1
|
Ifosfamide - History, efficacy, toxicity and encephalopathy. Pharmacol Ther 2023; 243:108366. [PMID: 36842616 DOI: 10.1016/j.pharmthera.2023.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
In this review we trace the passage of fundamental ideas through 20th century cancer research that began with observations on mustard gas toxicity in World War I. The transmutation of these ideas across scientific and national boundaries, was channeled from chemical carcinogenesis labs in London via Yale and Chicago, then ultimately to the pharmaceutical industry in Bielefeld, Germany. These first efforts to checkmate cancer with chemicals led eventually to the creation of one of the most successful groups of cancer chemotherapeutic drugs, the oxazaphosphorines, first cyclophosphamide (CP) in 1958 and soon thereafter its isomer ifosfamide (IFO). The giant contributions of Professor Sir Alexander Haddow, Dr. Alfred Z. Gilman & Dr. Louis S. Goodman, Dr. George Gomori and Dr. Norbert Brock step by step led to this breakthrough in cancer chemotherapy. A developing understanding of the metabolic disposition of ifosfamide directed efforts to ameliorate its side-effects, in particular, ifosfamide-induced encephalopathy (IIE). This has resulted in several candidates for the encephalopathic metabolite, including 2-chloroacetaldehyde, 2-chloroacetic acid, acrolein, 3-hydroxypropionic acid and S-carboxymethyl-L-cysteine. The pros and cons for each of these, together with other IFO metabolites, are discussed in detail. It is concluded that IFO produces encephalopathy in susceptible patients, but CP does not, by a "perfect storm," involving all of these five metabolites. Methylene blue (MB) administration appears to be generally effective in the prevention and treatment of IIE, in all probability by the inhibition of monoamine oxidase in brain potentiating serotonin levels that modulate the effects of IFO on GABAergic and glutamatergic systems. This review represents the authors' analysis of a large body of published research.
Collapse
|
2
|
Araki H, Takenaka T, Takahashi K, Yamashita F, Matsuoka K, Yoshisue K, Ieiri I. A semimechanistic population pharmacokinetic and pharmacodynamic model incorporating autoinduction for the dose justification of TAS-114. CPT Pharmacometrics Syst Pharmacol 2022; 11:604-615. [PMID: 34951129 PMCID: PMC9124359 DOI: 10.1002/psp4.12747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
TAS-114 is a dual deoxyuridine triphosphatase (dUTPase) and dihydropyrimidine dehydrogenase (DPD) inhibitor expected to widen the therapeutic index of capecitabine. Its maximum tolerated dose (MTD) was determined from a safety perspective in a combination study with capecitabine; however, its inhibitory effects on DPD activity were not assessed in the study. The dose justification to select its MTD as the recommended dose in terms of DPD inhibition has been required, but the autoinduction profile of TAS-114 made it difficult. To this end, an approach using a population pharmacokinetic (PPK)/pharmacodynamic (PD) model incorporating autoinduction was planned; however, the utility of this approach in the dose justification has not been reported. Thus, the aim of this study was to demonstrate the utility of a PPK/PD model incorporating autoinduction in the dose justification via a case study of TAS-114. Plasma concentrations of TAS-114 from 185 subjects and those of the endogenous DPD substrate uracil from 24 subjects were used. A two-compartment model with first-order absorption with lag time and an enzyme turnover model were selected for the pharmacokinetic (PK) model. Moreover, an indirect response model was selected for the PD model to capture the changes in plasma uracil concentrations. Model-based simulations provided the dose justification that DPD inhibition by TAS-114 reached a plateau level at the MTD, whereas exposures of TAS-114 increased dose dependently. Thus, the utility of a PPK/PD model incorporating autoinduction in the dose justification was demonstrated via this case study of TAS-114.
Collapse
Affiliation(s)
- Hikari Araki
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Toru Takenaka
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Koichi Takahashi
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Fumiaki Yamashita
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Kazuaki Matsuoka
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Kunihiro Yoshisue
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Ichiro Ieiri
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
- Department of PharmacyKyushu University HospitalFukuokaJapan
| |
Collapse
|
3
|
Hempel G. Pharmacotherapy in Children and Adolescents: Oncology. Handb Exp Pharmacol 2020; 261:415-440. [PMID: 31792677 DOI: 10.1007/164_2019_306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pharmacotherapy in paediatric oncology is a difficult task. It is challenging to determine the optimal dose in children of different age groups. In addition, anticancer drugs display severe side effects reducing the quality of life. Late effects like secondary tumours and cardiotoxicity can be apparent years after treatment and must be taken into account when planning treatment schedules. Classical cytoreducing agents are still of great importance in treating children with leukaemia and solid tumours. In addition, drugs developed by rational drug design (targeted drugs) are a very important part of many treatment protocols, and newer drugs are emerging in several types of cancer. Unfortunately, there is only limited experience with newer drugs in children, because new drugs are mostly developed for adults. Complicated therapy regimens require a solid knowledge of the pharmacology of the drugs applied. This chapter attempts to introduce some pharmacological knowledge for the most important anticancer drugs in children with a focus on side effects and age-specific considerations.
Collapse
Affiliation(s)
- Georg Hempel
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Klinische Pharmazie, Münster, Germany.
| |
Collapse
|
4
|
Population Pharmacokinetics of Artemether, Dihydroartemisinin, and Lumefantrine in Rwandese Pregnant Women Treated for Uncomplicated Plasmodium falciparum Malaria. Antimicrob Agents Chemother 2018; 62:AAC.00518-18. [PMID: 30061282 PMCID: PMC6153812 DOI: 10.1128/aac.00518-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
The artemisinin-based combination therapy artemether-lumefantrine is commonly used in pregnant malaria patients. However, the effect of pregnancy-related changes on exposure is unclear, and pregnancy has been associated with decreased efficacy in previous studies. This study aimed to characterize the population pharmacokinetics of artemether, its active metabolite dihydroartemisinin, and lumefantrine in 22 Rwandese pregnant women in their second (n = 11) or third (n = 11) trimester with uncomplicated Plasmodium falciparum malaria. These patients were enrolled from Rwamagana district hospital and received the standard fixed oral dose combination of 80 mg of artemether and 480 mg of lumefantrine twice daily for 3 days. Venous plasma concentrations were quantified for all three analytes using liquid chromatography coupled with tandem mass spectroscopy, and data were analyzed using nonlinear mixed-effects modeling. Lumefantrine pharmacokinetics was described by a flexible but highly variable absorption, with a mean absorption time of 4.04 h, followed by a biphasic disposition model. The median area under the concentration-time curve from 0 h to infinity (AUC0-∞) for lumefantrine was 641 h · mg/liter. Model-based simulations indicated that 11.7% of the study population did not attain the target day 7 plasma concentration (280 ng/ml), a threshold associated with increased risk of recrudescence. The pharmacokinetics of artemether was time dependent, and the autoinduction of its clearance was described using an enzyme turnover model. The turnover half-life was predicted to be 30.4 h. The typical oral clearance, which started at 467 liters/h, increased 1.43-fold at the end of treatment. Simulations suggested that lumefantrine pharmacokinetic target attainment appeared to be reassuring in Rwandese pregnant women, particularly compared to target attainment in Southeast Asia. Larger cohorts will be required to confirm this finding.
Collapse
|
5
|
Chan CYS, Roberts O, Rajoli RKR, Liptrott NJ, Siccardi M, Almond L, Owen A. Derivation of CYP3A4 and CYP2B6 degradation rate constants in primary human hepatocytes: A siRNA-silencing-based approach. Drug Metab Pharmacokinet 2018; 33:179-187. [PMID: 29921509 DOI: 10.1016/j.dmpk.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/22/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022]
Abstract
The first-order degradation rate constant (kdeg) of cytochrome P450 (CYP) enzymes is a known source of uncertainty in the prediction of time-dependent drug-drug interactions (DDIs) in physiologically-based pharmacokinetic (PBPK) modelling. This study aimed to measure CYP kdeg using siRNA to suppress CYP expression in primary human hepatocytes followed by incubation over a time-course and tracking of protein expression and activity to observe degradation. The magnitude of gene knockdown was determined by qPCR and activity was measured by probe substrate metabolite formation and CYP2B6-Glo™ assay. Protein disappearance was determined by Western blotting. During a time-course of 96 and 60 h of incubation, over 60% and 76% mRNA knockdown was observed for CYP3A4 and CYP2B6, respectively. The kdeg of CYP3A4 and CYP2B6 protein was 0.0138 h-1 (±0.0023) and 0.0375 h-1 (±0.025), respectively. The kdeg derived from probe substrate metabolism activity was 0.0171 h-1 (±0.0025) for CYP3A4 and 0.0258 h-1 (±0.0093) for CYP2B6. The CYP3A4 kdeg values derived from protein disappearance and metabolic activity were in relatively good agreement with each other and similar to published values. This novel approach can now be used for other less well-characterised CYPs.
