1
|
Han HJ, Park SH, Lee YJ, Lee JC, Lee JH. Effect of ATP on Ca2+ uptake in the presence of high glucose in renal proximal tubule cells. Clin Exp Pharmacol Physiol 2003; 30:694-701. [PMID: 12940890 DOI: 10.1046/j.1440-1681.2003.03895.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Calcium regulation has been reported to be associated with the development of diabetic nephropathy. Thus, changes in Ca2+ uptake induced by ATP, an important regulator of Ca2+ uptake, in the diabetic condition and related signal pathways were examined in primary cultures of rabbit renal proximal tubule cells (PTC). 2. Under low (5 mmol/L) glucose conditions, 10-4 mol/L ATP inhibited Ca2+ uptake early on (< 30 min), whereas Ca2+ uptake was stimulated at later time points (> 2 h). However, under high (25 mmol/L) glucose conditions, ATP stimulated both the early and late uptake of Ca2+. 3. The adenylate cyclase inhibitor SQ 22536, the protein kinase (PK) A inhibitor PKI amide 14-22, Rp-cAMP, staurosporine, bisindolylmaleimide I and H-7 (PKC inhibitors) blocked the change in ATP effect on Ca2+ uptake in the presence of 25 mmol/L glucose. However, none one of these drugs blocked the effect of ATP on Ca2+ uptake in the presence of 5 mmol/L. 4. At 25 mmol/L, glucose increased cAMP content and PKC activity, whereas ATP had no effect on either parameter. 5. In conclusion, high glucose levels alter ATP-induced Ca2+ uptake via cAMP and PKC pathways in the PTC.
Collapse
Affiliation(s)
- Ho Jae Han
- College of Veterinary Medicine, Biotechnology Research Institute, Chonnam National University, Gwangju 500-757, Korea.
| | | | | | | | | |
Collapse
|
2
|
Leipziger J, Bailey MA, Unwin RJ. Purinergic (P2) Receptors in the Kidney. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Woda CB, Leite M, Rohatgi R, Satlin LM. Effects of luminal flow and nucleotides on [Ca(2+)](i) in rabbit cortical collecting duct. Am J Physiol Renal Physiol 2002; 283:F437-46. [PMID: 12167594 DOI: 10.1152/ajprenal.00316.2001] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nucleotide binding to purinergic P2 receptors contributes to the regulation of a variety of physiological functions in renal epithelial cells. Whereas P2 receptors have been functionally identified at the basolateral membrane of the cortical collecting duct (CCD), a final regulatory site of urinary Na(+), K(+), and acid-base excretion, controversy exists as to whether apical purinoceptors exist in this segment. Nor has the distribution of receptor subtypes present on the unique cell populations that constitute Ca(2+) the CCD been established. To examine this, we measured nucleotide-induced changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura 2-loaded rabbit CCDs microperfused in vitro. Resting [Ca(2+)](i) did not differ between principal and intercalated cells, averaging approximately 120 nM. An acute increase in tubular fluid flow rate, associated with a 20% increase in tubular diameter, led to increases in [Ca(2+)](i) in both cell types. Luminal perfusion of 100 microM UTP or ATP-gamma-S, in the absence of change in flow rate, caused a rapid and transient approximately fourfold increase in [Ca(2+)](i) in both cell types (P < 0.05). Luminal suramin, a nonspecific P2 receptor antagonist, blocked the nucleotide- but not flow-induced [Ca(2+)](i) transients. Luminal perfusion with a P2X (alpha,beta-methylene-ATP), P2X(7) (benzoyl-benzoyl-ATP), P2Y(1) (2-methylthio-ATP), or P2Y(4)/P2Y(6) (UDP) receptor agonist had no effect on [Ca(2+)](i). The nucleotide-induced [Ca(2+)](i) transients were inhibited by the inositol-1,4,5-triphosphate receptor blocker 2-aminoethoxydiphenyl borate, thapsigargin, which depletes internal Ca(2+) stores, luminal perfusion with a Ca(2+)-free perfusate, or the L-type Ca(2+) channel blocker nifedipine. These results suggest that luminal nucleotides activate apical P2Y(2) receptors in the CCD via pathways that require both internal Ca(2+) mobilization and extracellular Ca(2+) entry. The flow-induced rise in [Ca(2+)](i) is apparently not mediated by apical P2 purinergic receptor signaling.
