1
|
Abstract
A 17-year-old prisoner was found unconscious during a morning check. The previous night, he had been struck on the chin multiple times by one of the other inmates. The patient remained unconscious and eventually died after nearly 1.5 months of care. The primary task of the forensic pathological examination was to investigate the events leading to his death; therefore, it was necessary to examine whether there was a connection between the abuse and eventual death. In our case, the key element was the repetitive, mild-to-moderate force in abuse, resulting in grade I traumatic diffuse axonal damage. Due to progressive brain edema, aspiration subsequently developed, which eventually resulted in irreversible hypoxic damage of the brain.
Collapse
|
2
|
Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic Histopathological and Behavioral Outcomes of Experimental Traumatic Brain Injury in Adult Male Animals. J Neurotrauma 2015; 32:1861-82. [PMID: 25490251 PMCID: PMC4677114 DOI: 10.1089/neu.2014.3680] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to survey the use of experimental animal models for studying the chronic histopathological and behavioral consequences of traumatic brain injury (TBI). The strategies employed to study the long-term consequences of TBI are described, along with a summary of the evidence available to date from common experimental TBI models: fluid percussion injury; controlled cortical impact; blast TBI; and closed-head injury. For each model, evidence is organized according to outcome. Histopathological outcomes included are gross changes in morphology/histology, ventricular enlargement, gray/white matter shrinkage, axonal injury, cerebrovascular histopathology, inflammation, and neurogenesis. Behavioral outcomes included are overall neurological function, motor function, cognitive function, frontal lobe function, and stress-related outcomes. A brief discussion is provided comparing the most common experimental models of TBI and highlighting the utility of each model in understanding specific aspects of TBI pathology. The majority of experimental TBI studies collect data in the acute postinjury period, but few continue into the chronic period. Available evidence from long-term studies suggests that many of the experimental TBI models can lead to progressive changes in histopathology and behavior. The studies described in this review contribute to our understanding of chronic TBI pathology.
Collapse
Affiliation(s)
- Nicole D. Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony DeSana
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Seton Hill University, Greensburg, Pennsylvania
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- V.A. Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Combes RD. A critical review of anaesthetised animal models and alternatives for military research, testing and training, with a focus on blast damage, haemorrhage and resuscitation. Altern Lab Anim 2014; 41:385-415. [PMID: 24329746 DOI: 10.1177/026119291304100508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Military research, testing, and surgical and resuscitation training, are aimed at mitigating the consequences of warfare and terrorism to armed forces and civilians. Traumatisation and tissue damage due to explosions, and acute loss of blood due to haemorrhage, remain crucial, potentially preventable, causes of battlefield casualties and mortalities. There is also the additional threat from inhalation of chemical and aerosolised biological weapons. The use of anaesthetised animal models, and their respective replacement alternatives, for military purposes -- particularly for blast injury, haemorrhaging and resuscitation training -- is critically reviewed. Scientific problems with the animal models include the use of crude, uncontrolled and non-standardised methods for traumatisation, an inability to model all key trauma mechanisms, and complex modulating effects of general anaesthesia on target organ physiology. Such effects depend on the anaesthetic and influence the cardiovascular system, respiration, breathing, cerebral haemodynamics, neuroprotection, and the integrity of the blood-brain barrier. Some anaesthetics also bind to the NMDA brain receptor with possible differential consequences in control and anaesthetised animals. There is also some evidence for gender-specific effects. Despite the fact that these issues are widely known, there is little published information on their potential, at best, to complicate data interpretation and, at worst, to invalidate animal models. There is also a paucity of detail on the anaesthesiology used in studies, and this can hinder correct data evaluation. Welfare issues relate mainly to the possibility of acute pain as a side-effect of traumatisation in recovered animals. Moreover, there is the increased potential for animals to suffer when anaesthesia is temporary, and the procedures invasive. These dilemmas can be addressed, however, as a diverse range of replacement approaches exist, including computer and mathematical dynamic modelling of the human body, cadavers, interactive human patient simulators for training, in vitro techniques involving organotypic cultures of target organs, and epidemiological and clinical studies. While the first four of these have long proven useful for developing protective measures and predicting the consequences of trauma, and although many phenomena and their sequelae arising from different forms of trauma in vivo can be induced and reproduced in vitro, non-animal approaches require further development, and their validation and use need to be coordinated and harmonised. Recommendations to these ends are proposed, and the scientific and welfare problems associated with animal models are addressed, with the future focus being on the use of batteries of complementary replacement methods deployed in integrated strategies, and on greater transparency and scientific cooperation.
Collapse
|
4
|
Ma M. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon. Neurobiol Dis 2013; 60:61-79. [PMID: 23969238 PMCID: PMC3882011 DOI: 10.1016/j.nbd.2013.08.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/17/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022] Open
Abstract
Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed.
Collapse
Affiliation(s)
- Marek Ma
- Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Resuscitation Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Effect of normabaric hyperoxia treatment on neuronal damage following fluid percussion injury in the striatum of mice: a morphological approach. J Biosci 2013; 38:93-103. [PMID: 23385817 DOI: 10.1007/s12038-012-9290-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Traumatic brain injury (TBI) causes significant mortality in most developing countries worldwide. At present, it is imperative to identify a treatment to address the devastating post-TBI consequences. Therefore, the present study has been performed to assess the specific effect of immediate exposure to normabaric hyperoxia (NBO) after fluid percussion injury (FPI) in the striatum of mice. To execute FPI, mice were anesthetised and sorted into (i) a TBI group, (ii) a sham group without injury and (iii) a TBI group treated with immediate exposure to NBO for 3 h. Afterwards, brains were harvested for morphological assessment. The results revealed no changes in morphological and neuronal damage in the sham group as compared to the TBI group. Conversely, the TBI group showed severe morphological changes as well as neuronal damage as compared to the TBI group exposed to NBO for 3 h. Interestingly, our findings also suggested that NBO treatment could diminish the neuronal damage in the striatum of mice after FPI. Neuronal damage was evaluated at different points of injury and the neighbouring areas using morphology, neuronal apoptotic cell death and pan-neuronal markers to determine the complete neuronal structure. In conclusion, immediate exposure to NBO following FPI could be a potential therapeutic approach to reduce neuronal damage in the TBI model.
Collapse
|
6
|
Mild traumatic brain injury in the mouse induces axotomy primarily within the axon initial segment. Acta Neuropathol 2013; 126:59-74. [PMID: 23595276 DOI: 10.1007/s00401-013-1119-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 10/27/2022]
Abstract
Traumatic axonal injury (TAI) is a consistent component of traumatic brain injury (TBI), and is associated with much of its morbidity. Increasingly, it has also been recognized as a major pathology of mild TBI (mTBI). In terms of its pathogenesis, numerous studies have investigated the susceptibility of the nodes of Ranvier, the paranode and internodal regions to TAI. The nodes of Ranvier, with their unique composition and concentration of ion channels, have been suggested as the primary site of injury, initiating a cascade of abnormalities in the related paranodal and internodal domains that lead to local axonal swellings and detachment. No investigation, however, has determined the effect of TAI upon the axon initial segment (AIS), a segment critical to regulating polarity and excitability. The current study sought to identify the susceptibility of these different axon domains to TAI within the neocortex, where each axonal domain could be simultaneously assessed. Utilizing a mouse model of mTBI, a temporal and spatial heterogeneity of axonal injury was found within the neocortical gray matter. Although axonal swellings were found in all domains along myelinated neocortical axons, the majority of TAI occurred within the AIS, which progressed without overt structural disruption of the AIS itself. The finding of primary AIS involvement has important implications regarding neuronal polarity and the fate of axotomized processes, while also raising therapeutic implications, as the mechanisms underlying such axonal injury in the AIS may be distinct from those described for nodal/paranodal injury.
Collapse
|
7
|
Abstract
Diffuse axonal injury (DAI) remains a prominent feature of human traumatic brain injury (TBI) and a major player in its subsequent morbidity. The importance of this widespread axonal damage has been confirmed by multiple approaches including routine postmortem neuropathology as well as advanced imaging, which is now capable of detecting the signatures of traumatically induced axonal injury across a spectrum of traumatically brain-injured persons. Despite the increased interest in DAI and its overall implications for brain-injured patients, many questions remain about this component of TBI and its potential therapeutic targeting. To address these deficiencies and to identify future directions needed to fill critical gaps in our understanding of this component of TBI, the National Institute of Neurological Disorders and Stroke hosted a workshop in May 2011. This workshop sought to determine what is known regarding the pathogenesis of DAI in animal models of injury as well as in the human clinical setting. The workshop also addressed new tools to aid in the identification of this axonal injury while also identifying more rational therapeutic targets linked to DAI for continued preclinical investigation and, ultimately, clinical translation. This report encapsulates the oral and written components of this workshop addressing key features regarding the pathobiology of DAI, the biomechanics implicated in its initiating pathology, and those experimental animal modeling considerations that bear relevance to the biomechanical features of human TBI. Parallel considerations of alternate forms of DAI detection including, but not limited to, advanced neuroimaging, electrophysiological, biomarker, and neurobehavioral evaluations are included, together with recommendations for how these technologies can be better used and integrated for a more comprehensive appreciation of the pathobiology of DAI and its overall structural and functional implications. Lastly, the document closes with a thorough review of the targets linked to the pathogenesis of DAI, while also presenting a detailed report of those target-based therapies that have been used, to date, with a consideration of their overall implications for future preclinical discovery and subsequent translation to the clinic. Although all participants realize that various research gaps remained in our understanding and treatment of this complex component of TBI, this workshop refines these issues providing, for the first time, a comprehensive appreciation of what has been done and what critical needs remain unfulfilled.