Collapse
Affiliation(s)
- Christina Y S Chan
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Owain Roberts
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Rajith K R Rajoli
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Neill J Liptrott
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Marco Siccardi
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Lisa Almond
- Simcyp (a Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, UK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK.
| |
Collapse
|
6
|
Leclerc E, Hamon J, Bois FY. Investigation of ifosfamide and chloroacetaldehyde renal toxicity through integration of in vitro liver-kidney microfluidic data and pharmacokinetic-system biology models. J Appl Toxicol 2015; 36:330-9. [PMID: 26152902 DOI: 10.1002/jat.3191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022]
Abstract
We have integrated in vitro and in silico data to describe the toxicity of chloroacetaldehyde (CAA) on renal cells via its production from the metabolism of ifosfamide (IFO) by hepatic cells. A pharmacokinetic (PK) model described the production of CAA by the hepatocytes and its transport to the renal cells. A system biology model was coupled to the PK model to describe the production of reactive oxygen species (ROS) induced by CAA in the renal cells. In response to the ROS production, the metabolism of glutathione (GSH) and its depletion were modeled by the action of an NFE2L2 gene-dependent pathway. The model parameters were estimated in a Bayesian context via Markov Chain Monte Carlo (MCMC) simulations based on microfluidic experiments and literature in vitro data. Hepatic IFO and CAA in vitro intrinsic clearances were estimated to be 1.85 x 10(-9) μL s(-1) cell(-1) and 0.185 x 10(-9) μL s(-1) cell(-1) ,respectively (corresponding to an in vivo intrinsic IFO clearance estimate of 1.23 l h(-1) , to be compared to IFO published values ranging from 3 to 10 l h(-1) ). After model calibration, simulations made at therapeutic doses of IFO showed CAA renal intracellular concentrations ranging from 11 to 131 μM. Intracellular CAA concentrations above 70 μM induced intense ROS production and GSH depletion. Those responses were time and dose dependent, showing transient and non-linear kinetics. Those results are in agreement with literature data reporting that intracellular CAA toxic concentrations range from 35 to 320 μM, after therapeutic ifosfamide dosing. The results were also consistent with in vitro CAA renal cytotoxicity data.
Collapse
Affiliation(s)
- Eric Leclerc
- CNRS UMR 7338, Laboratoire de Biomécanique et Bio ingénierie, Université de Technologie de Compiègne, France
| | - Jeremy Hamon
- CNRS UMR 7338, Laboratoire de Biomécanique et Bio ingénierie, Université de Technologie de Compiègne, France
| | - Frederic Yves Bois
- CNRS UMR 7338, Laboratoire de Biomécanique et Bio ingénierie, Université de Technologie de Compiègne, France.,Chaire de Toxicologie Prédictive, Université de Technologie de Compiègne, France.,Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Modèles pour l'Écotoxicologie et la Toxicologie, Parc ALATA, BP2, 60550, Verneuil en Halatte, France
| |
Collapse
|
7
|
Pazopanib exposure decreases as a result of an ifosfamide-dependent drug-drug interaction: results of a phase I study. Br J Cancer 2013; 110:888-93. [PMID: 24366297 PMCID: PMC3929878 DOI: 10.1038/bjc.2013.798] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/20/2013] [Accepted: 12/02/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The vascular endothelial growth factor receptor (VEGFR) pathway plays a pivotal role in solid malignancies and is probably involved in chemotherapy resistance. Pazopanib, inhibitor of, among other receptors, VEGFR1-3, has activity as single agent and is attractive to enhance anti-tumour activity of chemotherapy. We conducted a dose-finding and pharmacokinetic (PK)/pharmacodynamics study of pazopanib combined with two different schedules of ifosfamide. METHODS In a 3+3+3 design, patients with advanced solid tumours received escalating doses of oral pazopanib combined with ifosfamide either given 3 days continuously or given 3-h bolus infusion daily for 3 days (9 g m(-2) per cycle, every 3 weeks). Pharmacokinetic data of ifosfamide and pazopanib were obtained. Plasma levels of placental-derived growth factor (PlGF), vascular endothelial growth factor-A (VEGF-A), soluble VEGFR2 (sVEGFR2) and circulating endothelial cells were monitored as biomarkers. RESULTS Sixty-one patients were included. Pazopanib with continuous ifosfamide infusion appeared to be safe up to 1000 mg per day, while combination with bolus infusion ifosfamide turned out to be too toxic based on a variety of adverse events. Ifosfamide-dependent decline in pazopanib exposure was observed. Increases in PlGF and VEGF-A with concurrent decline in sVEGFR2 levels, consistent with pazopanib-mediated VEGFR2 inhibition, were observed after addition of ifosfamide. CONCLUSION Continuous as opposed to bolus infusion ifosfamide can safely be combined with pazopanib. Ifosfamide co-administration results in lower exposure to pazopanib, not hindering biological effects of pazopanib. Recommended dose of pazopanib for further studies combined with 3 days continuous ifosfamide (9 g m(-2) per cycle, every 3 weeks) is 800 mg daily.
Collapse
|
8
|
Cytostatic drugs in infants: A review on pharmacokinetic data in infants. Cancer Treat Rev 2012; 38:3-26. [DOI: 10.1016/j.ctrv.2011.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 01/11/2023]
|
9
|
Population pharmacokinetics of liposomal amphotericin B and caspofungin in allogeneic hematopoietic stem cell recipients. Antimicrob Agents Chemother 2011; 56:536-43. [PMID: 22083471 DOI: 10.1128/aac.00265-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Liposomal amphotericin B (LAMB) and caspofungin (CAS) are important antifungal agents in allogeneic hematopoietic stem cell transplant (aHSCT) recipients. Little is known, however, about the pharmacokinetics (PK) of both agents and their combination in this population. The PK of LAMB and CAS and the potential for PK interactions between both agents were investigated within a risk-stratified, randomized phase II clinical trial in 53 adult aHSCT recipients with granulocytopenia and refractory fever. Patients received either LAMB (n = 17; 3 mg/kg once a day [QD]), CAS (n = 19; 50 mg QD; day 1, 70 mg), or the combination of both (CAS-LAMB; n = 17) for a median duration of 10 to 13 days (range, 4 to 28 days) until defervescence and granulocyte recovery. PK sampling was performed on days 1 and 4. Drug concentrations in plasma (LAMB, 405 samples; CAS, 458 samples) were quantified by high-pressure liquid chromatography and were analyzed using population pharmacokinetic modeling. CAS concentration data best fitted a two-compartment model with a proportional error model and interindividual variability (IIV) for clearance (CL) and central volume of distribution (V(1)) (CL, 0.462 liter/h ± 25%; V(1), 8.33 liters ± 29%; intercompartmental clearance [Q], 1.25 liters/h; peripheral volume of distribution [V(2)], 3.59 liters). Concentration data for LAMB best fitted a two-compartment model with a proportional error model and IIV for all parameters (CL, 1.22 liters/h ± 64%; V(1), 19.2 liters ± 38%; Q, 2.18 liters/h ± 47%; V(2), 52.8 liters ± 84%). Internal model validation showed predictability and robustness of both models. None of the covariates tested (LAMB or CAS comedication, gender, body weight, age, body surface area, serum bilirubin, and creatinine clearance) further improved the models. In summary, the disposition of LAMB and CAS was best described by two-compartment models. Drug exposures in aHSCT patients were comparable to those in other populations, and no PK interactions were observed between the two compounds.
Collapse
|
10
|
Li F, Patterson AD, Höfer CC, Krausz KW, Gonzalez FJ, Idle JR. Comparative metabolism of cyclophosphamide and ifosfamide in the mouse using UPLC-ESI-QTOFMS-based metabolomics. Biochem Pharmacol 2010; 80:1063-74. [PMID: 20541539 DOI: 10.1016/j.bcp.2010.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 05/27/2010] [Accepted: 06/03/2010] [Indexed: 12/12/2022]
Abstract
Ifosfamide (IF) and cyclophosphamide (CP) are common chemotherapeutic agents. Interestingly, while the two drugs are isomers, only IF treatment is known to cause nephrotoxicity and neurotoxicity. Therefore, it was anticipated that a comparison of IF and CP drug metabolites in the mouse would reveal reasons for this selective toxicity. Drug metabolites were profiled by ultra-performance liquid chromatography-linked electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS), and the results analyzed by multivariate data analysis. Of the total 23 drug metabolites identified by UPLC-ESI-QTOFMS for both IF and CP, five were found to be novel. Ifosfamide preferentially underwent N-dechloroethylation, the pathway yielding 2-chloroacetaldehyde, while cyclophosphamide preferentially underwent ring-opening, the pathway yielding acrolein (AC). Additionally, S-carboxymethylcysteine and thiodiglycolic acid, two downstream IF and CP metabolites, were produced similarly in both IF- and CP-treated mice. This may suggest that other metabolites, perhaps precursors of thiodiglycolic acid, may be responsible for IF encephalopathy and nephropathy.
