapse
|
16
|
Enomoto K, Furuya K, Yamagishi S, Maeno T. Mechanically induced electrical and intracellular calcium responses in normal and cancerous mammary cells. Cell Calcium 1992; 13:501-11. [PMID: 1423530 DOI: 10.1016/0143-4160(92)90018-n] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mechanically induced channel activities and increase of intracellular calcium ([Ca2+]i) in normal and cancerous murine mammary cells (MMT 060562) were investigated using the patch clamp technique and Fura-2 fluorescence. Both cell types showed similar properties. Upon mechanical stimulation, activation of the Ca(2+)-dependent K+ channel or outward membrane current was recorded in cells which were several cells distant from the stimulated cell. Mechanical stimulation also induced an increase of [Ca2+]i in the touched cell, and this increase of [Ca2+]i spread to the surrounding cells. The [Ca2+]i signal travelled a distance of 100-200 microns within 20-40 s and then diminished. The presence of cell-to-cell communication between adjacent mammary cells through gap junction was indicated by injection of lucifer yellow and measurements of electrical coupling (coupling constant = 0.2-0.3). The mechanically induced increase of the [Ca2+]i signal spread to adjacent cells even when the stimulated cell had no physical contact with them. In the absence of fluid movement, the pattern of the spread of the [Ca2+]i signal was a concentric circle. However, in the presence of fluid movement, the pattern changed to elongate to the direction of the flow. These findings suggested that a certain factor was released from the mechanically stimulated cell to the extracellular space, and this factor induces the increase of [Ca2+]i in surrounding cells.
Collapse
Affiliation(s)
- K Enomoto
- Department of Physiology, Shimane Medical University, Japan
| | | | | | | |
Collapse
|
17
|
Wegman EA, Young JA, Cook DI. A 23-pS Ca2(+)-activated K+ channel in MCF-7 human breast carcinoma cells: an apparent correlation of channel incidence with the rate of cell proliferation. Pflugers Arch 1991; 417:562-70. [PMID: 2057322 DOI: 10.1007/bf00372952] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In studies on the apical membranes of cultured MCF-7 human breast carcinoma cells, we found two conspicuous K+ channel types with conductances of 23 and 70 pS, respectively. Of these, the 23-pS K+ channel was most conspicuous. In cell-attached patches with KCl in the pipette, it had a linear current/voltage (I/V) relation and was activated by depolarisation and in excised inside-out patches it was highly selective for K+ over Na+ (permeability ratio of Na+ to K+, PNa/PK = 0.02). Rubidium (Rb+) had a similar permeability to K+, although it was only conducted at 20% of the rate of K+, and cesium (Cs+) had a permeability less than 30% that of K+ and was not conducted at all. Both Cs+ and Rb+ acted as partial blockers when applied internally but the channel was not blocked by external tetraethylammonium (TEA, 10 mmol/l), quinidine (200 mumol 1) or apamin (50 nmol/l). It was activated by Ca2+ in the range 10(-7)-10(-6) mol/l. In cell-attached patches at a pipette potential of O mV, the open-time histogram was described by a single exponential (time constant 1.6 ms) and the closed-time histogram by two exponentials (time constants 0.5 and 1.5 ms). The incidence of the 23-pS but not the 70-pS channel depended on the rate of cell proliferation. Thus, in studies on cell-attached patches from cells in the exponential growth phase, the 23-pS channel was observed in 78% of patches.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E A Wegman
- Department of Physiology, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
18
|
Enomoto K, Furuya K, Maeno T, Edwards C, Oka T. Oscillating activity of a calcium-activated K+ channel in normal and cancerous mammary cells in culture. J Membr Biol 1991; 119:133-9. [PMID: 1710671 DOI: 10.1007/bf01871412] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Calcium-activated potassium channels were the channels most frequently observed in primary cultured normal mammary cell and in the established mammary tumor cell, MMT060562. In both cells, single-channel and whole-cell clamp recordings sometimes showed slow oscillations of the Ca2(+)-gated K+ current. The characteristics of the Ca2(+)-activated K+ channels in normal and cancerous mammary cells were quite similar. The slope conductances changed from 8 to 70 pS depending on the mode of recording and the ionic composition in the patch electrode. The open probability of this channel increased between 0.1 to 1 microM of the intracellular Ca2+, but it was independent of the membrane potential. Charybdotoxin reduced the activity of the Ca2(+)-activated K+ channel and the oscillation of the membrane current, but apamin had no apparent effect. The application of tetraethylammonium (TEA) from outside and BaCl2 from inside of the cell diminished the activity of the channel. The properties of this channel were different from those of both the large conductance (BK or MAXI K) and small conductance (SK) type Ca2(+)-activated K+ channels.
Collapse
Affiliation(s)
- K Enomoto
- Department of Physiology, Shimane Medical University, Japan
| | | | | | | | | |
Collapse
|
19
|
Furuya K, Enomoto K. Real-time imaging of intracellular calcium change with simultaneous single channel recording in mammary epithelial cells. Brain Res Bull 1990; 25:779-81. [PMID: 2289167 DOI: 10.1016/0361-9230(90)90058-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A method of continuous image subtraction of fura-2 fluorescence made it possible to observe real-time (video rate) changes in intracellular calcium (Cai). This simple method is very useful for simultaneous measurements in electrophysiology with a system containing cells of different states. A method for synchronous recording of Cai change and single channel activity is also described. In cultured mammary epithelial cells, these methods revealed a propagating Cai signal induced by mechanical stimulation and spontaneous Cai oscillation with synchronous activation of calcium-activated potassium channels.
Collapse
Affiliation(s)
- K Furuya
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | |
Collapse
|
20
|
Shennan DB. Mechanisms of mammary gland ion transport. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1990; 97:317-24. [PMID: 1979530 DOI: 10.1016/0300-9629(90)90617-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|