Collapse
Affiliation(s)
- Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramona Hicks
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - John T. Povlishock
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
8
|
Comparison of fluctuating and sustained neural pressure perturbations on axonal transport processes in the optic nerve. Brain Res 2011; 1417:67-76. [DOI: 10.1016/j.brainres.2011.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/23/2011] [Accepted: 08/09/2011] [Indexed: 12/30/2022]
|
9
|
Mac Donald CL, Dikranian K, Song SK, Bayly PV, Holtzman DM, Brody DL. Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Exp Neurol 2007; 205:116-31. [PMID: 17368446 PMCID: PMC1995439 DOI: 10.1016/j.expneurol.2007.01.035] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 01/22/2007] [Accepted: 01/23/2007] [Indexed: 12/31/2022]
Abstract
Traumatic axonal injury (TAI) is thought to be a major contributor to cognitive dysfunction following traumatic brain injury (TBI), however TAI is difficult to diagnose or characterize non-invasively. Diffusion tensor imaging (DTI) has shown promise in detecting TAI, but direct comparison to histologically-confirmed axonal injury has not been performed. In the current study, mice were imaged with DTI, subjected to a moderate cortical controlled impact injury, and re-imaged 4-6 h and 24 h post-injury. Axonal injury was detected by amyloid beta precursor protein (APP) and neurofilament immunohistochemistry in pericontusional white matter tracts. The severity of axonal injury was quantified using stereological methods from APP stained histological sections. Two DTI parameters--axial diffusivity and relative anisotropy--were significantly reduced in the injured, pericontusional corpus callosum and external capsule, while no significant changes were seen with conventional MRI in these regions. The contusion was easily detectable on all MRI sequences. Significant correlations were found between changes in relative anisotropy and the density of APP stained axons across mice and across subregions spanning the spatial gradient of injury. The predictive value of DTI was tested using a region with DTI changes (hippocampal commissure) and a region without DTI changes (anterior commissure). Consistent with DTI predictions, there was histological detection of axonal injury in the hippocampal commissure and none in the anterior commissure. These results demonstrate that DTI is able to detect axonal injury, and support the hypothesis that DTI may be more sensitive than conventional imaging methods for this purpose.
Collapse
Affiliation(s)
- C L Mac Donald
- Department of Biomedical Engineering, Washington University, One Brookings Drive, Campus Box 1097, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
10
|
Biasca N, Maxwell WL. Minor traumatic brain injury in sports: a review in order to prevent neurological sequelae. PROGRESS IN BRAIN RESEARCH 2007; 161:263-91. [PMID: 17618984 DOI: 10.1016/s0079-6123(06)61019-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Minor traumatic brain injury (mTBI) is caused by inertial effects, which induce sudden rotation and acceleration forces to and within the brain. At less severe levels of injury, for example in mTBI, there is probably only transient disturbance of ionic homeostasis with short-term, temporary disturbance of brain function. With increased levels of severity, however, studies in animal models of TBI and in humans have demonstrated focal intra-axonal alterations within the subaxolemmal, neurofilament and microtubular cytoskeletal network together with impairment of axoplasmic transport. These changes have, until very recently, been thought to lead to progressive axonal swelling, axonal detachment or even cell death over a period of hours or days, the so-called process of "secondary axotomy". However, recent evidence has suggested that there may be two discrete pathologies that may develop in injured nerve fibers. In the TBI scenario, disturbances of ionic homeostasis, acute metabolic changes and alterations in cerebral blood flow compromise the ability of neurons to function and render cells of the brain increasingly vulnerable to the development of pathology. In ice hockey, current return-to-play guidelines do not take into account these new findings appropriately, for example allow returning to play in the same game. It has recently been hypothesized that the processes summarized above may predispose brain cells to assume a vulnerable state for an unknown period after mild injury (mTBI). Therefore, we recommend that any confused player with or without amnesia should be taken off the ice and not be permitted to play again for at least 72h.
Collapse
Affiliation(s)
- Nicola Biasca
- Clinic of Orthopaedic, Sports Medicine and Traumatology, Department of Surgery, Spital Oberengadin, CH-7503 Samedan/St. Moritz, Switzerland.
| | | |
Collapse
|
11
|
Ottens AK, Kobeissy FH, Fuller BF, Liu MC, Oli MW, Hayes RL, Wang KKW. Novel neuroproteomic approaches to studying traumatic brain injury. PROGRESS IN BRAIN RESEARCH 2007; 161:401-18. [PMID: 17618994 DOI: 10.1016/s0079-6123(06)61029-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuroproteomics entails wide-scope study of the nervous system proteome in both its content and dynamics. The field employs high-end analytical mass spectrometry and novel high-throughput antibody approaches to characterize as many proteins as possible. The most common application has been differential analysis to identify a limited set of highly dynamic proteins associated with injury, disease, or other altered states of the nervous system. Traumatic brain injury (TBI) is an important neurological condition where neuroproteomics has revolutionized the characterization of protein dynamics, leading to a greater understanding of post-injury biochemistry. Further, proteins of altered abundance or post-translational modifications identified by neuroproteomic studies are candidate biochemical markers of TBI. This chapter explores the use of neuroproteomics in the study of TBI and the validation of identified putative biomarkers for subsequent clinical translation into novel injury diagnostics.
Collapse
Affiliation(s)
- Andrew K Ottens
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research at the McKnight Brain Institute of the University of Florida, PO Box 100256, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Animal models of traumatic brain injury (TBI) are used to elucidate primary and secondary sequelae underlying human head injury in an effort to identify potential neuroprotective therapies for developing and adult brains. The choice of experimental model depends upon both the research goal and underlying objectives. The intrinsic ability to study injury-induced changes in behavior, physiology, metabolism, the blood/tissue interface, the blood brain barrier, and/or inflammatory- and immune-mediated responses, makes in vivo TBI models essential for neurotrauma research. Whereas human TBI is a highly complex multifactorial disorder, animal trauma models tend to replicate only single factors involved in the pathobiology of head injury using genetically well-defined inbred animals of a single sex. Although such an experimental approach is helpful to delineate key injury mechanisms, the simplicity and hence inability of animal models to reflect the complexity of clinical head injury may underlie the discrepancy between preclinical and clinical trials of neuroprotective therapeutics. Thus, a search continues for new animal models, which would more closely mimic the highly heterogeneous nature of human TBI, and address key factors in treatment optimization.
Collapse
Affiliation(s)
- Ibolja Cernak
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20057, USA.
| |
Collapse
|
13
|
McArthur DL, Chute DJ, Villablanca JP. Moderate and severe traumatic brain injury: epidemiologic, imaging and neuropathologic perspectives. Brain Pathol 2004; 14:185-94. [PMID: 15193031 PMCID: PMC8095962 DOI: 10.1111/j.1750-3639.2004.tb00052.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This article examines 3 contexts in which moderate or severe traumatic brain injury can be approached. The epidemiologic background of moderate and severe traumatic brain injury is presented, with particular attention paid to new findings from the study of a national hospital inpatient database. We review aspects of neuroimaging and how new imaging modalities can reveal fine detail about traumatic brain injury. Finally we examine the current state of neuropathologic evaluation of, and recent developments in, understanding of the neural disruptions that occur following traumatic brain injury, together with cellular reactions to these disruptions.