Collapse
Affiliation(s)
- Fei Li
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20852, United States.
| | | | | | | | | | | |
Collapse
|
11
|
Hamberg P, Steeghs N, Loos WJ, van de Biessen D, den Hollander M, Tascilar M, Verweij J, Gelderblom H, Sleijfer S. Decreased exposure to sunitinib due to concomitant administration of ifosfamide: results of a phase I and pharmacokinetic study on the combination of sunitinib and ifosfamide in patients with advanced solid malignancies. Br J Cancer 2010; 102:1699-706. [PMID: 20485286 PMCID: PMC2883699 DOI: 10.1038/sj.bjc.6605696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/08/2010] [Accepted: 04/21/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND This study aimed to define the maximally tolerated dose (MTD) of sunitinib combined with two different infusion schedules of ifosfamide. METHODS Patients with advanced solid tumours, good performance score, good organ function, and no standard therapy available were eligible. Continuous once daily sunitinib, in escalating doses per cohort, was combined with ifosfamide, 9 g m(-2) for 3 days or 6 g m(-2) for 5 days, administered every 3 weeks. Pharmacokinetic (PK) and pharmacodynamic (PD) assessments were performed. RESULTS With growth-factor support, the MTD of sunitinib combined with either ifosfamide schedule was 12.5 mg in 32 patients enrolled. Neutropenia-related adverse events were dose-limiting toxicities. Sunitinib did not affect ifosfamide PK. Ifosfamide significantly decreased exposure to sunitinib and increased exposure to its metabolite, SU12662. No consistent changes in PD parameters were observed. CONCLUSION With growth-factor support, the MTD of sunitinib with both ifosfamide schedules was 12.5 mg. Ifosfamide produced decreased sunitinib blood levels because of CYP3A induction. As PK interactions cannot explain the relatively low sunitinib doses that can be combined with ifosfamide, synergy in toxicity is likely. Whether this also holds true for anti-tumour activity needs to be further explored.
Collapse
Affiliation(s)
- P Hamberg
- Department of Medical Oncology, Erasmus University Medical Center Daniel Den Hoed Cancer Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Aleksa K, Nava-Ocampo A, Koren G. Detection and quantification of (R) and (S)-dechloroethylifosfamide metabolites in plasma from children by enantioselective LC/MS/MS. Chirality 2009; 21:674-80. [DOI: 10.1002/chir.20662] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Yin OQP, Wang Y, Schran H. A mechanism-based population pharmacokinetic model for characterizing time-dependent pharmacokinetics of midostaurin and its metabolites in human subjects. Clin Pharmacokinet 2009; 47:807-16. [PMID: 19026036 DOI: 10.2165/0003088-200847120-00005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND OBJECTIVE Midostaurin, a novel potent inhibitor of protein kinase C enzyme and class III receptor tyrosine kinases, including Fms-like tyrosine kinase-3 (FLT3) and c-KIT, shows time-dependent pharmacokinetics in human subjects, presumably due to enzyme auto-induction. The purpose of this study was to develop a mechanism-based population pharmacokinetic model to describe the plasma concentration profiles of midostaurin and its metabolites and to characterize the time course of auto-induction. SUBJECTS AND METHODS Data from 37 diabetic patients who received oral doses of midostaurin (25 mg twice daily, 50 mg twice daily or 75 mg twice daily) for 28 days were analysed using nonlinear mixed-effects modelling. The structural model included a gut compartment for drug input and central and peripheral compartments for midostaurin, with drug output from the central compartment to either of two compartments for the midostaurin metabolites CGP62221 and CGP52421. Different enzyme induction sub-models were evaluated to account for the observed time-dependent decrease in midostaurin concentrations. RESULTS An enzyme turnover model, with CGP62221 formation (CL(1)) being a linear process but CGP52421 formation (CL(2)) being inducible, was found to be most appropriate. In the pre-induced state, CL(1) and CL(2) of midostaurin were determined to be 1.47 L/h and 0.501 L/h, respectively. At the end of 28 days of dosing, CL(2) was increased by 5.2-, 6.6- and 6.9-fold in the 25 mg, 50 mg and 75 mg groups, respectively, resulting in a 2.1- to 2.5-fold increase in total clearance of midostaurin. The final model estimated a mean maximum fold of induction (E(max)) of 8.61 and a concentration producing 50% of the E(max) (EC(50)) of 1700 ng/mL (approximately 2.9 micromol/L) for CGP52421-mediated enzyme induction. CONCLUSIONS The population pharmacokinetic model that was developed was able to describe the time-dependent pharmacokinetic profiles of midostaurin and its auto-induction mechanism. Thus it may be useful for designing an appropriate dosage regimen for midostaurin. The unique feature of this model included a precursor compartment that was able to capture the time delays of auto-induction. The use of such precursor extension in the model may be applicable to other drugs showing long time delays in enzyme auto-induction.
Collapse
Affiliation(s)
- Ophelia Q P Yin
- Oncology Clinical Pharmacology, Novartis Pharmaceuticals Corporation, Florham Park, New Jersey, USA
| | | | | |
Collapse
|
14
|
Tascilar M, Loos WJ, Seynaeve C, Verweij J, Sleijfer S. The pharmacologic basis of ifosfamide use in adult patients with advanced soft tissue sarcomas. Oncologist 2008; 12:1351-60. [PMID: 18055856 DOI: 10.1634/theoncologist.12-11-1351] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The treatment outcome of patients with locally advanced and metastatic soft tissue sarcomas is poor. Doxorubicin is regarded as standard treatment, but its use is featured by the occurrence of cardiotoxicity. This hinders the administration of this drug at high doses or in combination with, in theory, attractive newly developed targeted drugs, such as vascular endothelial growth factor (VEGF) pathway inhibitors. The combination of doxorubicin and VEGF pathway inhibitors has been shown to yield an unacceptable high rate of cardiomyopathy. Ifosfamide is the only drug that consistently shows response rates comparable to those of doxorubicin. The lack of cardiotoxicity renders this drug a much more attractive alternative than doxorubicin to be explored at high doses or as part of new drug combinations. This review addresses the clinical pharmacology, metabolism, and present role of ifosfamide in the treatment of locally advanced and/or metastatic soft tissue sarcomas, excluding gastrointestinal stromal tumors, the Ewing-like sarcomas, and other small blue round cell tumors. Furthermore, this review focuses on the anticipated growing role of ifosfamide in the development of new treatment strategies.
Collapse
Affiliation(s)
- Metin Tascilar
- Department of Medical Oncology, Erasmus University Medical Center Rotterdam-Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075EA Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Chugh R, Wagner T, Griffith KA, Taylor JMG, Thomas DG, Worden FP, Leu KM, Zalupski MM, Baker LH. Assessment of ifosfamide pharmacokinetics, toxicity, and relation to CYP3A4 activity as measured by the erythromycin breath test in patients with sarcoma. Cancer 2007; 109:2315-22. [PMID: 17464949 DOI: 10.1002/cncr.22669] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Ifosfamide is a chemotherapeutic agent that requires cytochrome P450 3A (CYP3A) for bioactivation and metabolism. To the authors' knowledge, the correlation between dose, pharmacokinetics, CYP3A, and toxicity has not been fully evaluated. A randomized Phase II trial was performed on 22 soft tissue sarcoma patients treated with doxorubicin (60 mg/m(2)/cycle) and either high-dose ifosfamide (12 g/m(2)/cycle) or standard-dose ifosfamide (6 g/m(2)/cycle). The pharmacokinetics of ifosfamide and CYP3A measurements observed are reported. METHODS Pharmacokinetic parameters for ifosfamide, 2-dichloroethylifosfamide (2-DCE), and 3-dichloroethylifosfamide (3-DCE) were collected after the first ifosfamide infusion in 13 patients. Bayesian designed limited pharmacokinetic data were collected from an additional 41 patients. The erythromycin breath test (ERMBT) was performed on 81 patients as an in vivo phenotypic assessment of CYP3A activity. RESULTS Fourteen-hour (peak) plasma levels of ifosfamide, 2-DCE, and 3-DCE were found to correlate strongly with the respective area under the curve (AUC) 0-24 values (r=0.97, 0.94, and 0.95; P<.0001). Patients who experienced a grade 3-4 absolute neutrophil count (ANC), platelet, or creatinine toxicity (using the National Cancer Institute Common Toxicity Criteria [version 2]) were found to have statistically significantly higher median 14-hour plasma levels of ifosfamide, 2-DCE, and 3-DCE compared with patients with grade 0-2 toxicity. ERMBT was not found to correlate with pharmacokinetic parameters of ifosfamide and metabolites or toxicity. CONCLUSIONS The 14-hour plasma level of ifosfamide, 2-DCE, and 3-DCE is a simple and appropriate substitute for describing the AUC of ifosfamide after 1 day of a 1-hour to 2-hour infusion of drug. Fourteen-hour plasma levels of ifosfamide and metabolites are useful predictors of neutropenia, thrombocytopenia, and creatinine toxicity. ERMBT was not found to accurately correlate with ifosfamide pharmacokinetics or clinical toxicity.