Collapse
Affiliation(s)
- Craig B Woda
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | |
Collapse
|
4
|
Marsigliante S, Elia MG, Di Jeso B, Greco S, Muscella A, Storelli C. Increase of [Ca(2+)](i) via activation of ATP receptors in PC-Cl3 rat thyroid cell line. Cell Signal 2002; 14:61-7. [PMID: 11747990 DOI: 10.1016/s0898-6568(01)00208-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In PC-Cl3 rat thyroid cell line, ATP and UTP provoked a transient increase in [Ca(2+)](i), followed by a lower sustained phase. Removal of extracellular Ca(2+) reduced the initial transient response and completely abolished the plateau phase. Thapsigargin (TG) caused a rapid rise in [Ca(2+)](i) and subsequent addition of ATP was without effect. The transitory activation of [Ca(2+)](i) was dose-dependently attenuated in cells pretreated with the specific inhibitor of phospholipase C (PLC), U73122. These data suggest that the ATP-stimulated increment of [Ca(2+)](i) required InsP(3) formation and binding to its specific receptors in Ca(2+) stores. Desensitisation was demonstrated with respect to the calcium response to ATP and UTP in Fura 2-loaded cells. Further studies were performed to investigate whether the effect of ATP on Ca(2+) entry into PC-Cl3 cells was via L-type voltage-dependent Ca(2+) channels (L-VDCC) and/or by the capacitative pathway. Nifedipine decreased ATP-induced increase on [Ca(2+)](i). Addition of 2 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment of the cells with TG or with 100 microM ATP in Ca(2+)-free medium. These data indicate that Ca(2+) entry into PC-Cl3 stimulated with ATP occurs through both an L-VDCC and through a capacitative pathway. Using buffers with differing Na(+) concentrations, we found that the effects of ATP were dependent of extracellular Na(+), suggesting that a Na(+)/Ca(2+) exchange mechanism is also operative. These data suggest the existence, in PC-Cl3 cell line, of a P2Y purinergic receptor able to increase the [Ca(2+)](i) via PLC activation, Ca(2+) store depletion, capacitative Ca(2+) entry and L-VDCC activation.
Collapse
Affiliation(s)
- Santo Marsigliante
- Laboratory of Physiology, Department of Biology, University of Lecce, Lecce 73100, Italy.
| | | | | | | | | | | |
Collapse
|
5
|
Rubera I, Tauc M, Bidet M, Verheecke-Mauze C, De Renzis G, Poujeol C, Cuiller B, Poujeol P. Extracellular ATP increases [Ca(2+)](i) in distal tubule cells. II. Activation of a Ca(2+)-dependent Cl(-) conductance. Am J Physiol Renal Physiol 2000; 279:F102-11. [PMID: 10894792 DOI: 10.1152/ajprenal.2000.279.1.f102] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We characterized Cl(-) conductance activated by extracellular ATP in an immortalized cell line derived from rabbit distal bright convoluted tubule (DC1). (125)I(-) efflux experiments showed that ATP increased (125)I(-) loss with an EC(50) = 3 microM. Diphenylamine-2-carboxylate (10(-3) M) and NPPB (10(-4) M) abolished the (125)I(-) efflux. Preincubation with 10 microM 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester or 10(-7) M thapsigargin inhibited the effect of ATP. Ionomycin (2 microM) increased (125)I(-) efflux with a time course similar to that of extracellular ATP, suggesting that the response is dependent on the intracellular Ca(2+) concentration ([Ca(2+)](i)). The ATP agonist potency order was ATP >/= UTP > ATPgammaS. Suramin (500 microM) inhibited the ATP-induced (125)I(-) efflux, consistent with P2 purinoceptors. (125)I(-) effluxes from cells grown on permeable filters suggest that ATP induced an apical efflux that was mediated via apical P2 receptors. Whole cell experiments showed that ATP (100 microM) activated outwardly rectifying Cl(-) currents in the presence of 8-cyclopentyl-1,3-dipropylxanthine, excluding the involvement of P1 receptors. Ionomycin activated Cl(-) currents similar to those developed with ATP. These results demonstrate the presence of a purinergic regulatory mechanism involving ATP, apical P2Y2 receptors, and Ca(2+) mobilization for apical Cl(-) conductance in a distal tubule cell line.