Collapse
Affiliation(s)
- David L McArthur
- Division of Neurosurgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095-1752, USA.
| | | | | |
Collapse
|
14
|
Affiliation(s)
- J Sahuquillo
- Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain
| | | |
Collapse
|
15
|
Stone JR, Okonkwo DO, Singleton RH, Mutlu LK, Helm GA, Povlishock JT. Caspase-3-mediated cleavage of amyloid precursor protein and formation of amyloid Beta peptide in traumatic axonal injury. J Neurotrauma 2002; 19:601-14. [PMID: 12042095 DOI: 10.1089/089771502753754073] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immunohistochemical studies demonstrate accumulation of the beta-amyloid precursor protein (APP) within injured axons following traumatic brain injury (TBI). Despite such descriptions, little is known about the ultimate fate of accumulating APP at sites of traumatic axonal injury (TAI). Recently, caspase-3-mediated cleavage of APP and subsequent Abeta deposition was linked to apoptotic neuronal death pathways in hippocampal neurons following ischemic and excitotoxic brain injury. Given that (1) APP is known to accumulate within traumatically injured axons, (2) caspase-3 activation has been demonstrated in traumatic axonal injury (TAI), and (3) recent studies have identified a caspase-3 cleavage site within APP, we initiated the current investigation to determine whether caspase-3-mediated cleavage of APP occurs in TAI. We further assessed whether these events were found in relation to Abeta peptide formation. To this end, we employed antibodies targeting APP, the caspase-3-mediated breakdown product of APP proteolysis, and the Abeta peptide. Rats were subjected to impact acceleration TBI (6 h to 10 days survival), and their brains were processed for single-label bright field and multiple double-label immunofluorescent paradigms using the above antibodies. By 12 h postinjury, caspase-3-mediated APP proteolysis (CMAP) was demonstrated within the medial lemniscus (ML) and medial longitudinal fasciculus (MLF) in axons undergoing TAI, identified by their concomitant APP accumulation. Immunoreactivity for CMAP persisted up to 48 h postinjury in the ML and MLF, but was notably reduced by 10 days following injury. Further, CMAP was colocalized with Abeta formation in foci of TAI. The current study demonstrates that caspase-3 cleavage of APP occurs in TAI and is associated with formation of Abeta peptide. These findings are of interest given recent epidemiological studies supporting an association between TBI and later risk for AD development.
Collapse
Affiliation(s)
- James R Stone
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia 22908-0212, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Ginsberg SD, Martin LJ. Axonal transection in adult rat brain induces transsynaptic apoptosis and persistent atrophy of target neurons. J Neurotrauma 2002; 19:99-109. [PMID: 11852982 DOI: 10.1089/089771502753460277] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We used the fimbria-fornix (FF) transection model of axonal injury to test the hypothesis that transneuronal degeneration occurs in the adult central nervous system in response to deafferentation. The medial mammillary nucleus, pars medialis (MMNm) was analyzed by light and electron microscopy at 3, 7, 14, and 30 days, and 6 months after unilateral FF transection in adult rat to identify the time course of neuronal responses in a remote target. Presynaptic terminals and neuronal cell bodies degenerated in the MMNm ipsilateral to FF transection. Terminal degeneration occurred predominantly at 3 and 7 days postlesion. Between 14 and 30 days postlesion, neuronal number in the MMNm decreased (approximately 20%). Two forms of neuronal degeneration were found in the MMNm after deafferentation. Some neurons died apoptotically. Other neurons underwent vacuolar degeneration. In these latter neurons, somatodendritic pathology occurred at 14 and 30 days and 6 months postlesion. The ultrastructure of this vacuolar degeneration was characterized by disorganization of the cytoplasm, formation of membrane-bound vacuolar cisternae and membranous inclusions, loss of organelles, cytoplasmic pallor, and chromatin alterations. This study shows that both anterograde axonal degeneration and transneuronal degeneration occur in a fornical target after FF axon transection. This transneuronal degeneration can be classified as sustained neuronal atrophy or transsynaptic apoptosis.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
17
|
Stone JR, Singleton RH, Povlishock JT. Intra-axonal neurofilament compaction does not evoke local axonal swelling in all traumatically injured axons. Exp Neurol 2001; 172:320-31. [PMID: 11716556 DOI: 10.1006/exnr.2001.7818] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Traumatic axonal injury (TAI) contributes to morbidity and mortality following traumatic brain injury (TBI). Single-label immunocytochemical studies employing antibodies to neurofilament compaction (NFC), RM014, and antibodies to APP, a marker of impaired axonal transport (AxT), have shown that TAI involves both NFC and disruption of AxT. Although it may be hypothesized that both events occur within the same injured axon, this has not been confirmed. To determine the relationship between NFC and impaired AxT, dual-label immunofluorescence was employed. To compare and contrast specific changes associated with these two markers of TAI, single-label electron microscopy was also used. Rats were subjected to an impact acceleration injury (30 min-6 h survival), and their brains were prepared for dual-label immunofluorescence and single-label electron microscopy. APP and RM014 were consistently found in two distinct classes of TAI. One, which showed only RM014 immunoreactivity, was thin and elongate, was sometimes vacuolated, and revealed little progressive change over time. The second was distinguished by focal axonal swellings containing APP immunoreactivity alone in small-caliber axons or in combination with RM014 immunoreactivity in large-caliber axons. These swellings were localized to either nodal or internodal loci and underwent progressive swelling over time, ultimately leading to secondary axotomy. Ultrastructural examination of these two classes of TAI revealed NFC together with mitochondrial dilation without organelle pooling in the RM014 single-labeled axons. However, the APP single-labeled small-caliber axons and APP/RM014 dual-labeled large-caliber axons revealed a progressive accumulation of organelles associated with increased axonal swelling over time. In contrast to previous thought, it now appears that NFC may occur independent of impaired AxT in TAI. This finding underscores the complexity of TAI, suggesting the need for multiple immunocytochemical approaches to fully assess the overall axonal response to TBI.
Collapse
Affiliation(s)
- J R Stone
- Department of Anatomy, Campus of Virginia Commonwealth University, Richmond, Virginia 23298-0709, USA
| | | | | |
Collapse
|
18
|
Abstract
Diffuse axonal injury (DAI) is one of the most common and important pathologies resulting from the mechanical deformation of the brain during trauma. It has been hypothesized that calcium influx into axons plays a major role in the pathophysiology of DAI. However, there is little direct evidence to support this hypothesis, and mechanisms of potential calcium entry have not been explored. In the present study, we used an in vitro model of axonal stretch injury to evaluate the extent and modulation of calcium entry after trauma. Using a calcium-sensitive dye, we observed a dramatic increase in intra-axonal calcium levels immediately after injury. Axonal injury in a calcium-free extracellular solution resulted in no change in calcium concentration, suggesting an extracellular source for the increased post-traumatic calcium levels. We also found that the post-traumatic change in intra-axonal calcium was completely abolished by the application of the sodium channel blocker tetrodotoxin or by replacement of sodium with N-methyl-d-glucamine. In addition, application of the voltage-gated calcium channel (VGCC) blocker omega-conotoxin MVIIC attenuated the post-traumatic increase in calcium. Furthermore, blockade of the Na(+)-Ca(2+) exchanger with bepridil modestly reduced the calcium influx after injury. In contrast to previously proposed mechanisms of calcium entry after axonal trauma, we found no evidence of calcium entry through mechanically produced pores (mechanoporation). Rather, our results suggest that traumatic deformation of axons induces abnormal sodium influx through mechanically sensitive Na(+) channels, which subsequently triggers an increase in intra-axonal calcium via the opening of VGCCs and reversal of the Na(+)-Ca(2+) exchanger.
Collapse
|
19
|
Abstract
Post-traumatic cerebral ischemia is associated with a poor prognosis. Optimization of cerebral perfusion and blood flow thus plays a key role in contemporary head injury management. However, understanding of the pathophysiology of severe head injury is required for optimal patient management. This article explains the relationships between cerebral blood flow and metabolism and summarizes the current understanding of how these parameters can be helpful in the treatment of patients with severe head injuries.
Collapse
Affiliation(s)
- M Zwienenberg
- Department of Neurological Surgery, University of California Davis, 4860 Y Street, Suite 3740, Sacramento, CA 95817, USA
| | | |
Collapse
|
20
|
Abstract
Traumatic brain injury (TBI) is a public health problem of great concern, because it affects more than 2 million individuals each year. TBI occurs as a result of motor vehicle crashes, falls, and sports-related events. Biomechanical mechanisms occurring at the time of the injury initiate primary and secondary injuries that evolve over several days. In this article the relationship between an blunt injury event and the subsequent damage produced is addressed. Mechanisms of brain injury from biomechanics to cellular pathobiology are presented. Primary and secondary injuries are differentiated, and specific focal and diffuse clinical syndromes are described. Cellular mechanisms responsible for injury are also addressed, because they provide the unifying concepts across the many clinical syndromes so often discussed separately in reviews of traumatic brain injury.