Collapse
Affiliation(s)
- Rashmi Chugh
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Ifosfamide (IF), a potent chemotherapeutic agent for solid tumors, is known to cause high rates of nephrotoxicity, which is most likely due to the renal production of the metabolite chloroacetaldehyde. Enantioselective oxidation of IF has been shown in the liver but has never been reported in the kidney. Using porcine and human kidney samples, as well as the renal porcine cell line LLCPK-1, we document enantioselective metabolism of IF with prevalent production of the N-dechloroethylifosfamide (DCEIF) metabolites from the (S)-IF enantiomer compared to the amount of N-DCEIF metabolites produced from the (R)-IF enantiomers. Since IF enantiomers appear to be equally effective in chemotherapy, these results suggest that replacing the clinically standard racemic mixture of IF with (R)-IF may decrease renal metabolism of the drug and hence may decrease nephrotoxicity.
Collapse
Affiliation(s)
- Katarina Aleksa
- Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
18
|
Brain EGC, Rezai K, Weill S, Gauzan MF, Santoni J, Besse B, Goupil A, Turpin F, Urien S, Lokiec F. Variations in schedules of ifosfamide administration: a better understanding of its implications on pharmacokinetics through a randomized cross-over study. Cancer Chemother Pharmacol 2006; 60:375-81. [PMID: 17106751 DOI: 10.1007/s00280-006-0373-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE The metabolism of ifosfamide is a delicate balance between a minor activation pathway (4-hydroxylation) and a mainly toxification pathway (N-dechloroethylation), and there remains uncertainty as to the optimal intravenous schedule. METHODS This study assesses ifosfamide pharmacokinetics (PK) according to two standard schedules. Using a 1:1 randomized trial design, we prospectively evaluated ifosfamide PK on two consecutive cycles of 3 g/m2/day for 3 days (9 g/m2/cycle) given in one of two schedules either by continuous infusion (CI) or short (3 h) infusion. Highly sensitive analytical methods allowed determination of concentrations of ifosfamide and the key metabolites 4-hydroxy-ifosfamide, 2- and 3-dechloroethyl-ifosfamide. RESULTS Extensive PK analysis was available in 12 patients and showed equivalence between both schedules (3 h versus CI) based on area under the curves (micromol/l x h) for ifosfamide, 4-hydroxy-ifosfamide, 2- and 3-dechloroethyl-ifosfamide (9,379 +/- 2,638 versus 8,307 +/- 1,995, 152 +/- 59 versus 161 +/- 77, 1,441 +/- 405 versus 1,388 +/- 393, and 2,808 +/- 508 versus 2,634 +/- 508, respectively, all P > 0.2). The classical auto-induction of metabolism over the 3 days of infusion was confirmed for both schedules. CONCLUSION This study confirms similar PK for both active and toxic metabolites of ifosfamide in adult cancer patients when 9 g/m2 of ifosfamide is administered over 3 days by CI or daily 3-h infusions.
Collapse
Affiliation(s)
- E G C Brain
- Department of Medical Oncology, René Huguenin Cancer Centre, 35, rue Dailly, 92210 Saint-Cloud, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rassnick KM, Moore AS, Northrup NC, Kristal O, Beaulieu BB, Lewis LD, Page RL. Phase I trial and pharmacokinetic analysis of ifosfamide in cats with sarcomas. Am J Vet Res 2006; 67:510-6. [PMID: 16506919 DOI: 10.2460/ajvr.67.3.510] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the maximally tolerated dose (MTD) and dose-limiting toxicosis (DLT) of ifosfamide in tumor-bearing cats. ANIMALS 38 cats with resected, recurrent, or metastatic sarcomas. PROCEDURE The starting dosage of ifosfamide was 400 mg/m(2) of body surface area, IV, and dosages were increased by 50 to 100 mg/m(2) in cohorts of 3 cats. To protect against urotoxicosis, mesna was administered at a dosage equal to 20% of the calculated ifosfamide dosage. Diuresis with saline (0.9% NaCl) solution before and after administration of ifosfamide was used to minimize nephrotoxicosis. Samples for pharmacokinetic analysis were obtained after the MTD was reached. RESULTS 38 cats were entered into this phase I study and were administered a single dose of ifosfamide at various dosages. The MTD was 1,000 mg/m(2), and neutropenia was the DLT. Seven of 8 episodes of neutropenia were on day 7 after treatment, and 1 cat developed severe neutropenia on day 5. Adverse effects on the gastrointestinal tract were generally mild and self-limiting, the most common of which was nausea during ifosfamide infusion. One cat had signs consistent with a drug-induced hypersensitivity reaction. There were no episodes of hemorrhagic cystitis or nephrotoxicosis. Correlations between pharmacokinetic variables and ifosfamide-associated toxicoses were not found. Preliminary evidence of antitumor activity was observed in 6 of 27 cats with measurable tumors. CONCLUSIONS AND CLINICAL RELEVANCE The dosage of ifosfamide recommended to treat tumor-bearing cats is 900 mg/m(2) every 3 weeks. This dosage should be used in phase II clinical trials.
Collapse
Affiliation(s)
- Kenneth M Rassnick
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Magnusson MO, Karlsson MO, Sandström R. A mechanism-based integrated pharmacokinetic enzyme model describing the time course and magnitude of phenobarbital-mediated enzyme induction in the rat. Pharm Res 2006; 23:521-32. [PMID: 16525862 DOI: 10.1007/s11095-005-9571-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Accepted: 11/21/2005] [Indexed: 11/26/2022]
Abstract
PURPOSE To characterize the magnitude, time course, and specificity of phenobarbital (PB)-mediated enzyme induction, and further, to develop an integrated pharmacokinetic (PK)-enzyme model describing the changes in the activities of CYP enzymes as well as in the PK of PB. METHODS PB plasma concentrations and in vitro activities of several CYP enzymes were measured in rats treated with PB between 0 and 14 days. A PB PK-enzyme induction model was developed using the program NONMEM: . RESULTS PB treatment both induces and reduces the activity of CYP enzymes by stimulating the enzymes' formation or elimination rates. Certain CYP enzymes affected the PB PK through autoinduction. The half-life of the induction process was estimated to be 2 days for CYP1A2, CYP3A1/2, and CYP2B1/2, and 3 days for androstenedione producing enzymes. The CYP2C11 activity was rapidly reduced by PB treatment. A lag time for the PB autoinduction was observed. This lag time is explained by the rate difference between induction and reduction in CYP activities. CONCLUSION To our knowledge, this is the first example of an induction model that simultaneously describes plasma PK and in vitro data. It does so by integrating the bidirectional interaction between drug and enzymes in a mechanistic manner.
Collapse
Affiliation(s)
- Mats O Magnusson
- Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden.
| | | | | |
Collapse
|
21
|
Zhang J, Tian Q, Yung Chan S, Chuen Li S, Zhou S, Duan W, Zhu YZ. Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metab Rev 2006; 37:611-703. [PMID: 16393888 DOI: 10.1080/03602530500364023] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, beta-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and epsilon. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
22
|
Aleksa K, Matsell D, Krausz K, Gelboin H, Ito S, Koren G. Cytochrome P450 3A and 2B6 in the developing kidney: implications for ifosfamide nephrotoxicity. Pediatr Nephrol 2005; 20:872-85. [PMID: 15875221 DOI: 10.1007/s00467-004-1807-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 11/30/2004] [Accepted: 12/01/2004] [Indexed: 11/25/2022]
Abstract
Repeated administration of agents (e.g., cancer chemotherapy) that can cause drug-induced nephrotoxicity may lead to acute or chronic renal damage. This will adversely affect the health and well-being of children, especially when the developing kidney is exposed to toxic agents that may lead to acute glomerular, tubular or combined toxicity. We have previously shown that the cancer chemotherapeutic ifosfamide (IF) causes serious renal damage substantially more in younger children (less than 3 years of age) than among older children. The mechanism of the age-related IF-induced renal damage is not known. Our major hypothesis is that renal CYP P450 expression and activity are responsible for IF metabolism to the nephrotoxic chloroacetaldehyde. Presently, the ontogeny of these catalytic enzymes in the kidney is sparsely known. The presence of CYP3A4, 3A5 and 2B6 was investigated in human fetal, pediatric and adult kidney as was the metabolism of IF (both R-IF and S-IF enantiomers) by renal microsomes to 2-dechloroethylifosfamide (2-DCEIF) and 3-dechloroethylifosfamide (3-DCEIF). Our analysis shows that CYP 3A4 and 3A5 are present as early as 8 weeks of gestation. IF is metabolized in the kidney to its two enantiomers. This metabolism can be inhibited with CYP 3A4/5 and 2B6 specific monoclonal inhibitory antibodies, whereby the CYP3A4/5 inhibitory antibody decreased the production of R-3-DCEIF by 51%, while the inhibitory CYP2B6 antibody decreased the production of S-2-DCEIF and S-3-DCEIF by 44 and 43%, respectively, in patient samples. Total renal CYP content is approximately six-fold lower than in the liver.
