2
|
Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Parra LC, Bikson M. Animal models of transcranial direct current stimulation: Methods and mechanisms. Clin Neurophysiol 2016; 127:3425-3454. [PMID: 27693941 PMCID: PMC5083183 DOI: 10.1016/j.clinph.2016.08.016] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022]
Abstract
The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: (1) transcranial stimulation; (2) direct cortical stimulation in vivo and (3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching "quasi-uniform" assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the complexity of normal and pathological brain function, and how recent studies have already indicated more sophisticated approaches are necessary. One tDCS theory regarding "functional targeting" suggests the specificity of tDCS effects are possible by modulating ongoing function (plasticity). Use of animal models of disease are summarized including pain, movement disorders, stroke, and epilepsy.
Collapse
Affiliation(s)
- Mark P Jackson
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Asif Rahman
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Belen Lafon
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Gregory Kronberg
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Doris Ling
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA.
| |
Collapse
|
3
|
Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, Mourdoukoutas AP, Kronberg G, Truong D, Boggio P, Brunoni AR, Charvet L, Fregni F, Fritsch B, Gillick B, Hamilton RH, Hampstead BM, Jankord R, Kirton A, Knotkova H, Liebetanz D, Liu A, Loo C, Nitsche MA, Reis J, Richardson JD, Rotenberg A, Turkeltaub PE, Woods AJ. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul 2016; 9:641-661. [PMID: 27372845 PMCID: PMC5007190 DOI: 10.1016/j.brs.2016.06.004] [Citation(s) in RCA: 870] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 01/13/2023] Open
Abstract
This review updates and consolidates evidence on the safety of transcranial Direct Current Stimulation (tDCS). Safety is here operationally defined by, and limited to, the absence of evidence for a Serious Adverse Effect, the criteria for which are rigorously defined. This review adopts an evidence-based approach, based on an aggregation of experience from human trials, taking care not to confuse speculation on potential hazards or lack of data to refute such speculation with evidence for risk. Safety data from animal tests for tissue damage are reviewed with systematic consideration of translation to humans. Arbitrary safety considerations are avoided. Computational models are used to relate dose to brain exposure in humans and animals. We review relevant dose-response curves and dose metrics (e.g. current, duration, current density, charge, charge density) for meaningful safety standards. Special consideration is given to theoretically vulnerable populations including children and the elderly, subjects with mood disorders, epilepsy, stroke, implants, and home users. Evidence from relevant animal models indicates that brain injury by Direct Current Stimulation (DCS) occurs at predicted brain current densities (6.3-13 A/m(2)) that are over an order of magnitude above those produced by conventional tDCS. To date, the use of conventional tDCS protocols in human trials (≤40 min, ≤4 milliamperes, ≤7.2 Coulombs) has not produced any reports of a Serious Adverse Effect or irreversible injury across over 33,200 sessions and 1000 subjects with repeated sessions. This includes a wide variety of subjects, including persons from potentially vulnerable populations.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Pnina Grossman
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Chris Thomas
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | | | - Jimmy Jiang
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Tatheer Adnan
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | | | - Greg Kronberg
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Paulo Boggio
- Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University, Sao Paulo, Brazil
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27), University of São Paulo, São Paulo, Brazil
| | - Leigh Charvet
- NYU MS Comprehensive Care Center, Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Felipe Fregni
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Brita Fritsch
- Department of Neurology, University Medical Center, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Germany
| | - Bernadette Gillick
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN
| | - Roy H Hamilton
- Laboratory for Cognition and Neural Stimulation, University of Pennsylvania, Philadelphia, PA, USA; Center for Cognitive Neuroscience, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin M Hampstead
- Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ryan Jankord
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, WPAFB, OH, USA
| | - Adam Kirton
- Departments of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Social and Family Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Goettingen 37075, Germany
| | - Anli Liu
- NYU Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
| | - Colleen Loo
- Psychiatry, Black Dog Institute, Clinical Academic, St George Hospital, University of New South Wales, Sydney, Australia
| | - Michael A Nitsche
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Goettingen 37075, Germany; Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Janine Reis
- Department of Neurology, University Medical Center, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Germany
| | - Jessica D Richardson
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Communication Sciences & Disorders, The University of South Carolina, Columbia, SC, USA; Department of Speech and Hearing Sciences, The University of New Mexico, Albuquerque, NM, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA; Pediatric Neuromodulation Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Peter E Turkeltaub
- Department of Neurology, Georgetown University, Washington, DC, USA; Research Division, MedStar National Rehabilitation Hospital, Washington, DC, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, Institute on Aging, Department of Aging and Geriatric Research, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Stern A, Davison AJ, Wu Q, Moon J. Desferrioxamine enhances the reactivity of vanadium (IV) and vanadium (V) toward ferri- and ferrocytochrome c. Free Radic Biol Med 1992; 12:373-80. [PMID: 1317325 DOI: 10.1016/0891-5849(92)90086-v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ligands, especially desferrioxamine, affect the rate at which vanadium reduces or oxidizes cytochrome c. Whether reduction or oxidation occurs, and how fast, depends on the nature of the ligand, the state of reduction of the vanadium, the pH (6.0, 7.0, or 7.4), and the availability of oxygen. In general, oxidation of ferrocytochrome c was favored by (1) low pH, (2) an oxidized state of the vanadium, (3) the presence of oxygen, and (4) more strongly binding ligands (desferrioxamine much greater than histidine = ATP greater than EDTA greater than albumin greater than aquo). Thus, at pH 6.0, desferrioxamine accelerated the V(V)-catalyzed ferrocytochrome c oxidation 160-fold aerobically, and 3500-fold anaerobically. In general, strongly binding ligands slowed oxidations, especially at higher pH. Desferrioxamine was unique among the five ligands in that it not only accelerated oxidation of ferrocytochrome c at pH 6.0, but at pH 7.4 the redox balance shifted to the point where it paradoxically reduced ferricytochrome c. V(V) is an improbable electron donor, but desferrioxamine will reduce cytochrome c, and V(V) accelerates this process. Oxidation of cytochrome c by V(V):desferrioxamine was faster anaerobically, and reduction by V(IV):desferrioxamine was faster aerobically. Although V(V) did not oxidize ferrocytochrome c at pH 7.4, V(IV) did, provided oxygen and desferrioxamine were both present. V(IV):desferrioxamine almost completely reduced ferricytochrome c, and this reduction was followed by a slow, progressive oxidation. This latter oxidation of cytochrome c is mediated by active species generated in the reaction between V(IV):desferrioxamine and oxygen, because none of these reagents alone can induce oxidation at a comparable rate. The mediating species were transient, and generated in reactions with oxygen.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Stern
- Department of Pharmacology, New York University Medical Center, New York 10016
| | | | | | | |
Collapse
|