Wangemann P, Shiga N, Welch C, Marcus DC. Evidence for the involvement of a K+ channel in isosmotic cell shrinking in vestibular dark cells.
THE AMERICAN JOURNAL OF PHYSIOLOGY 1992;
263:C616-22. [PMID:
1415511 DOI:
10.1152/ajpcell.1992.263.3.c616]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell volume changes were measured in dark cells. Isosmotic addition of 21.4 mM K+, Rb+, Cs+, or NH4+ to a control solution containing 3.6 mM K+ caused piretanide-sensitive cell swelling (initial rate for K+, 0.100 +/- 0.005 microns/s; n = 119), suggesting dependence on the Na(+)-Cl(-)-K+ cotransporter. Subsequent isosmotic removal of 21.4 mM K+ caused piretanide-insensitive cell shrinking (initial rate, -0.104 +/- 0.005 microns/s; n = 119), which was inhibited by barium, lidocaine, quinidine, quinine, verapamil, and 4-aminopyridine but not tetraethylammonium (TEA) or glibenclamide, suggesting the involvement of K+ channel(s). Barium, lidocaine, quinine, quinidine, and 4-aminopyridine caused cell swelling in control solution (initial rate for barium, 0.011 +/- 0.004 microns/s; n = 6), suggesting that the K+ channel is also involved in efflux under control conditions. Cell shrinking was slowed by 21.4 mM extracellular K+, Rb+, or Cs+ but unaffected by Na+, Li+, TEA+, or NH4+ (all in the presence of piretanide and compared with N-methyl-D-glucamine), supporting the notion that the efflux mechanism is permeable to and/or inhibited by K+, Rb+, and Cs+. Cell shrinking was slowed by the presumed replacement of intracellular K+ by Cs+ but not by Rb+. Circumstantial evidence suggests that this putative K+ channel is present in the basolateral membrane. The physiological relevance of such a K+ channel might encompass regulatory volume decrease during K+ secretion.
Collapse