Collapse
Affiliation(s)
- Katarina Aleksa
- Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Willits I, Price L, Parry A, Tilby MJ, Ford D, Cholerton S, Pearson ADJ, Boddy AV. Pharmacokinetics and metabolism of ifosfamide in relation to DNA damage assessed by the COMET assay in children with cancer. Br J Cancer 2005; 92:1626-35. [PMID: 15827549 PMCID: PMC2362048 DOI: 10.1038/sj.bjc.6602554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The degree of damage to DNA following ifosfamide (IFO) treatment may be linked to the therapeutic efficacy. The pharmacokinetics and metabolism of IFO were studied in 19 paediatric patients, mostly with rhabdomyosarcoma or Ewings sarcoma. Ifosfamide was dosed either as a continuous infusion or as fractionated doses over 2 or 3 days. Samples of peripheral blood lymphocytes were obtained during and up to 96 h after treatment, and again prior to the next cycle of chemotherapy. DNA damage was measured using the alkaline COMET assay, and quantified as the percentage of highly damaged cells per sample. Samples were also taken for the determination of IFO and metabolites. Pharmacokinetics and metabolism of IFO were comparable with previous studies. Elevations in DNA damage could be determined in all patients after IFO administration. The degree of damage increased to a peak at 72 h, but had returned to pretreatment values prior to the next dose of chemotherapy. There was a good correlation between area under the curve of IFO and the cumulative percentage of cells with DNA damage (r2=0.554, P=0.004), but only in those patients receiving fractionated dosing. The latter patients had more DNA damage (mean±s.d., 2736±597) than those patients in whom IFO was administered by continuous infusion (1453±730). The COMET assay can be used to quantify DNA damage following IFO therapy. Fractionated dosing causes a greater degree of DNA damage, which may suggest a greater degree of efficacy, with a good correlation between pharmacokinetic and pharmacodynamic data.
Collapse
Affiliation(s)
- I Willits
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - L Price
- School of Clinical Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - A Parry
- School of Clinical Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - M J Tilby
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - D Ford
- School of Biomedical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - S Cholerton
- School of Medical Education Development, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - A D J Pearson
- School of Clinical Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
- Paediatric Oncology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - A V Boddy
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK. E-mail:
| |
Collapse
|
24
|
Gordi T, Xie R, Huong NV, Huong DX, Karlsson MO, Ashton M. A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction. Br J Clin Pharmacol 2005; 59:189-98. [PMID: 15676041 PMCID: PMC1884742 DOI: 10.1111/j.1365-2125.2004.02321.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIMS Previous studies have shown that the antimalarial drug artemisinin is a potent inducer of its own metabolism in both patients and healthy subjects. The aim of this study was to characterize the time-dependent pharmacokinetics of artemisinin in healthy subjects. METHODS Twenty-four healthy males were randomized to receive either a daily single dose of 500 mg oral artemisinin for 5 days, or single oral doses of 100/100/250/250/500 mg on each of the first 5 days. Two subjects from each group were administered a new dose of 500 mg on one of the following days after the beginning of the study: 7, 10, 13, 16, 20, or 24. Artemisinin concentrations in saliva samples collected on days 1, 3, 5, and on the final day were determined by HPLC. Data were analysed using a semiphysiological model incorporating (a) autoinduction of a precursor to the metabolizing enzymes, and (b) a two-compartment pharmacokinetic model with a separate hepatic compartment to mimic the processes of autoinduction and high hepatic extraction. RESULTS Artemisinin was found to induce its own metabolism with a mean induction time of 1.9 h, whereas the enzyme elimination half-life was estimated to 37.9 h. The hepatic extraction ratio of artemisinin was estimated to be 0.93, increasing to about 0.99 after autoinduction of metabolism. The model indicated that autoinduction mainly affected bioavailability, but not systemic clearance. Non-linear increases in AUC with dose were explained by saturable hepatic elimination affecting the first-pass extraction. CONCLUSION Artemisinin produces a rapid onset of enzyme induction, resulting in a decrease in its own bioavailability over time. The proposed model successfully described the time-course of the onset and normalization of the autoinduction of metabolism in healthy subjects receiving two different dosage regimens of the compound.
Collapse
Affiliation(s)
- Toufigh Gordi
- Division of Pharmacokinetics and Drug Therapy, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
25
|
Groninger E, Proost JH, de Graaf SSN. Pharmacokinetic studies in children with cancer. Crit Rev Oncol Hematol 2005; 52:173-97. [PMID: 15582785 DOI: 10.1016/j.critrevonc.2004.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2004] [Indexed: 11/23/2022] Open
Abstract
We reviewed the current status of our knowledge of pharmacokinetics and pharmacodynamics of some anti-neoplastic drugs, used in the treatment of childhood cancer. Extrapolation of data from pharmacokinetic studies in adults to the paediatric population is often not feasible. Specific studies in children are needed. Of all reviewed anti-neoplastic drugs methotrexate appears to be most extensively studied. Methotrexate pharmacokinetics is correlated with toxicity and response to therapy, and it has been shown that individualized adaptive dosing of methotrexate is correlated with a better response to therapy without increasing toxicity in children with ALL and osteosarcoma. Of most of the other reviewed anti-neoplastic drugs it is demonstrated that pharmacokinetics is correlated with toxicity, and of some drugs a relationship of pharmacokinetics with response to therapy is demonstrated as well. In case of cytarabine, etoposide, and teniposide, individualized dosing also appears to be feasible. However, there is no evidence that this strategy improves response to therapy. Specifically data on pharmacokinetic and pharmacodynamic correlations and effect of pharmacokinetically guided, individualized dosing are important for the design of optimal cancer chemotherapy for individual patients. Unfortunately for a considerable number of anti-neoplastic drugs these specific data are lacking in children and future research is needed.
Collapse
Affiliation(s)
- E Groninger
- Department of Paediatric Oncology Haematology, Beatrix Children's Hospital, Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands.
| | | | | |
Collapse
|
26
|
Friberg LE, Hassan SB, Lindhagen E, Larsson R, Karlsson MO. Pharmacokinetic–pharmacodynamic modelling of the schedule-dependent effect of the anti-cancer agent CHS 828 in a rat hollow fibre model. Eur J Pharm Sci 2005; 25:163-73. [PMID: 15854812 DOI: 10.1016/j.ejps.2005.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 12/22/2004] [Accepted: 02/14/2005] [Indexed: 11/28/2022]
Abstract
N-(6-Chlorophenoxyhexyl)-N'-cyano-N''-4-pyridylguanidine (CHS 828) is a novel anticancer agent that shows schedule-dependent effects in vitro and in vivo, as well as in Phase I clinical trials. A rat hollow fibre model was used to investigate whether this dependency is due to pharmacokinetic and/or pharmacodynamic factors. The effect on two cell lines, MDA-MB-231 (breast cancer) and CCRF-CEM (leukaemia) were studied after CHS 828 was administered orally as a single dose or in a 5-day schedule, at different total dose levels. The 5-day schedules were associated with greater effects on both cell lines compared with single doses. A one-compartment pharmacokinetic model, with a half-life of 2.3h and a consecutive zero- and first-order process to describe dissolution and absorption, fit the concentration data. Pharmacokinetics were dose-dependent, as the fraction absorbed decreased with increasing dose. Clearance increased with accumulative exposure. Twenty hours after administration, concentrations started to increase again, probably due to coprophagy. Pharmacokinetic-pharmacodynamic models characterized the cell growth and cell kill over time and showed that schedule-dependent antitumour effects were present also when the dose-dependent pharmacokinetics were accounted for. The prolonged schedules of CHS 828 were therefore associated with greater antitumour effects than single doses of the same total exposure.
Collapse
Affiliation(s)
- Lena E Friberg
- Division of Pharmacokinetics and Drug Therapy, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
27
|
Crews KR, Stewart CF, Liu T, Rodriguez-Galindo C, Santana VM, Daw NC. Effect of fractionated ifosfamide on the pharmacokinetics of irinotecan in pediatric patients with osteosarcoma. J Pediatr Hematol Oncol 2004; 26:764-7. [PMID: 15543015 DOI: 10.1097/00043426-200411000-00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The combination of irinotecan (daily for 5 days for 2 consecutive weeks) and ifosfamide (daily on days 1 through 3) was investigated in children with osteosarcoma. Irinotecan pharmacokinetic investigations were performed before ifosfamide (day 1), after 3 days of ifosfamide (day 3), and 9 days after the end of ifosfamide (day 12). On day 3, the concentrations of irinotecan's active metabolite, SN-38, were below the limit of quantitation in two patients and were decreased in a third patient. The SN-38 area under the concentration-time curve remained below the day 1 value in two patients on day 12. The reduced area under the curve to the active metabolite SN-38 during ifosfamide therapy predicts a compromised efficacy of irinotecan in this combination.