Collapse
Affiliation(s)
- A E Davis
- University of Michigan School of Nursing, Ann Arbor, USA
| |
Collapse
|
21
|
Umehara F, Abe M, Koreeda Y, Izumo S, Osame M. Axonal damage revealed by accumulation of beta-amyloid precursor protein in HTLV-I-associated myelopathy. J Neurol Sci 2000; 176:95-101. [PMID: 10930590 DOI: 10.1016/s0022-510x(00)00324-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated the localization and extent of beta-amyloid precursor protein (APP) immunoreactivity as a sensitive marker for impairment of fast axonal transport in the spinal cords of patients with HTLV-I-associated myelopathy (HAM)/tropical spastic paraparesis (TSP). The results from this study show that APP, used as a marker of early axonal damage in HAM/TSP lesions, is more intensively expressed in areas of active-inflammatory lesions than those of inactive-chronic lesions. The close localization to the areas containing inflammation (activation of macrophage/microglia) is striking and suggests that axonal damage is closely associated with inflammation in active-chronic lesions. Although inflammatory cell infiltration in the central nervous system (CNS) is rarely found in inactive-chronic lesions, a few clusters of APP+ axons are found in the spinal cord white matter in some cases. The presence of APP+ axons without relation to inflammatory cells in inactive-chronic lesions, suggest that soluble neurotoxic factors might induce axonal changes in the CNS of HAM/TSP. The occasional myelinated fibers in the anterior and posterior spinal roots in lower thoracic to lumbar levels had APP+ axons, suggesting that spinal nerve roots can be affected in HAM/TSP, especially in lower thoracic to lumbar levels. Impairment of fast axonal transport may contribute to the development of disability in patients with HAM/TSP.
Collapse
Affiliation(s)
- F Umehara
- The Third Department of Internal Medicine, Kagoshima University School of Medicine, Sakuragaoka 8-35-1, Kagoshima, Japan.
| | | | | | | | | |
Collapse
|
22
|
Büki A, Okonkwo DO, Povlishock JT. Postinjury cyclosporin A administration limits axonal damage and disconnection in traumatic brain injury. J Neurotrauma 1999; 16:511-21. [PMID: 10391367 DOI: 10.1089/neu.1999.16.511] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent observations concerning presumed calcium-induced mitochondrial damage and focal intraaxonal proteolysis in the pathogenesis of traumatic axonal injury (TAI) have opened new perspectives for therapeutic intervention. Studies from our laboratory demonstrated that cyclosporin A (CsA), a potent inhibitor of Ca2+-induced mitochondrial damage, administered 30 min prior to traumatic brain injury preserved mitochondrial integrity in those axonal foci destined to undergo delayed disconnection. We attributed this neuroprotection to the inhibition by CsA of mitochondrial permeability transition (MPT). Additional experiments proved that CsA pretreatment also significantly reduced calcium-induced, calpain-mediated spectrin proteolysis (CMSP) and neurofilament compaction (NFC), pivotal events in the pathogenesis of axonal failure and disconnection. Given these provocative findings the goal of the current study was to evaluate the potential of CsA to inhibit calcium-induced axonal damage in a more clinically relevant postinjury treatment paradigm. To this end, cyclosporin A was administered intrathecally to Sprague Dawley rats 30 min following impact acceleration traumatic brain injury. The first group of animals were sacrificed 120 min postinjury and the density of CMSP and NFC immunoreactive damaged axonal segments of CsA-treated and vehicle-treated injured animals were quantitatively analyzed. A second group of CsA- versus vehicle-treated rats was sacrificed at 24 h postinjury to compare the density of damaged axons displaying beta amyloid precursor protein (APP) immunoreactivity, a signature protein of axonal perturbation and disconnection. Postinjury CsA administration resulted in a significant decrease (>60%) in CMSP/NFC immunoreactivity in corticospinal tracts and medial longitudinal fasciculi. A similar decrease was detected in the density of APP immunoreactive damaged axons, indicating an attenuation of axonal disconnection at 24 h postinjury in CsA-treated animals. These results once again suggest that the maintenance of the functional integrity of the mitochondria can prevent TAI, presumably via the preservation of the local energy homeostasis of the axon. Moreover and perhaps more importantly, these studies also demonstrate the efficacy of CsA administration when given in the early posttraumatic period. Collectively, our findings suggest that a therapeutic window exists for the use of drugs targeting mitochondria and energy regulation in traumatic brain injury.
Collapse
Affiliation(s)
- A Büki
- Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0709, USA
| | | | | |
Collapse
|
23
|
Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD, Marmarou A, Young HF. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 1998; 89:507-18. [PMID: 9761042 DOI: 10.3171/jns.1998.89.4.0507] [Citation(s) in RCA: 410] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Recent animal studies demonstrate that excitatory amino acids (EAAs) play a major role in neuronal damage after brain trauma and ischemia. However, the role of EAAs in patients who have suffered severe head injury is not understood. Excess quantities of glutamate in the extracellular space may lead to uncontrolled shifts of sodium, potassium, and calcium, disrupting ionic homeostasis, which may lead to severe cell swelling and cell death. The authors evaluated the role of EEAs in human traumatic brain injury. METHODS In 80 consecutive severely head injured patients, a microdialysis probe was placed into the gray matter along with a ventriculostomy catheter or an intracranial pressure (ICP) monitor for 4 days. Levels of EAAs and structural amino acids were analyzed using high-performance liquid chromatography. Multifactorial analysis of the amino acid pattern was performed and its correlations with clinical parameters and outcome were tested. The levels of EAAs were increased up to 50 times normal in 30% of the patients and were significantly correlated to levels of structural amino acids both in each patient and across the whole group (p < 0.01). Secondary ischemic brain injury and focal contusions were most strongly associated with high EAA levels (27+/-22 micromol/L). Sustained high ICP and poor outcome were significantly correlated to high levels of EAAs (glutamate > 20 micromol/L; p < 0.01). CONCLUSIONS The release of EAAs is closely linked to the release of structural amino acids and may thus reflect nonspecific development of membrane micropores, rather than presynaptic neuronal vesicular exocytosis. The magnitude of EAA release in patients with focal contusions and ischemic events may be sufficient to exacerbate neuronal damage, and these patients may be the best candidates for treatment with glutamate antagonists in the future.
Collapse
Affiliation(s)
- R Bullock
- Department of Pharmacology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yamaki T, Murakami N, Iwamoto Y, Sakakibara T, Kobori N, Ueda S, Uwahodo Y, Kikuchi T. Cognitive dysfunction and histological findings in rats with chronic-stage contusion and diffuse axonal injury. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1998; 3:100-6. [PMID: 9767137 DOI: 10.1016/s1385-299x(98)00030-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Morris water maze (MWM) technique is well known as a prominent method of evaluating learning acquisition and memory retention impairments in rats. We previously reported on a modified fluid percussion device that is able to consistently produce experimental cortical contusion (CC) and diffuse axonal injury (DAI) in separate groups of rats. The purpose of the present protocol is to evaluate the differences in learning acquisition and memory retention impairments between these two types of injured rats in the chronic stage using the MWM technique. CC and DAI rats are respectively induced by lateral and midline fluid percussion. We also compare the histological differences between these two different types of traumatic brain injury. The results show statistically significant differences in learning acquisition impairment between the sham and CC rats and between the sham and DAI rats. However, a difference in memory retention impairment was expected to be seen only between the sham and DAI rats. Histologically, the loss of CA3 pyramidal cells in the hippocampus was observed ipsilaterally in the CC and bilaterally in DAI. Neuronal cell loss was observed in bilaterally in layer II of the entorhinal cortex in DAI, but not in CC.
Collapse
Affiliation(s)
- T Yamaki
- Department of Neurosurgery, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Li R, Fujitani N, Jia JT, Kimura H. Immunohistochemical indicators of early brain injury: an experimental study using the fluid-percussion model in cats. Am J Forensic Med Pathol 1998; 19:129-36. [PMID: 9662107 DOI: 10.1097/00000433-199806000-00006] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To detect early changes in neurons and astrocytes by immunohistochemical methods using antibodies against the neuron-specific enolase (NSE), neurofilament, glial fibrillary acid protein (GFAP), and S-100 protein, a fluid-percussion injury model in cats was chosen, in which a severe grade of injury (3.5-5.5 atm) was produced. Neuropathologic changes were produced through brain deformation by pressure gradients at the time of injury. The neuronal NSE immunoreactivity in the parietal cortex and the brain stem began to decrease at 1 to 2 hours after injury and were reduced markedly or even lost 4 hours after injury. Axons in the cerebral white matter and corpus callosum and in the hemorrhage regions at the brain stem were waved and enlarged <4 hours after injury. From 4 hours after injury, retraction balls were found after staining by antibody for the neurofilament. The GFAP-positive astrocytes appeared in the impact site in the parietal cortex and in the brain stem from 4 hours after injury, whereas S-100-positive astrocytes were not markedly changed, indicating that early after the injury, astrocytes manifested reactive hypertrophy without proliferation. These results suggest that immunochemical studies on NSE, neurofilament, GFAP, and S-100 are useful in pathologic and forensic practice in a patient who survives for a short time after a fatal head injury but without obvious focal damage.