Collapse
Affiliation(s)
- I Rubera
- Unité Mixte de Recherche 6548, Centre National de la Recherche Scientifique, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bidet M, De Renzis G, Martial S, Rubera I, Tauc M, Poujeol P. Extracellular ATP increases [CA(2+)](i) in distal tubule cells. I. Evidence for a P2Y2 purinoceptor. Am J Physiol Renal Physiol 2000; 279:F92-F101. [PMID: 10894791 DOI: 10.1152/ajprenal.2000.279.1.f92] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experiments were performed to characterize the P2 purinoceptor subtype responsible for cytoplasmic calcium mobilization in cells from the initial part of rabbit distal convoluted tubule (DCT). Free calcium concentration was measured in a DCT cell line (DC1) with the probe fura 2. Both ATP and UTP increased cytosolic Ca(2+) concentration ([Ca(2+)](i); EC(50) 3 and 6 microM, respectively). The order of potency for nucleotide analogs was ATP = UTP > adenosine 5'-O-[thiotriphosphate] >> ADP > UDP, which is consistent with the pharmacology of the P2Y2 receptor subtype. The increased [Ca(2+)](i) responses to ATP and UTP were strongly inhibited by suramin. Pretreatment of cells with pertussis toxin (PTX) attenuated the action of both nucleotides. Inhibition of phospholipase C with U-73122 totally blocked the [Ca(2+)](i) response to ATP. Thus ATP- and UTP-stimulated [Ca(2+)](i) mobilization in DC1 cells appears to be mediated via the activation of P2Y2 purinoceptors coupled to a G protein mechanism that is partially sensitive to PTX. Calcium flux measurements showed that lanthanum- and nifedipine-sensitive calcium channels are involved in the [Ca(2+)](i) response to ATP.
Collapse
Affiliation(s)
- M Bidet
- Unité Mixte de Recherche 6548, Centre National de la Recherche Scientifique Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
7
|
Zhang MI, O'Neil RG. The diversity of calcium channels and their regulation in epithelial cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1999; 46:43-83. [PMID: 10332501 DOI: 10.1016/s1054-3589(08)60469-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- M I Zhang
- Department of Integrative Biology, Pharmacology, and Physiology, University of Texas-Houston Health Science Center 77030, USA
| | | |
Collapse
|
8
|
Pedersen SF, Pedersen S, Lambert IH, Hoffmann EK. P2 receptor-mediated signal transduction in Ehrlich ascites tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1374:94-106. [PMID: 9814856 DOI: 10.1016/s0005-2736(98)00123-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The mechanisms, by which the P2 receptor agonists adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) evoke an increase in the free cytosolic calcium concentration ([Ca2+]i) and in intracellular pH (pHi), have been investigated in Ehrlich ascites tumor cells. The increase in [Ca2+]i evoked by ATP or UTP is abolished after depletion of intracellular Ca2+ stores with thapsigargin in Ca2+-free medium, and is inhibited by U73122, an inhibitor of phospholipase C (PLC), indicating that the increase in [Ca2+]i is primarily due to release from intracellular, Ins(1,4,5)P3-sensitive Ca2+ stores. ATP also activates a capacitative Ca2+-entry pathway. ATP as well as UTP evokes a biphasic change in pHi, consisting of an initial acidification followed by alkalinization. Suramin and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS) inhibit the biphasic change in pHi, apparently by acting as antagonists at P2 receptors. The alkalinization evoked by the P2 receptor agonists is found to be due to activation of a 5'-(N-ethyl-N-isopropyl)amiloride (EIPA)-sensitive Na+/H+ exchanger. ATP and UTP elicit rapid cell shrinkage, presumably due to activation of Ca2+ sensitive K+ and Cl- efflux pathways. Preventing cell shrinkage, either by incubating the cells at high extracellular K+ concentration, or by adding the K+-channel blocker, charybdotoxin, does not affect the increase in [Ca2+]i, but abolishes the activation of the Na+/H+ exchanger, indicating that activation of the Na+/H+ exchanger is secondary to the Ca2+-induced cell shrinkage.