Collapse
Affiliation(s)
- Kristine R Crews
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Our understanding of the clinical and cellular pharmacology of drugs commonly used in the treatment of childhood cancer have increased greatly over the past two decades. However, with the exception of childhood acute lymphoblastic leukaemia (ALL), our current knowledge of factors such as inter-patient pharmacokinetic variability and cellular determinants of chemosensitivity has not been utilized in the design of integrated clinical studies. Recent pre-clinical and clinical evaluation of the topoisomerase I inhibitors topotecan and irinotecan has highlighted the potential importance of pharmacological factors in their effectiveness as cytotoxics. In this review, the clinical and cellular pharmacology of vincristine, actinomycin D, doxorubicin, cyclophosphamide, ifosfamide, cisplatin, carboplatin and etoposide will be discussed in relation to the major paediatric solid tumours. For each disease type, knowledge of the clinical and cellular pharmacology of a candidate drug will be related to pharmacodynamic responses such as response, toxicity and prognosis. For diseases such as Wilms' tumour, osteogenic sarcoma and Ewing's tumour, histological response to initial induction chemotherapy is of prognostic significance, and the depth of response is increasingly recognised as an important determinant of prognosis for high-risk neuroblastoma. For several of these tumour types, the dose-intensity of chemotherapy may be an important variable in determining prognosis. However the relationship between pharmacokinetic variability, cellular pharmacology and the major determinants of chemosensitivity to those drugs employed in first line therapy is unknown. The study of these relationships, by means of up front window studies in children who present with high-risk disease, may be as important as the introduction of new agents. Indeed, the optimisation of current therapies may be required to allow a fully informed selection of those children for whom novel therapies are truly needed. Funding and international collaboration at the clinical and scientific level would be required to achieve these aims.
Collapse
Affiliation(s)
- E J Estlin
- Department of Paediatric Oncology, Royal Manchester Children's Hospital, Pendlebury, Manchester, M27 4HA, UK.
| | | |
Collapse
|
29
|
Kerbusch T, de Kraker J, Mathĵt RA, Beijnen JH. Population pharmacokinetics of ifosfamide and its dechloroethylated and hydroxylated metabolites in children with malignant disease: a sparse sampling approach. Clin Pharmacokinet 2002; 40:615-25. [PMID: 11523727 DOI: 10.2165/00003088-200140080-00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To assess the feasibility of a sparse sampling approach for the determination of the population pharmacokinetics of ifosfamide, 2- and 3-dechloroethyl-ifosfamide and 4-hydroxy-ifosfamide in children treated with single-agent ifosfamide against various malignant tumours. DESIGN Pharmacokinetic assessment followed by model fitting. PATIENTS The analysis included 32 patients aged between 1 and 18 years receiving a total of 45 courses of ifosfamide 1.2, 2 or 3 g/m2 in 1 or 3 hours on 1, 2 or 3 days. METHODS A total of 133 blood samples (median of 3 per patient) were collected. Plasma concentrations of ifosfamide and its dechloroethylated metabolites were determined by gas chromatography. Plasma concentrations of 4-hydroxy-ifosfamide were measured by high-performance liquid chromatography. The models were fitted to the data using a nonlinear mixed effects model as implemented in the NONMEM program. A cross-validation was performed. RESULTS Population values (mean +/- standard error) for the initial clearance and volume of distribution of ifosfamide were estimated at 2.36 +/- 0.33 L/h/m2 and 20.6 +/- 1.6 L/m2 with an interindividual variability of 43 and 32%, respectively. The enzyme induction constant was estimated at 0.0493 +/- 0.0104 L/h2/m2. The ratio of the fraction of ifosfamide metabolised to each metabolite to the volume of distribution of that metabolite, and the elimination rate constant, of 2- and 3-dechloroethyl-ifosfamide and 4-hydroxy-ifosfamide were 0.0976 +/- 0.0556, 0.0328 +/- 0.0102 and 0.0230 +/- 0.0083 m2/L and 3.64 +/- 2.04, 0.445 +/- 0.174 and 7.67 +/- 2.87 h(-1), respectively. Interindividual variability of the first parameter was 23, 34 and 53%, respectively. Cross-validation indicated no bias and minor imprecision (12.5 +/- 5.1%) for 4-hydroxy-ifosfamide only. CONCLUSIONS We have developed and validated a model to estimate ifosfamide and metabolite concentrations in a paediatric population by using sparse sampling.
Collapse
Affiliation(s)
- T Kerbusch
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam.
| | | | | | | |
Collapse
|
30
|
Paci A, Rieutord A, Brion F, Prognon P. Separation methods for alkylating antineoplastic compounds. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 764:255-87. [PMID: 11817031 DOI: 10.1016/s0378-4347(01)00280-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The separating method for alkylating neoplastic compounds were reviewed based on the classification of the Merck Index (12th Edition). Each section, whenever available or relevant, was subdivided according to the following approach: stability studies, extraction methods, gas chromatography, high-performance liquid chromatography and capillary electrophoresis. At the end of each chapter a separate table summarizing the main characteristics of the separating method were established. In particular LODs and/or LOQs were expressed as quantity to facilitate comparison between methods. This review highlights the problems to measure trace levels of these compounds into biological fluids with respect to their instability, adsorption to glass and plastic or derivatization requirements. Over the last decades, HPLC seems to be more popular than GC for separating the alkylating agents. The development of narrow- or microbore LC coupled to MS is certainly the way to further improve both separation and sensitivity obtained in the different papers surveyed for this review.
Collapse
Affiliation(s)
- A Paci
- Service de Pharmacie et Laboratoire de Toxico-Pharmacologie, Hôpital Robert Debré, Paris, France.
| | | | | | | |
Collapse
|
31
|
Huitema AD, Mathôt RA, Tibben MM, Rodenhuis S, Beijnen JH. A mechanism-based pharmacokinetic model for the cytochrome P450 drug-drug interaction between cyclophosphamide and thioTEPA and the autoinduction of cyclophosphamide. J Pharmacokinet Pharmacodyn 2001; 28:211-30. [PMID: 11468938 DOI: 10.1023/a:1011543508731] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cyclophosphamide (CP) is widely used in high-dose chemotherapy regimens in combination with thioTEPA. CP is a prodrug and is activated by cytochrome P450 to 4-hydroxycyclophosphamide (HCP) which yields the final cytotoxic metabolite phosphoramide mustard (PM). The metabolism of CP into HCP exhibits autoinduction but is inhibited by thioTEPA. The aim of this study was to develop a population pharmacokinetic model for the bioactivation route of CP incorporating the phenomena of both autoinduction and the drug-drug interaction between CP and thioTEPA. Plasma samples were collected from 34 patients who received high-dose CP, thioTEPA and carboplatin in short infusions during 4 consecutive days. Elimination of CP was described by a noninducible route and an inducible route leading to HCP. The latter route was mediated by a hypothetical amount of enzyme. Autoinduction leads to a zero-order increase in amount of this enzyme during treatment. Inhibition by thioTEPA was modeled as a reversible, competitive, concentration-dependent inhibition. PM pharmacokinetics were described by first-order formation from HCP and first-order elimination. The final models for CP, HCP, and PM provided an adequate fit of the experimental data. The volume of distribution, noninducible and initial inducible clearances of CP were 31.0 L, 1.58 L/hr and 4.76 L/hr, respectively. The enzyme amount increased with a zero-order rate constant of 0.041 amount * hr-1. After each thioTEPA infusion, however, approximately 80% of the enzyme was inhibited. This inhibition was reversible with a half-life of 6.5 hr. The formation and elimination rate constants of PM were 1.58 and 0.338 hr-1, respectively. The developed model enabled the assessment of the complex pharmacokinetics of CP in combination with thio TEPA. This model provided an adequate description of enzyme induction and inhibition and can be used for treatment optimization in this combination.
Collapse
Affiliation(s)
- A D Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Aarons L, Karlsson MO, Mentré F, Rombout F, Steimer JL, van Peer A. Role of modelling and simulation in Phase I drug development. Eur J Pharm Sci 2001; 13:115-22. [PMID: 11297895 DOI: 10.1016/s0928-0987(01)00096-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the use of pharmacokinetic/pharmacodynamic modelling and simulation (M&S) in drug development has increased during the last decade, this has most notably occurred in patient studies using the population approach. The role of M&S in Phase I, although of longer history, does not presently have the same impact on drug development. However, trends such as the increased use of biomarkers and clinical trial simulation as well as adoption of the learn/confirm concept can be expected to increase the importance of modelling in Phase I. To help identify the role of M&S, its main advantages and the obstacles to its rational use, an expert meeting was organised by COST B15 in Brussels, January 10-11, 2000. This article presents the views expressed at that meeting. Although it is clear that M&S occurs in only a minority of Phase I clinical trials, it is used for a large number of different purposes. In particular, M&S is considered valuable in the following situations: censoring because of assay limitation, characterisation of non-linearity, estimating exposure-response relationship, combined analyses, sparse sampling studies, special population studies, integrating PK/PD knowledge for decision making, simulation of Phase II trials, predicting multiple dose profile from single dose, bridging studies and formulation development. One or more of the following characteristics of M&S activities are often present and severely impede its successful integration into clinical drug development: lack of trained personnel, lack of protocol and/or analysis plan, absence of pre-specified objectives, no timelines or budget, low priority, inadequate reporting, no quality assurance of the modelling process and no evaluation of cost-benefit. The early clinical drug development phase is changing and if these implementation aspects can be appropriately addressed, M&S can fulfill an important role in reshaping the early trials by more effective extraction of information from studies, better integration of knowledge across studies and more precise predictions of trial outcome, thereby allowing more informed decision making.