Collapse
Affiliation(s)
- R Li
- Department of Legal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | | | | | | |
Collapse
|
26
|
Matthews MA, Carey ME, Soblosky JS, Davidson JF, Tabor SL. Focal brain injury and its effects on cerebral mantle, neurons, and fiber tracks. Brain Res 1998; 794:1-18. [PMID: 9630470 DOI: 10.1016/s0006-8993(98)00107-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following a mild cortical impact injury delivered by a piston to the right sensorimotor cortex of the anesthetized rat, we evaluated mantle loss, neuronal changes, and fiber track degeneration by deOlmos silver stains up to 8 weeks after injury. Darkened neurons indicating damage (chromatolysis) occurred widely throughout both hemispheres and were seen from 1 h to 8 weeks after injury. This effect might have occurred from pressure wave damage from piston impact, brain displacement or deafferentation. Cerebral mantle loss was variable but fiber track degeneration related to projection and corticofugal descending tracks associated with the right sensorimotor system was rather constant. Unexpectedly, considerable fiber track degeneration occurred within the cerebellum, especially the inferior vermis. Cells directly under the piston face were surprisingly well-preserved but axon degeneration studies showed that these apparently intact neuronal cell bodies were surrounded by a dense network of degenerating fiber tracks. The intact cells, therefore, may have been functionally cut off from the rest of the brain owing to interruption of their efferents and afferents. The increased susceptibility of axons compared to cell bodies seen with this focal injury is similar to that observed with diffuse brain injury. The early appearing, severe and widespread axon damage we observed suggests that amelioration of focal traumatic brain injury will have to be directed promptly to the preservation of axons as well as cell bodies.
Collapse
Affiliation(s)
- M A Matthews
- Department of Anatomy, Louisiana State University Medical Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Use of therapeutic hypothermia to treat patients with severe traumatic brain injury was described more than 50 years ago. Unexpected improvement in some of these patients was attributed to hypothermia, but none of the early studies systematically evaluated the efficacy of hypothermia, and many patients were thought to have been harmed by the treatment, particularly when cooled below 30°C or when cooled for longer than 48 hours. Recent investigations have found that therapeutic moderate hypothermia (32–34°C) for relatively brief durations can improve histological and behavioral outcome following experimental brain injury. Cooling to this degree and duration has not been implicated as a cause for the cardiac arrhythmias, coagulation abnormalities, or infections attributed to hypothermia in the earlier studies. These laboratory investigations also defined several neurochemical mechanisms through which hypothermia may limit secondary brain injury and brain swelling. Four clinical trials of therapeutic moderate hypothermia were completed during the past three years; each detected a beneficial effect from cooling patients with severe traumatic brain injury to 32 to 34°C for up to 48 hours. In the largest of these studies, therapeutic moderate hypothermia was shown to cause a significant improvement in neurological outcomes 3, 6, and 12 months after injury for those patients with an initial Glasgow Coma Scale score of 5 to 7. The improvement in outcome for these patients was associated with a hypothermia-induced reduction of intracranial pressure and cerebrospinal fluid levels of interleukln-1β and glutamate.
Collapse
|
28
|
Giometto B, An SF, Groves M, Scaravilli T, Geddes JF, Miller R, Tavolato B, Beckett AA, Scaravilli F. Accumulation of beta-amyloid precursor protein in HIV encephalitis: relationship with neuropsychological abnormalities. Ann Neurol 1997; 42:34-40. [PMID: 9225683 DOI: 10.1002/ana.410420108] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The pathogenesis of neuropsychological abnormalities in patients with human immunodeficiency virus type 1 (HIV-1) encephalitis is obscure because neurons are not the target of infection and severe neuronal loss occurs only late during the disease. Moreover, there is evidence indicating that HIV dementia is not a homogeneous entity and could partially reverse after treatment with zidovudine. The finding that impaired axonal flow, evidenced by beta-amyloid precursor protein immunoreactivity, could contribute to the neuropsychological deficits prompted the present study. Brains of patients with full-blown acquired immunodeficiency syndrome (AIDS) were studied and findings compared with those of normal and abnormal control subjects. The presence of HIV-1 DNA was investigated by nested polymerase chain reaction; axonal abnormalities were detected by beta-amyloid precursor protein, ubiquitin immunohistochemistry, and silver staining. Accumulation of beta-amyloid precursor protein was observed in all the HIV encephalitis brains studied; the appearance of the immunostaining varied from globular structures to bundles of parallel formations. In 2 AIDS brains without pathological abnormalities, only the latter pattern was detected. The brains with trauma were strongly reactive with beta-amyloid precursor protein antibody and the different reactivity within them correlated with posttrauma survival, only globular structures being detected in the older cases. No correlation was found between the different pattern of beta-amyloid precursor protein reactivity and dementia in AIDS patients. These results show that widespread axonal injury is a constant feature in AIDS brains and suggest that it could play a role in the pathogenesis of the neuropsychological abnormalities of these patients.
Collapse
Affiliation(s)
- B Giometto
- Department of Neuropathology, University of London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dunn-Meynell AA, Levin BE. Histological markers of neuronal, axonal and astrocytic changes after lateral rigid impact traumatic brain injury. Brain Res 1997; 761:25-41. [PMID: 9247063 DOI: 10.1016/s0006-8993(97)00210-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The model of lateral, rigid impact traumatic brain injury is widely used but remains relatively poorly characterized by comparison with fluid percussion injury models. Thus, whilst the gross morphological changes that occur over the short- and long-term post-injury have been described, more subtle measures of neuronal injury and activation, and markers of axonal and glial reactions have not been investigated, complicating interpretation of data from this model. To address this issue, a variety of neurohistological markers were examined in adult male rats which had been subjected to open brain, lateral rigid impact injury. A piston device was unilaterally driven 3.0 mm into the somatosensory cortex at a speed of 3.2 m/s. Neuronal activation evidenced by Fos-like immunoreactivity showed a complex pattern at 3 h after injury which appeared to be related both to proximity to the impact site and cortical efferent connectivity. At 24 h after injury, acid fuchsin staining demonstrated dying neurons in the margin of the injury and in ipsilateral hippocampus and dorsal thalamus. Injured cells identified by heat-shock protein immunoreactivity showed a similar distribution. Axonal injury demonstrated with 68 kDa neurofilament immunoreactivity was more widely distributed. Less axonal damage was found with increasing distance from the injury site. At 7 days post-injury, glial fibrillary acidic protein immunoreactive astrocytes were prolific in the ipsilateral thalamus, hippocampus and striatum and throughout the injured cortex. In general, controlled, lateral rigid impact injury provides a more focused injury than is seen with lateral fluid percussion which may have implications for the behavioral deficits seen in this injury model.
Collapse
Affiliation(s)
- A A Dunn-Meynell
- Neurology Service, Department of Veterans Affairs Medical Center, East Orange, NJ 07018-1095, USA
| | | |
Collapse
|
30
|
Kanayama G, Takeda M, Morihara T, Miyamae Y, Shinozaki K, Nishikawa T, Niigawa H, Nishimura T. Temporal and regional profiles of cytoskeletal protein accumulation in the rat brain following traumatic brain injury. Psychiatry Clin Neurosci 1997; 51:157-65. [PMID: 9225381 DOI: 10.1111/j.1440-1819.1997.tb02379.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To characterize the cytoskeletal aberration due to traumatic injury, temporal and regional profiles of changes in immunoreactivity of microtubule-associated protein 2 (MAP2), neurofilament heavy subunit protein (NFH) and heat shock protein 72 (HSP72) were investigated after different magnitudes of traumatic brain injury by fluid percussion. The experimental rat brain was perfusion-fixed at 1, 6 and 24 hours after traumatic brain injury. Conventional histological staining has demonstrated that the mildest traumatic brain injury (1.0 atm) induced no neuronal loss at the impact site and that neuron loss was apparent when traumatic brain injury was increased to 4.3 atm. The mildest traumatic brain injury, however, caused a significant increase in HSP72 immunoreactivity in the superficial cortical layers at the impact site as early as 1 hour after the injury. In the case of severe traumatic brain injury (4.3 atm), neuron loss was apparent in the area at the impact site, but the increase in HSP72 immunoreactivity was moderate, and it was observed only after 6 hours in the deep cortical layers under the necrotic area. The increased immunostaining of MAP2 was demonstrated in damaged axons and neuronal perikarya in the wider area surrounding the impact site at 6 and 24 hours after the injury. Six and 24 hours after the injury, perikaryal accumulation of neurofilament was observed, and the accumulated neurofilament was mostly phosphorylated. These results indicate that the severe traumatic brain injury of 4.3 atm triggers the abnormal accumulation of cytoskeletal proteins in neuronal perikarya, most probably due to an impairment of axonal transport. It is implied that the increased expression of HSP72 may be involved in the protective process of neurons after traumatic brain injury.