Collapse
Affiliation(s)
- S F Pedersen
- August Krogh Institute, Department of Biochemistry, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
9
|
Bouyer P, Paulais M, Cougnon M, Hulin P, Anagnostopoulos T, Planelles G. Extracellular ATP raises cytosolic calcium and activates basolateral chloride conductance in Necturus proximal tubule. J Physiol 1998; 510 ( Pt 2):535-48. [PMID: 9706002 PMCID: PMC2231047 DOI: 10.1111/j.1469-7793.1998.535bk.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Extracellular nucleotides modulate ionic transport mechanisms in various epithelia. In the present study, we investigated the effects of extracellular ATP on the intracellular free Ca+2 concentration ([Ca2+]i) and electrophysiological properties of Necturus maculosus proximal convoluted tubule (PCT). 2. ATP raised [Ca2+]i in microdissected fura-2-loaded PCTs (half-maximal effect, approximately mumol 1(-1) ATP). The initial ATP-induced changes in [Ca2+]i were not blunted by the removal of external Ca2+ nor by the presence of Ca2+ channel blockers, but were abolished by thapsigargin and suramin. The sequence for the potency of various agonists on [Ca2+]i was 2-methylthioATP (2MeSATP) = ADP = ATP >> UTP, 2',3',-O-(4-benzoilbenzoil) ATP (BzATP), alpha, beta-methylene ATP (AMPCPP), adenosine. 3. In vivo electrophysiological measurements showed that 100 mumol 1(-1) peritubular ATP added to a Ringer solution reduced the basolateral cell membrane potential (Vm) and increased the cell membrane input conductance. In a low Cl- solution, this ATP-induced depolarization was enhanced. These effects were inhibited by 1 mmol l-1 SITS, consistent with the activation of a basolateral Cl- conductance. 4. The ATP-induced change in Vm was reproduced by ADP but not by UTP or adenosine, and was prevented by suramin. 5. The ATP-induced membrane depolarization was not influenced by thapsigargin, BAPTA AM, or staurosporine and was not reproduced by manoeuvres increasing [Ca2+]i or intracellular cAMP content. 6. We conclude that, in Necturus PCT, a P2y receptor mobilizes Ca2+ mainly from intracellular pools and increases a basolateral Cl- conductance, GCl. The activation of GCl occurs by a mechanism which is not related either to an increase in [Ca2+]i or cAMP content, or to PKC activation.
Collapse
Affiliation(s)
- P Bouyer
- INSERM U 467, Faculté Necker-Enfants Malades, Université Paris 5, France
| | | | | | | | | | | |
Collapse
|
10
|
Peters SM, Tijsen MJ, van Os CH, Wetzels JF, Bindels RJ. Hypoxia decreases calcium influx into rat proximal tubules. Kidney Int 1998; 53:703-8. [PMID: 9507217 DOI: 10.1046/j.1523-1755.1998.00816.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal ischemia results in adenosine triphosphate (ATP) depletion, particularly in cells of the proximal tubule (PT), which rely heavily on oxidative phosphorylation for energy supply. Lack of ATP leads to a disturbance in intracellular homeostasis of Na+, K+ and Cl-. Also, cytosolic Ca2+ levels in renal PTs may increase during hypoxia [1], presumably by a combination of impaired extrusion and enhanced influx [2]. However, Ca2+ influx was previously measured using radiolabeled Ca2+ and at varying partial oxygen tension [2]. We have now used to Mn2(+)-induced quenching of fura-2 fluorescence to study Ca2+ influx in individual rat PTs during normoxic and hypoxic superfusion. Normoxic Ca2+ influx was indeed reflected by the Mn2+ quenching of fura-2 fluorescence and this influx could be inhibited by the calcium entry blocker methoxyverapamil (D600; inhibition 50 +/- 2% and 35 +/- 3% for 10 and 100 mumol, respectively). La3+ completely blocked normoxic Ca2+ influx. Hypoxic superfusion or rat PTs did not induce an increase in Ca2+ influx, but reduced this influx to 79 +/- 3% of the normoxic control. We hypothesize that reducing Ca2+ influx during hypoxia provides the cell with a means to prevent cellular Ca2+ overload during ATP-depletion, where Ca2+ extrusion is limited.
Collapse
Affiliation(s)
- S M Peters
- Department of Cell Physiology, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Rubera I, Tauc M, Poujeol C, Bohn MT, Bidet M, De Renzis G, Poujeol P. Cl- and K+ conductances activated by cell swelling in primary cultures of rabbit distal bright convoluted tubules. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:F680-97. [PMID: 9374831 DOI: 10.1152/ajprenal.1997.273.5.f680] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ionic currents induced by cell swelling were characterized in primary cultures of rabbit distal bright convoluted tubule (DCTb) by the whole cell patch-clamp technique. Cl- currents were produced spontaneously by whole cell recording with an isotonic pipette solution or by exposure to a hypotonic stress. Initial Cl- currents exhibited outwardly rectifying current-voltage relationship, whereas steady-state currents showed strong decay with depolarizing pulses. The ion selectivity sequence was I- = Br- > Cl- >> glutamate. Currents were inhibited by 0.1 mM 5-nitro-2-(3-phenylpropylamino) benzoic acid and 1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and strongly blocked by 1 mM diphenylamine-2-carboxylate. Currents were insensitive to intracellular Ca2+ but required the presence of extracellular Ca2+. They were not activated in cells pretreated with 200 nM staurosporine, 50 microM LaCl3, 10 microM nifedipine, 100 microM verapamil, 5 microM tamoxifen, and 50 microM dideoxyforskolin. Staurosporine, tamoxifen, verapamil, or the absence of external Ca2+ was without effect on the fully developed Cl- currents. Osmotic shock also activated K+ currents in Cl- free conditions. These currents were time independent, activated at depolarized potentials, and inhibited by 5 mM BaCl2. The activation of Cl- and K+ currents by an osmotic shock may be implicated in regulatory volume decrease in DCTb cells.