Collapse
Affiliation(s)
- L Aarons
- School of Pharmacy, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
33
|
Kerbusch T, de Kraker J, Keizer HJ, van Putten JW, Groen HJ, Jansen RL, Schellens JH, Beijnen JH. Clinical pharmacokinetics and pharmacodynamics of ifosfamide and its metabolites. Clin Pharmacokinet 2001; 40:41-62. [PMID: 11236809 DOI: 10.2165/00003088-200140010-00004] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This review discusses several issues in the clinical pharmacology of the antitumour agent ifosfamide and its metabolites. Ifosfamide is effective in a large number of malignant diseases. Its use, however, can be accompanied by haematological toxicity, neurotoxicity and nephrotoxicity. Since its development in the middle of the 1960s, most of the extensive metabolism of ifosfamide has been elucidated. Identification of specific isoenzymes responsible for ifosfamide metabolism may lead to an improved efficacy/toxicity ratio by modulation of the metabolic pathways. Whether ifosfamide is specifically transported by erythrocytes and which activated ifosfamide metabolites play a key role in this transport is currently being debated. In most clinical pharmacokinetic studies, the phenomenon of autoinduction has been observed, but the mechanism is not completely understood. Assessment of the pharmacokinetics of ifosfamide and metabolites has long been impaired by the lack of reliable bioanalytical assays. The recent development of improved bioanalytical assays has changed this dramatically, allowing extensive pharmacokinetic assessment, identifying key issues such as population differences in pharmacokinetic parameters, differences in elimination dependent upon route and schedule of administration, implications of the chirality of the drug and interpatient pharmacokinetic variability. The mechanisms of action of cytotoxicity, neurotoxicity, urotoxicity and nephrotoxicity have been pivotal issues in the assessment of the pharmacodynamics of ifosfamide. Correlations between the new insights into ifosfamide metabolism, pharmacokinetics and pharmacodynamics will rationalise the further development of therapeutic drug monitoring and dose individualisation of ifosfamide treatment.
Collapse
Affiliation(s)
- T Kerbusch
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/ Slotervaart Hospital, Amsterdam.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kerbusch T, Huitema AD, Ouwerkerk J, Keizer HJ, Mathôt RA, Schellens JH, Beijnen JH. Evaluation of the autoinduction of ifosfamide metabolism by a population pharmacokinetic approach using NONMEM. Br J Clin Pharmacol 2000; 49:555-61. [PMID: 10848719 PMCID: PMC2015043 DOI: 10.1046/j.1365-2125.2000.00217.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS This study investigated the population pharmacokinetics of ifosfamide in 15 patients treated for soft tissue sarcoma with 9 or 12 g m-2 ifosfamide by means of a 72 h continuous i.v. infusion. METHODS A model was developed using nonlinear mixed effects modelling (NONMEM) to describe the nonlinear pharmacokinetics of ifosfamide by linking the ifosfamide plasma concentrations to the extent of the autoinduction. RESULTS The proposed model revealed the effect of autoinduction on the disposition of ifosfamide. The initial clearance, volume of distribution, rate constant for enzyme degradation, induction half-life of the enzyme and the ifosfamide concentration at 50% of the maximum inhibition of enzyme degradation were estimated at 2.94 +/- 0.27 l h-1, 43.5 +/- 2.9 l, 0.0546 +/- 0. 0078 h-1, 12.7 h and 30.7 +/- 4.8 microM, respectively. Interindividual variabilities of initial clearance, volume of distribution, rate constant for enzyme degradation were 24.5, 23.4 and 22.7%, respectively. Proportional and additive variability not explained by the model were 13.6% and 0.0763 microM, respectively. CONCLUSIONS The absence of a lag time for the autoinduction of ifosfamide metabolism could be the result of an immediate inhibition of the enzymatic degradation of CYP3A4 by ifosfamide. By application of the autoinduction model individual pharmacokinetic profiles of patients were described with adequate precision. This model may therefore be used in the future development of a model to individualize dose selection in patients.
Collapse
Affiliation(s)
- T Kerbusch
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The 2 most commonly used oxazaphosphorines are cyclophosphamide and ifosfamide, although other bifunctional mustard analogues continue to be investigated. The pharmacology of these agents is determined by their metabolism, since the parent drug is relatively inactive. For cyclophosphamide, elimination of the parent compound is by activation to the 4-hydroxy metabolite, although other minor pathways of inactivation also play a role. Ifosfamide is inactivated to a greater degree by dechloroethylation reactions. More robust assay methods for the 4-hydroxy metabolites may reveal more about the clinical pharmacology of these drugs, but at present the best pharmacodynamic data indicate an inverse relationship between plasma concentration of parent drug and either toxicity or antitumour effect. The metabolism of cyclophosphamide is of particular relevance in the application of high dose chemotherapy. The activation pathway of metabolism is saturable, such that at higher doses (greater than 2 to 4 g/m2) a greater proportion of the drug is eliminated as inactive metabolites. However, both cyclophosphamide and ifosfamide also act to induce their own metabolism. Since most high dose regimens require a continuous infusion or divided doses over several days, saturation of metabolism may be compensated for, in part, by auto-induction. Although a quantitative distinction may be made between the cytochrome P450 isoforms responsible for the activating 4-hydroxylation reaction and those which mediate the dechloroethylation reactions, selective induction of the activation pathway, or inhibition of the inactivating pathway, has not been demonstrated clinically. Mathematical models to describe and predict the relative contributions of saturation and autoinduction to the net activation of cyclophosphamide have been developed. However, these require careful validation and may not be applicable outside the exact regimen in which they were derived. A further complication is the chiral nature of these 2 drugs, with some suggestion that one enantiomer may have a favourable profile of metabolism over the other. That the oxazaphosphorines continue to be the subject of intensive investigation over 30 years after their introduction into clinical practice is partly because of their antitumour activity. Further advances in analytical and molecular pharmacological techniques may further optimise their use and allow rational design of more selective analogues.
Collapse
Affiliation(s)
- A V Boddy
- Cancer Research Unit, Medical School, University of Newcastle upon Tyne, England.
| | | |
Collapse
|
36
|
Paci A, Rieutord A, Guillaume D, Traoré F, Ropenga J, Husson HP, Brion F. Quantitative high-performance liquid chromatographic determination of acrolein in plasma after derivatization with Luminarin 3. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 739:239-46. [PMID: 10755368 DOI: 10.1016/s0378-4347(99)00485-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A rapid, sensitive and specific high-performance liquid chromatographic method for the quantification of acrolein (1), one of the toxic metabolites of oxazaphosphorine alkylating agents (cyclophosphamide and ifosfamide) was developed. Condensation of acrolein with Luminarin 3 afforded a fluorescent derivative that could be specifically detected and quantified. Chromatographic conditions involved a C18 RP column Uptisphere and a gradient elution system to optimize resolution and time analysis. The method showed high sensitivity with a limit of detection of 100 pmol/ml and a limit of quantification of 300 pmol/ml. This technique is particularly suitable for pharmacokinetic studies on plasma of oxazaphosphorine-receiving patients.