Collapse
Affiliation(s)
- G Kanayama
- Department of Neuropsychiatry, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yamaki T, Murakami N, Iwamoto Y, Sakakibara T, Kobori N, Ueda S, Kikuchi T, Uwahodo Y. Evaluation of learning and memory dysfunction and histological findings in rats with chronic stage contusion and diffuse axonal injury. Brain Res 1997; 752:151-60. [PMID: 9106451 DOI: 10.1016/s0006-8993(96)01469-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We previously reported a modified fluid percussion device capable of consistently producing experimental cortical contusion (CC) and diffuse axonal injury (DAI) in separate groups of rats by lateral and midline fluid percussion, respectively. The purpose of the present study was to compare the differences in learning acquisition and memory retention impairments between these two types of injured rats in the chronic stage using the Morris water maze technique. We also compared the histological differences between these two different types of traumatic brain injury. The results showed a statistically significant difference in learning acquisition impairment between the sham and CC rats and also between the sham and DAI rats. However, a significant difference in memory retention impairment was observed only between the sham and DAI rats. Histologically, the neuronal cell loss of CA3 pyramidal cells in the hippocampus was observed on the ipsilateral side in the CC and bilaterally in DAI. The neuronal cell loss was seen in bilateral entorhinal cortex layer II in DAI, but it was not seen in CC. From these results, we speculate that the marked cell loss in the hippocampus CA3 region in both CC and DAI rats was related to the impairment of spatial learning acquisition. The marked cell loss in entorhinal cortex layer II in DAI rats may be one of the important factors in the impairment of spatial memory retention.
Collapse
Affiliation(s)
- T Yamaki
- Department of Neurosurgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Leonard JR, Grady MS, Lee ME, Paz JC, Westrum LE. Fluid percussion injury causes disruption of the septohippocampal pathway in the rat. Exp Neurol 1997; 143:177-87. [PMID: 9056381 DOI: 10.1006/exnr.1996.6366] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fluid percussion injury (FPI) causes memory deficits, loss of hippocampal neurons, and basal forebrain cholinergic immunoreactivity in rats. Basal forebrain septohippocampal projections terminate in specific hippocampal regions. The purpose of this study was to examine the effects of FPI on the septohippocampal pathway (SHP). Halothane-anesthetized rats received either a sham injury or a parasagittal FPI. To characterize the anatomical effects of FPI on the SHP, silver stains were performed on brains of animals at 1, 5, and 10 days following FPI and were compared to sham-injured preparations. To characterize the effects of FPI on retrograde transport in the SHP, a separate group of FPI and sham-injured animals with survival times of 2, 5, and 10 days received bilateral WGA-HRP injections into the hippocampal formation 24 h prior to sacrifice. Argyrophilic CA3 neurons were present 1 day following FPI. Five days following FPI, terminal degeneration was present in the inner third of the molecular layer of the dentate gyrus bilaterally that was not present 1 day after injury. Fiber and terminal degeneration was not observed in the basal forebrain until 10 days after FPI. WGA-HRP-labeled septal neurons decreased significantly (P < 0.05) ipsilateral to injury in animals sacrificed 5 and 10 days following FPI but not 2 days after injury. This investigation demonstrated that FPI produces focal injury in the hippocampal formation. In addition, the appearance of terminal degeneration in the dentate molecular layer correlated with the significant reduction in axonal transport 5 days following injury. This correlation illustrates the secondary processes that structurally damage the SHP up to 10 days after injury.
Collapse
Affiliation(s)
- J R Leonard
- Department of Neurological Surgery, University of Washington, Seattle, Washington, 98195, USA
| | | | | | | | | |
Collapse
|
33
|
Sahuquillo J, Poca M, Pedraza S, Munar X. Actualizaciones en la fisiopatología y monitorización de los traumatismos craneoencefálicos graves. Neurocirugia (Astur) 1997. [DOI: 10.1016/s1130-1473(97)70728-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Prat Acín R, Calatayud Maldonado V. Daño axonal difuso: factores pronósticos clínico-epidemiológicos. Neurocirugia (Astur) 1997. [DOI: 10.1016/s1130-1473(97)71030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Novack TA, Dillon MC, Jackson WT. Neurochemical mechanisms in brain injury and treatment: a review. J Clin Exp Neuropsychol 1996; 18:685-706. [PMID: 8941854 DOI: 10.1080/01688639608408292] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This article reviews cellular energy transformation processes and neurochemical events that take place at the time of brain injury and shortly thereafter emphasizing hypoxia-ischemia, cerebrovascular accident, and traumatic brain injury. New interpretations of established concepts, such as diffuse axonal injury, are discussed; specific events, such as free radical production, excess production of excitatory amino acids, and disruption of calcium homeostasis, are reviewed. Neurochemically-based interventions are also presented: calcium channel blockers, excitatory amino acid antagonists, free radical scavengers, and hypothermia treatment. Concluding remarks focus on the role of clinical neuropsychologists in validation of treatment interventions.
Collapse
Affiliation(s)
- T A Novack
- Department of Rehabilitation Medicine, University of Alabama at Birmingham 35233-7330, USA
| | | | | |
Collapse
|
36
|
Alsop DC, Murai H, Detre JA, McIntosh TK, Smith DH. Detection of acute pathologic changes following experimental traumatic brain injury using diffusion-weighted magnetic resonance imaging. J Neurotrauma 1996; 13:515-21. [PMID: 8913968 DOI: 10.1089/neu.1996.13.515] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Standard magnetic resonance imaging (MRI) has been shown to be remarkably insensitive to acute changes following traumatic brain injury. Because diffusion-weighted MRI has recently demonstrated excellent sensitivity to acute ischemic injury and other CNS abnormalities, we evaluated the use of diffusion MRI for the detection of pathologic changes in the rat brain during the first hours following parasagittal fluid percussion brain injury. Diffusion MRI was able to demonstrate a significant diffusion decrease in the primary cortical contusion injury and a comparable decrease in the ipsilateral thalamus. Tissue damage in the thalamus region is much weaker than in the cortex, but the thalamus is a primary site of axonal and dendritic injury in this model. T2 imaging in the same subjects showed slight enhancement in the neighborhood of the injured cortex but was unable to demonstrate injury elsewhere. Diffusion imaging was superior to T2 at demonstrating injury and the prominent diffusion decrease in the thalamus suggests that diffusion MRI is preferentially sensitive to axonal or dendritic injury.
Collapse
Affiliation(s)
- D C Alsop
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
37
|
Pettus EH, Povlishock JT. Characterization of a distinct set of intra-axonal ultrastructural changes associated with traumatically induced alteration in axolemmal permeability. Brain Res 1996; 722:1-11. [PMID: 8813344 DOI: 10.1016/0006-8993(96)00113-8] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has recently been demonstrated [Pettus et al., J. Neurotrauma, 11 (1994) 507-522] that moderate traumatic brain injury evokes alterations in axolemmal permeability associated with rapid local compaction of axonal neurofilaments (NF). The current communication fully characterized these local NF changes, while also exploring the possibility of other related cytoskeletal abnormalities. A tracer normally excluded by the intact axolemma (horseradish peroxidase) was administered intrathecally in cats, which were then subjected to moderate/severe fluid percussion brain injury (FPI). After survival times ranging from 5 min to 6 h post-traumatic brain injury (TBI), the animals were perfused and processed for light microscopic (LM) and electron microscopic (EM) visualization of horseradish peroxidase (HRP). HRP-containing axons identified by LM, were investigated by EM in both the sagittal and coronal planes. Electron micrographs were videographically captured, digitized, and analyzed for cytoskeletal distribution. Local alterations in axolemmal permeability to HRP were detected, and consistently linked with distinct cytoskeletal changes. Within 5 min of injury, the injured HRP-containing axons displayed a significant decrease in inter-NF spacing associated with a lack of NF side arm projections. Density analysis proved a significant increase in NF packing in the HRP-containing axons, and further revealed an associated significant decrease in microtubule (MT) density. All ultrastructural changes were seen within 5 min of injury, and persisted unchanged for up to 6 h post-TBI. Collectively, these abnormalities suggest that altered axolemmal permeability triggers a rapid, yet persisting general cytoskeletal change most likely linked to local ionic disregulation. We posit that this local cytoskeletal collapse/alteration marks a site of impaired axonal transport, associated with upstream axoplasmic swelling and eventual axonal detachment.
Collapse
Affiliation(s)
- E H Pettus
- Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0709, USA
| | | |
Collapse
|
38
|
Hoshino S, Kobayashi S, Nakazawa S. Prolonged and extensive IgG immunoreactivity after severe fluid-percussion injury in rat brain. Brain Res 1996; 711:73-83. [PMID: 8680877 DOI: 10.1016/0006-8993(95)01329-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The relationships between protein extravasation, morphological changes in neurons, and reactive changes in axons were evaluated in rats subjected to right lateral fluid-percussion injury to the brain (4.8-5.6 atm, 20 ms). Serial sections of the brain were immunostained with antibodies to rat immunoglobulin G (IgG) and 68-kDa neurofilament at 1 h to 2 weeks after injury or sham injury. Ischemic changes in neurons were noted in the injured cortex at 6-48 h after injury, and macroscopic hemorrhages were noted in the right corpus callosum and external capsule at 1 h to 1 week after injury. Extracellular IgG immunostaining was observed in the right cortex and right hippocampus at 1 h to 1 week after injury, and in the cortices and hippocampi bilaterally at 2 weeks after injury, but was most prominent in those regions at 24 h after injury. Intracellular IgG staining was noted in the neurons of cortices, hippocampi, brainstem, and cerebellum at 1 h to 2 weeks after injury. The number of IgG immunoreactive neurons was greatest at 1 week after injury. Thickened IgG immunoreactive axons and reactive axonal changes seen with neurofilament immunostaining were both in the similar region of the brainstem at 1 h to 1 week after injury. It appears that prolonged and widespread breakdown of the blood-brain barrier to plasma protein occurs after severe concussive brain injury and that this breakdown is not always accompanied by morphological changes. Intra-axonal IgG immunostaining provides additional clues to the pathogenesis of axonal damage following diffuse brain injury.