Collapse
Affiliation(s)
- I Rubera
- Unité Mixte de Recherche Centre National de la Recherche Scientifique, Université de Nice-Sophia Antipolis, Nice, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Inscho EW, Belott TP, Mason MJ, Smith JB, Navar LG. Extracellular ATP increases cytosolic calcium in cultured rat renal arterial smooth muscle cells. Clin Exp Pharmacol Physiol 1996; 23:503-7. [PMID: 8800574 DOI: 10.1111/j.1440-1681.1996.tb02769.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. Experiments were conducted on cultured renal arterial smooth muscle cells to determine the ability of extracellular ATP to alter cytosolic calcium concentration and to determine the mechanisms by which this effect occurs. 2. ATP (100 mumol/L) caused the fluorescence ratio of fura-2 to increase from a control value of 1.06 +/- 0.05 to 2.06 +/- 0.13 (P < 0.01) before stabilizing at a sustained level of 1.35 +/- 0.04 (n = 8; P < 0.05). 3. Removal of extracellular calcium from the bathing medium resulted in an attenuation of the initial response to 100 mumol/L ATP with cell fluorescence increasing from 1.16 +/- 0.18 to 1.44 +/- 0.18 ratio units (n = 5). Furthermore, the initial increase in fluorescence ratio rapidly declined to 1.02 +/- 0.06, indicating that an influx of extracellular calcium is required to sustain the increase in fura-2 fluorescence. 4. Depletion of intracellular calcium pools with thapsigargin prevented the increase in fura-2 fluorescence evoked by ATP. 5. These data suggest that ATP-mediated increases in cytosolic calcium in cultured renal arterial smooth muscle cells involve calcium release from the thapsigargin-sensitive, intracellular pool in conjunction with calcium influx from the extracellular medium.
Collapse
Affiliation(s)
- E W Inscho
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
13
|
Menaa C, Vrtovsnik F, Friedlander G, Corvol M, Garabédian M. Insulin-like growth factor I, a unique calcium-dependent stimulator of 1,25-dihydroxyvitamin D3 production. Studies in cultured mouse kidney cells. J Biol Chem 1995; 270:25461-7. [PMID: 7592714 DOI: 10.1074/jbc.270.43.25461] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous in vivo and in vitro studies suggest that insulin-like growth factor (IGF-I) could be a regulator of the renal production of 1,25-(OH)2D3. In the present work, the local effect of low nanomolar concentrations of IGF-I on the 25-OH-D3-1 alpha-hydroxylase activity and the mechanism of its action have been investigated. To do so, an in vitro model of mouse proximal tubular cells in primary culture has been developed. These cells bear specific high affinity IGF-I binding sites (apparent Kd = 1.95 +/- 0.46 nM) and express the ability to convert [3H]25-(OH)D3 into [3H]1,25-(OH)2D3 (Km = 139 +/- 15.7 nM). Human recombinant IGF-I (10-100 ng/ml) stimulated both sodium-dependent phosphate uptake and 1,25-(OH)2D3 synthesis by these cells, in a time- and dose-dependent manner. IGF-I did not alter the apparent Michaelis constant but increased the maximum velocity of the 25-OH-D3-1 alpha-hydroxylase activity. This effect required protein synthesis. It was not affected by calphostin or GF109203X, two protein kinase C inhibitors, and was not mimicked by phorbol 12-myristate 13-acetate. In contrast, it was blocked by verapamil, a calcium channel blocker. Calcium depletion of the medium blunted the IGF-I effect but not that of human 1-34 parathyroid hormone 5 x 10(-8) M. IGF-I thus appears to be the first example of a physiological calcium-dependent regulator of the renal metabolism of vitamin D.
Collapse
Affiliation(s)
- C Menaa
- CNRS, URA 583-Université Paris V, Hôpital Saint Vincent de Paul, France
| | | | | | | | | |
Collapse
|