Collapse
Affiliation(s)
- A Paci
- Service de Pharmacie-Toxico-Pharmacologie, Hôpital Robert Debre, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
37
|
Hassan M, Svensson US, Ljungman P, Björkstrand B, Olsson H, Bielenstein M, Abdel-Rehim M, Nilsson C, Johansson M, Karlsson MO. A mechanism-based pharmacokinetic-enzyme model for cyclophosphamide autoinduction in breast cancer patients. Br J Clin Pharmacol 1999; 48:669-77. [PMID: 10594468 PMCID: PMC2014348 DOI: 10.1046/j.1365-2125.1999.00090.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS This study investigated the pharmacokinetics of cyclophosphamide (CP) and its main metabolite 4-hydroxycyclophosphamide (4-OH-CP) in patients with breast cancer undergoing high dose chemotherapy prior to autologous stem cell transplantation. An enzyme turn-over model was also developed to study the time course of cyclophosphamide induction. METHODS Fourteen patients received a combination of CP (6 g m-2 ), thiotepum (500 mg m-2 ) and carboplatin (800 mg m-2 ) as a 96 h infusion. Plasma concentrations of CP and 4-OH-CP were determined with h.p.l.c. and a pharmacokinetic and enzyme turn-over model applied to data using NONMEM. RESULTS CP plasma concentrations were described by a two-compartment model with a noninducible and an inducible pathway, the latter forming 4-OH-CP. In the final enzyme model, CP affects the amount of enzymes by increasing the enzyme production rate. CP concentrations decreased during the infusion with no subsequent change in 4-OH-CP concentrations. CP inducible and noninducible clearance were estimated to 1.76 l h-1 (90% C.I. 0.92-2.58) and 1.14 l h-1 (0.31-1.85), respectively. The induction resulted in an approximately doubled CP clearance through the inducible pathway at the end of treatment. The model predicted the enzyme turn-over half-life to be 24 h. CONCLUSIONS The presented mechanism-based enzyme induction model where the pharmacokinetics of the inducer and the enzyme pool counterbalance each other successfully described CP autoinduction. It is reasonable to believe that CP affects its own elimination by increasing the enzyme production rate and thereby increasing the amount of enzyme by which CP is eliminated.
Collapse
Affiliation(s)
- M Hassan
- Department of Hematology, Huddinge University Hospital, Huddinge; Department of Medical Laboratory Science and Technology, Division of Clinical Pharmacology, Huddinge University Hospital, Huddinge; Karolinska Pharmacy, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rostami-Hodjegan A, Wolff K, Hay AW, Raistrick D, Calvert R, Tucker GT. Population pharmacokinetics of methadone in opiate users: characterization of time-dependent changes. Br J Clin Pharmacol 1999; 48:43-52. [PMID: 10383559 PMCID: PMC2014882 DOI: 10.1046/j.1365-2125.1999.00974.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/1998] [Accepted: 03/12/1999] [Indexed: 11/20/2022] Open
Abstract
AIMS Although methadone is widely used to treat opiate dependence, guidelines for its dosage are poorly defined. There is increasing evidence to suggest that a strategy based on plasma drug monitoring may be useful to detect non-compliance. Therefore, we have developed a population-based pharmacokinetic (POP-PK) model that characterises adaptive changes in methadone kinetics. METHODS Sparse plasma rac-methadone concentrations measured in 35 opiate-users were assessed using the P-Pharm software. The final structural model comprised a biexponential function with first-order input and allowance for time-dependent change in both clearance (CL) and initial volume of distribution (V ). Values of these parameters were allowed to increase or decrease exponentially to an asymptotic value. RESULTS Increase in individual values of CL and increase or decrease in individual values of V with time was observed in applying the model to the experimental data. CONCLUSIONS A time-dependent increase in the clearance of methadone is consistent with auto-induction of CYP3A4, the enzyme responsible for much of the metabolism of the drug. The changes in V with time might reflect both up- and down-regulation of alpha1-acid glycoprotein, the major plasma binding site for methadone. By accounting for adaptive kinetic changes, the POP-PK model provides an improved basis for forecasting plasma methadone concentrations to predict and adjust dosage of the drug and to monitor compliance in opiate-users on maintenance treatment.
Collapse
Affiliation(s)
- A Rostami-Hodjegan
- University of Sheffield, Section of Molecular Pharmacology and Pharmacogenetics, Division of Clinical Sciences, The Royal Hallamshire Hospital, Sheffield
| | | | | | | | | | | |
Collapse
|
39
|
Comandone A, Leone L, Oliva C, Frustaci S, Monteleone M, Colussi AM, Dal Canton O, Bergnolo P, Boglione A, Bumma C. Pharmacokinetics of ifosfamide administered according to three different schedules in metastatic soft tissue and bone sarcomas. J Chemother 1998; 10:385-93. [PMID: 9822357 DOI: 10.1179/joc.1998.10.5.385] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Ifosfamide is a leading drug in soft tissue sarcoma therapy. Recently high dose therapy (>9 g/m2) has been introduced in different schemes to obtain a higher response rate. All these higher doses can be administered following two different schedules: continuous infusion 24 hours a day for 4-5 days or bolus administration for 5 consecutive days. In this study we compare the differences in the pharmacokinetic profile between the two schedules. In both schemes we saw a very important autoinduction phenomenon, with a corresponding half-life decrease and total body clearance increase during the days of therapy. The clearances were not directly correlated with the administered dose. We can conclude that ifosfamide continuous infusion therapy is equivalent to fractionated administration, at least from a pharmacokinetic point of view. Short-term infusion is subjectively better tolerated and is therefore preferred.
Collapse
Affiliation(s)
- A Comandone
- Department of Clinical Oncology, San Giovanni Antica Sede Hospital, Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Thompson TN. Experimental models for evaluating enzyme induction potential of new drug candidates in animals and humans and a strategy for their use. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 43:205-29. [PMID: 9342178 DOI: 10.1016/s1054-3589(08)60207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Experimental models that have application for evaluating enzyme induction potential have been described in order of increasing complexity. The main focus was on models that have had wide application thus far. However, many new models are currently being developed that may have future applications in evaluating enzyme induction potential. A strategy to evaluate the enzyme induction potential of drug candidates was outlined. This scheme uses a combination of new and established techniques to evaluate data in a stepwise manner that is appropriate to the drug's current stage of development.
Collapse
Affiliation(s)
- T N Thompson
- Department of Drug Metabolism, North American Pharmacokinetics, Hoechst Marion Roussel, Inc., Kansas City, Missouri 64137, USA
| |
Collapse
|
41
|
Boddy AV, English M, Pearson AD, Idle JR, Skinner R. Ifosfamide nephrotoxicity: limited influence of metabolism and mode of administration during repeated therapy in paediatrics. Eur J Cancer 1996; 32A:1179-84. [PMID: 8758250 DOI: 10.1016/0959-8049(96)00019-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study investigated the relationship between both acute and chronic nephrotoxic effects of ifosfamide (IFO) and its metabolism. 15 paediatric patients (4 girls) were investigated. Each received 6-9 g/m2 IFO over 15 days, repeated every 3 weeks for up to 16 courses. The pharmacokinetics and metabolism of IFO were measured during its administration, either as a continuous 72 h infusion or as three bolus doses of 3 g/m2 on consecutive days. In 8 patients, the metabolism of IFO was investigated during one early course and one late course to determine the magnitude of any changes following repeated administration. Acute measures of renal toxicity were not correlated with any of the IFO pharmacokinetic or metabolic parameters in the same course, whether the drug was administered as a bolus or by continuous infusion. Chronic renal toxicity, determined 1 month (n = 13) or 6 months (n = 8) after treatment, did not correlate with any of the IFO pharmacokinetic or metabolic parameters in any individual course of treatment. The overall degree of nephrotoxicity, however, was correlated with the changes in metabolism between late and early courses (n = 8). There was a negative correlation between the change in area under the curve of the dechloroethylated metabolites of IFO and the overall nephrotoxicity at 1 month or 6 months after treatment (both r2 = 0.66, P = 0.014). The results imply that patients in whom metabolism via dechloroethylation decreases are at a greater risk of chronic nephrotoxicity. This is contrary to the hypothesis that the systemic production of chloroacetaldehyde is the mechanism by which IFO causes nephrotoxicity. The importance of acute and chronic changes in renal function for long-term outcome remains to be determined.
Collapse
Affiliation(s)
- A V Boddy
- Department of Oncology, University of Newcastle upon Tyne, U.K
| | | | | | | | | |
Collapse
|
42
|
Boddy AV, Yule SM, Wyllie R, Price L, Pearson AD, Idle JR. Comparison of continuous infusion and bolus administration of ifosfamide in children. Eur J Cancer 1995; 31A:785-90. [PMID: 7640054 DOI: 10.1016/0959-8049(95)00090-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The pharmacological effects of ifosfamide (IFO) are dependent on its metabolism which may vary between different modes of administration. This was studied in 17 patients who received both a continuous infusion (9 g/m2 over 72 h) and repeated bolus administration (3 g/m2 every 24 h for 3 days). Concentrations of IFO and its metabolites were determined in plasma and urine. There was up to 70% less of the dechloroethylated metabolites in plasma following bolus administration compared to continuous infusion. Since dechloroethylation results in the formation of the toxic metabolite chloroacetaldehyde, this difference in metabolism may have an impact on the toxicity of IFO. There were no other consistent differences between the two modes of administration. Auto-induction of IFO metabolism, with an increase in dechloroethylated metabolites, was observed for both modes of administration. In conclusion, apart from dechloroethylation, there is little difference between these two modes of administration. However, during multiple cycles of IFO therapy such differences could have a significant effect.
Collapse
Affiliation(s)
- A V Boddy
- Cancer Research Unit, Medical School, University of Newcastle upon Tyne, U.K
| | | | | | | | | | | |
Collapse
|