Collapse
Affiliation(s)
- S Hoshino
- Department of Neurosurgery, Nippon Medical School, Chiba Hokusoh Hospital, Japan
| | | | | |
Collapse
|
39
|
Povlishock JT, Pettus EH. Traumatically induced axonal damage: evidence for enduring changes in axolemmal permeability with associated cytoskeletal change. ACTA NEUROCHIRURGICA. SUPPLEMENT 1996; 66:81-6. [PMID: 8780803 DOI: 10.1007/978-3-7091-9465-2_15] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies have demonstrated that delayed or secondary axotomy is a consistent feature of traumatic brain injury in both animals and man. Moreover, these studies have shown that the pathogenesis of this secondary axotomy involves various forms of initiating pathology, with the suggestion that, in some cases, only the axonal cytoskeleton is perturbed, while, in other cases, both the axonal cytoskeleton and related axolemma manifest traumatically induced perturbations. In the current communication, we continue in our investigation of the significance of these traumatically induced alterations in axolemmal permeability and their relation to any related intra-axonal cytoskeletal change. This was accomplished in cats which received intrathecal infusions of peroxidase, an agent normally excluded by the intact axolemma. These animals were subjected to traumatic brain injury, and sites showing altered axolemmal permeability to the peroxidase were assessed at the light and electron microscopic level. Through this approach, we recognized that a traumatic episode of moderate severity evoked changes in axolemmal permeability which surprising endured for up to 5 hrs postinjury. At such focal sites of altered permeability, the related cytoskeleton showed a statistically significantly neurofilament compaction, with the strong suggestion of concomitant neurofilament sidearm loss, microtubular dispersion, and mitochondrial abnormality. Over time, these events led to further disorganization of the axonal cytoskeleton which translated into impaired axoplasmic transport and secondary axotomy. Most likely, these alterations in axolemmal permeability result in either the direct or indirect effects upon the axonal cytoskeleton that precipitate the damaging sequences resulting in delayed axotomy.
Collapse
Affiliation(s)
- J T Povlishock
- Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond, USA
| | | |
Collapse
|
40
|
Graham DI, Adams JH, Nicoll JA, Maxwell WL, Gennarelli TA. The nature, distribution and causes of traumatic brain injury. Brain Pathol 1995; 5:397-406. [PMID: 8974622 DOI: 10.1111/j.1750-3639.1995.tb00618.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The identification and interpretation of brain damage resulting from a non-missile head injury is often not easy with the result that the most obvious structural damage identified postmortem may not be the most important in trying to establish clinicopathological correlations. For example patients with a fracture of the skull, quite severe cerebral contusions or a large intracranial haematoma that is successfully treated can make an uneventful and complete recovery if no other types of brain damage are present. However, not infrequently more subtle forms of pathology are present and ones that can only be identified microscopically. A systematic and pragmatic approach through the autopsy is therefore required and one that recognises the need for tissue to be retained in ways that are appropriate for cellular and molecular studies.
Collapse
Affiliation(s)
- D I Graham
- University Department of Neuropathology, Southern General Hospital, Glasgow, UK
| | | | | | | | | |
Collapse
|
41
|
Povlishock JT, Jenkins LW. Are the pathobiological changes evoked by traumatic brain injury immediate and irreversible? Brain Pathol 1995; 5:415-26. [PMID: 8974624 DOI: 10.1111/j.1750-3639.1995.tb00620.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Traumatic brain injury has long been thought to evoke immediate and irreversible damage to the brain parenchyma and its intrinsic vasculature. In this review, we call into question the correctness of this assumption by citing two traumatically related brain parenchymal abnormalities that are the result of a progressive, traumatically induced perturbation. In this context, we first consider the pathogenesis of traumatically induced axonal damage to show that it is not the immediate consequence of traumatic tissue tearing. Rather, we illustrate that it is a delayed consequence of complex axolemmal and/or cytoskeletal changes evoked by the traumatic episode which then lead to cytoskeletal collapse and impairment of axoplasmic transport, ultimately progressing to axonal swelling and disconnection. Second, we consider the traumatized brain's increased neuronal sensitivity to secondary ischemic insult by showing that even after mild traumatic brain injury, CA1 neuronal cell loss can be precipitated by the induction of sublethal ischemic insult within 24 hrs of injury. In demonstrating this increased sensitivity to secondary insult, evidence is provided that it is triggered by the neurotransmitter storm evoked by traumatic brain injury, allowing for sublethal neuro-excitation. In relation to this phenomenon, the protective effect of receptor antagonists are discussed, as well as the concept that this relatively prolonged posttraumatic brain hypersensitivity offers a potential window for therapeutic intervention. Collectively, it is felt that both examples of the brain parenchyma's response to traumatic brain injury show that the resulting pathobiology is much more complex and progressive than previously envisioned, and as such, rejects many of the previous beliefs regarding the pathobiology of traumatic brain injury.
Collapse
Affiliation(s)
- J T Povlishock
- Department of Anatomy, Virginia Commonwealth University, Richmond 23298-0709, USA
| | | |
Collapse
|
42
|
Myseros JS, Bullock R. The rationale for glutamate antagonists in the treatment of traumatic brain injury. Ann N Y Acad Sci 1995; 765:262-71; discussion 298. [PMID: 7486612 DOI: 10.1111/j.1749-6632.1995.tb16583.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The recent development of potent antagonists for the most widespread neurotransmitter in the mammalian brain has opened up possibilities for many forms of therapy. The excitotoxic hypothesis implicates excessive release of excitatory amino acids (EAAs) as an important cause of brain damage, especially in acute ischemia, and chronic neurodegeneration. Focal ischemic damage and diffuse axonal injury are the major causes of brain damage after traumatic human brain injury. Evidence from animal models has shown that excitatory amino acid-induced events maybe responsible for a proportion of the posttraumatic sequelae and that these effects can be blocked by EAA antagonists. This evidence is reviewed, and the implications for human pathophysiology and treatment are discussed.
Collapse
Affiliation(s)
- J S Myseros
- Division of Neurosurgery, MCV Station, Richmond, Virginia 23298-0631, USA
| | | |
Collapse
|
43
|
Povlishock JT, Christman CW. The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J Neurotrauma 1995; 12:555-64. [PMID: 8683606 DOI: 10.1089/neu.1995.12.555] [Citation(s) in RCA: 356] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This manuscript provides a review of those factors involved in the pathogenesis of traumatically induced axonal injury in both animals and man. The review comments on the issue of primary versus secondary, or delayed, axotomy, pointing to the fact that in cases of experimental traumatic brain injury, secondary, or delayed, axotomy predominates. This review links the process of secondary axotomy to an impairment of axoplasmic transport which is initiated, depending upon the severity of the injury, by either focal cytoskeletal. misalignment or axolemmal permeability change with concomitant cytoskeletal. collapse. Data are provided to show that these focal axonal changes are related to the focal impairment of axoplasmic transport which, in turn, triggers the progression of reactive axonal change, leading to disconnection. In the context of experimental studies, evidence is also provided to explain the damaging consequences of diffuse axonal injury. The implications of diffuse axonal injury and its attendant deafferentation are considered by noting that with mild injury such deafferentation may lead to an adaptive neuroplastic recovery, whereas in more severe injury a disordered and/or maladaptive neuroplastic re-organization occurs, consistent with the enduring morbidity associated with severe injury. In closing, the review focuses on the implications of the findings made in experimental animals for our understanding of those events ongoing in traumatically brain-injured humans. It is noted that the findings made in experimental animals have been confirmed, in large part, in humans, suggesting the relevance of animal models for continued study of human traumatically induced axonal injury.
Collapse
Affiliation(s)
- J T Povlishock
- Department of Anatomy, School of Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, USA
| | | |
Collapse
|
44
|
Zauner A, Bullock R. The role of excitatory amino acids in severe brain trauma: opportunities for therapy: a review. J Neurotrauma 1995; 12:547-54. [PMID: 8683605 DOI: 10.1089/neu.1995.12.547] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Severe brain trauma remains poorly understood, because of its pathophysiological complexity, and this has so far thwarted our attempts to improve outcome by means of drug therapy, although better understanding of the role of ischemic events has led to improved mortality rates, in some centers. With regard to excitatory amino acid antagonists, new mechanistic insights from both animal models, and human monitoring has enabled better trial design, which may allow the tremendous laboratory neuroprotective potency of this group of compounds to be translated to clinical benefit.
Collapse
Affiliation(s)
- A Zauner
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, USA
| | | |
Collapse
|
45
|
Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ. Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma 1995; 12:565-72. [PMID: 8683607 DOI: 10.1089/neu.1995.12.565] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Axonal injury (AI), as defined by amyloid precursor protein (APP) positive axonal swellings, was recorded on a series of line diagrams of standard brain sections divided into 116 sectors to provide an Axonal Injury Sector Score (AISS) ranging from 0 to 116. This sector scoring method of recording axonal damage and providing a topographic overview of AI was applied to a series of 6 mild head injury cases [Glasgow Coma Scale (GCS) 13-15] and six severe head injury cases (GCS 3-8). The AISS ranged from 4 to 107 overall and varied from 4 to 88 in the mildly injured group and 76 to 107 in the severe head injury group, supporting the concept that there is a spectrum of AI in traumatic head injury and that the AISS is a measure of the extent of AI. APP immunostaining demonstrated positive axonal swellings 1.75 h after head injury and analysis of the pattern of AI in the mild and severe head injury groups showed that axons were more vulnerable than blood vessels and that the axons in the corpus callosum and fornices were the most vulnerable of all.
Collapse
Affiliation(s)
- P C Blumbergs
- Neuropathology Laboratory, Institute of Medical and Veterinary Science, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Grigoriants OO, Pravdenkova SV, Andersen BJ, Desiderio DM. Alteration of opioid peptide concentrations in the rat pituitary following survivable closed head injury. Neurochem Res 1995; 20:827-31. [PMID: 7477676 DOI: 10.1007/bf00969695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Concentration changes of methionine enkephalin-like immunoreactivity (ME-li) and beta-endorphin-like immunoreactivity (BE-li) in the rat pituitary following diffuse brain injury were studied. Closed head injury was induced by a weight-drop trauma device (450 g x 2 m). The level of closed head injury used in this study altered the pituitary opioid peptide concentrations. The level of ME-li did not change in the experimental groups 3 hours, 10 hours, 24 hours, and 3 days after the trauma, but significantly increased by 34% 10 days after the trauma. BE-li remained constant 3 hours and 10 hours following the injury, increased by 48% at 24 hours, and remained at this level for 10 days after the trauma (44% at 3 days, and 40% at 10 days). The levels of ME-li and BE-li in the control sham-operated rats did not change during these times. The present measurements of BE-li and ME-li in the pituitary indicate that the opioid peptides that derive from two different neuropeptidergic systems, proopiomelanocortin (POMC) and preproenkephalin A, respectively, may participate in the pathophysiology of a closed head injury.
Collapse
Affiliation(s)
- O O Grigoriants
- Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, University of Tennessee, Memphis 38163, USA
| | | | | | | |
Collapse
|
47
|
McHale MK, Hall GF, Cohen MJ. Early cytoskeletal changes following injury of giant spinal axons in the lamprey. J Comp Neurol 1995; 353:25-37. [PMID: 7714247 DOI: 10.1002/cne.903530105] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The spinal cord of the larval sea lamprey contains identified giant axons that readily regenerate following spinal transection. In this study, we used serial light and electron microscopy to analyze the early ultrastructural consequences of axotomy in the proximal stumps of these axons near the lesion site. Axotomy results in two types of striking ultrastructural changes: 1) changes associated with the degeneration of axoplasm and subsequent retraction of the cut axon from the lesion and 2) changes associated with the early stages of axonal regeneration. Degenerative changes include the disruption of mitochondria to form large vacuoles, the collapse of neurofilaments into closely packed masses (condensed filamentous cores; CFCs), and the appearance of amorphous electron-dense bodies (dense granular masses; DGMs). Events associated with regeneration include the disappearance of vacuoles, DGMs, and CFCs and the appearance of small, sprout-like projections from the axon stump. Thus, we show that degenerative and regenerative events can be clearly separated from one another in identified axons, unlike the situation in the central nervous systems of amniote vertebrates such as mammals.
Collapse
Affiliation(s)
- M K McHale
- Department of Biology, Yale University, New Haven, Connecticut 06511, USA
| | | | | |
Collapse
|
48
|
Hall GF, Lee VM. Neurofilament sidearm proteolysis is a prominent early effect of axotomy in lamprey giant central neurons. J Comp Neurol 1995; 353:38-49. [PMID: 7714248 DOI: 10.1002/cne.903530106] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the accompanying paper, it was shown that axotomy of lamprey spinal axons induces the rapid formation of condensed neurofilamentous masses in the proximal axon stump near the lesion. In this study, we used immunocytochemical and Western blot analysis to characterize these masses further and to determine the time course of their formation and dispersal. We show that monoclonal antibodies specific to the "rod" domain of lamprey neurofilament protein strongly stain such masses in tissue sections without staining other axonal neurofilaments. Antibodies specific for the neurofilament "sidearm" domain fail to recognize neurofilamentous masses but stain other axonal neurofilaments. Western blots of spinal cord segments from the lesion site were compared to unlesioned cord and to samples of cord distant from the lesion. We found that a neurofilament rod-specific antibody identified breakdown products of the same size as the rod domain in samples from the lesion site, but not elsewhere. Other lesion-specific neurofilament breakdown products were recognized by a sidearm-specific antibody. This lesion-specific pattern of neurofilament proteolysis was visible at 1 day postlesion and was still present 3 weeks later. Immunocytochemistry showed masses of rod-staining neurofilaments in axon stumps by 12 hours postlesion that remained for 1-2 weeks postaxotomy; these dispersed with the onset of regeneration. Such neurofilament rod staining was also prominent in distal axon stumps undergoing Wallerian degeneration. We conclude that axotomy induces neurofilament sidearm proteolysis near the lesion, permitting antibody access to the rod domain. We suggest that sidearm loss causes the high packing density of neurofilaments within neurofilamentous masses near the lesion site and that neurofilament sidearm proteolysis can be used to distinguish degenerative from regenerative changes in lesioned lamprey axons.
Collapse
Affiliation(s)
- G F Hall
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
49
|
Gentleman SM, Roberts GW, Gennarelli TA, Maxwell WL, Adams JH, Kerr S, Graham DI. Axonal injury: a universal consequence of fatal closed head injury? Acta Neuropathol 1995; 89:537-43. [PMID: 7676809 DOI: 10.1007/bf00571509] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
beta-Amyloid precursor protein immunostaining has recently been shown to be a reliable method for detecting the damage to axons associated with fatal head injury. In an attempt to compare the efficacy of this technique with conventional histological detection of axonal damage, we have reanalysed sections from a large well-characterised series of head-injured and control patients. The results indicate that the frequency of axonal injury has been vastly underestimated using conventional silver techniques, and that axonal injury may in fact be an almost universal consequence of fatal head injury.
Collapse
Affiliation(s)
- S M Gentleman
- Department of Psychiatry, Charing Cross and Westminster Medical School, London, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Pettus EH, Christman CW, Giebel ML, Povlishock JT. Traumatically induced altered membrane permeability: its relationship to traumatically induced reactive axonal change. J Neurotrauma 1994; 11:507-22. [PMID: 7861444 DOI: 10.1089/neu.1994.11.507] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recent studies have suggested that severe forms of traumatic brain injury (TBI) can be associated with direct alterations of the axolemma. The present study evaluated whether injuries of mild to moderate severity are associated with comparable change. To this end, we used extracellular horseradish peroxidase (HRP) to determine if altered axolemmal permeability occurred following the traumatic event. Adult cats received intrathecal infusions of peroxidase and then were prepared for mild to moderate fluid percussion injury. At intervals ranging from 5 min to 3 h, animals were perfused with aldehydes and prepared for the histochemical visualization of the peroxidase, in addition to the immunocytochemical visualization of the neurofilament 68 kD subunit, a long recognized marker of reactive axonal change. The histochemically and immunocytochemically prepared tissue was examined at both the light and electron microscopic level. With mild TBI, the injured animals displayed a repertoire of neurofilament misalignment and axonal swelling consistent with that previously described in our laboratories, yet these changes were not associated with the passage of peroxidase from the extracellular to the intraaxonal compartment. With moderate injury, on the other hand, focal axolemmal permeability change to the extracellularly confined peroxidase was recognized. This peroxidase passage was associated with local mitochondrial abnormalities in addition to an increased packing of the neurofilaments. Over a 3 h course, these neurofilaments began to disassemble, showing a delayed progression of reactive axonal change. Collectively, the results of this investigation suggest that traumatically induced axonal injury involves complex subsets of pathobiology, one evoking rapid primary neurofilamentous change and misalignment, the other eliciting altered membrane permeability concomitant with rapid neurofilament compaction, leading to a delayed progression of reactive axonal change.
Collapse
Affiliation(s)
- E H Pettus
- Department of Anatomy, Virginia Commonwealth University, Richmond
| | | | | | | |
Collapse
|